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Abstract. The aim of this paper is to construct generating functions for Boole-type combinatorial numbers
and polynomials. Using these generating functions, we derive not only fundamental properties of these
numbers and polynomials, but also some identities and formulas. Finally, we present a brief historical
remarks and observations on our generating functions and Peters and Boole-type numbers and polynomials.

1. Introduction, Definitions and Notations

Throughout this paper, we need the following definitions and notations. N = {1, 2, 3, . . .},N0 =N∪ {0}.
Z,R andC denotes the set of integers, the set of real numbers and the set of complex numbers, respectively.

Generating functions for some special numbers and polynomials are given below:
The Apostol-Bernoulli polynomials and the Apostol-Euler polynomials are defined by, respectively:

FB (t, x;λ) =
text

λet − 1
=

∞∑
n=0

Bn (x;λ)
tn

n!
(1)

and

FE (t, x;λ) =
2ext

λet + 1
=

∞∑
n=0

En (x;λ)
tn

n!
, (2)

which, for x = 0, are reduced to the Apostol-Bernoulli numbers Bn (λ) = Bn (0;λ) and the Apostol-Euler
numbers En (λ) = En (0;λ). For special value of the parameter λ, we also get the Bernoulli numbers and the
Euler numbers (cf. [2], [7], [8]).

The Stirling numbers of the first kind and the second kind are defined by, respectively:

FS1 (t, k) =

(
log (1 + t)

)k

k!
=

∞∑
n=0

s (n, k)
tn

n!
, (3)
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(x)n = x (x − 1) . . . (x − n + 1) =

n∑
j=0

x js(n, j) (4)

and

FS2 (t, k) =

(
et
− 1

)k

k!
=

∞∑
n=0

S (n, k)
tn

n!
(5)

(cf. [1], [2], [5], [8]).
Integral representation of the Cauchy numbers Cn is given by

Cn =

∫ 1

0
(x)ndx (6)

(cf. [5]).
The Peters polynomials are defined by

FP
(
t, x;λ, µ

)
=

(1 + t)x(
1 + (1 + t)λ

)µ =

∞∑
n=0

sn
(
x;λ, µ

) tn

n!
(7)

(cf. [3], [4], [5]). Setting x = 0 in (7), the polynomials sn
(
x;λ, µ

)
are reduced to the Peters numbers

sn
(
λ, µ

)
= sn

(
0;λ, µ

)
. When µ = 1, equation (7) is reduced to the generating function for the Boole

polynomials ξn(x;λ) = sn(x;λ, 1) (cf. [3], [5]). Substituting x = 0 and µ = 1 into (7), the Peters polynomials
are reduced to the Boole numbers ξn(λ) = sn(0;λ, 1) (cf. [3]) and also Chn = 2ξn(1) = 2sn(0; 1, 1) denotes the
Changhee numbers (cf. [4]).

We [7] defined the following combinatorial numbers and polynomials:
The numbers Yn (λ) and the polynomials Yn (x;λ) are defined by, respectively:

F (t;λ) =
2

λ (1 + λt) − 1
=

∞∑
n=0

Yn (λ)
tn

n!
(8)

and

F (t, x;λ) = (1 + λt)x
F (t;λ) =

∞∑
n=0

Yn (x;λ)
tn

n!
(9)

(cf. [7]).
Observe that

Yn (−1) = (−1)n+1 Chn

(cf. [9, Lemma 2]).
We [7, Eq. (2.3)] constructed the following p-adic integral representation for the p-adic meromorphic

function as follows:∫
X

λx(1 + λt)xχ(x)dµ−q(x) =
[2]

(λq)d(1 + λt)d + 1

d−1∑
j=0

(−1) jχ( j)(λq) j(1 + λt) j,

where µq(x) = µq(x + pNZp) =
qx

[pN] , [x] = [x]q =
[
x : q

]
=

{ 1−qx

1−q , q , 1
x, q = 1

,X = Xd = lim←

N
Z/dpNZ, X1 = Zp

denotes the set of p-adic integers and d is an odd positive integer and λ ∈ Zp with λ , 1, χ is the Dirichlet
character with odd conductor d.
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By the above p-adic integral representation, we constructed the following generating function for the
so-called generalized Apostol-Changhee numbers and polynomials, respectively:

FC(t;λ, q, χ) =
[2]

∑d−1
j=0 (−1) jχ( j)(λq) j(1 + λt) j

(λq)d(1 + λt)d + 1
=

∞∑
n=0

Chn,χ(λ, q)
tn

n!

and

FC(t, z;λ, q, χ) = FC(t;λ, q, χ)(1 + λt)z =

∞∑
n=0

Chn,χ(z;λ, q)
tn

n!
. (10)

2. Generating functions for combinatorial type numbers

In this section, with the aid of (10), we derive the following generating function

Gy7 (t, λ, q) =
[2]

(λq)(1 + λt) + 1
=

∞∑
n=0

y7,n(λ, q)
tn

n!
(11)

and

Fy7 (t, z;λ, q) = Gy7 (t, λ, q)(1 + λt)z =
[2](1 + λt)z

(λq)(1 + λt) + 1
=

∞∑
n=0

y7,n(z;λ, q)
tn

n!
. (12)

By using the above equations, we derive various kind of identities, relations and formulas for the
polynomials y7,n(z;λ, q) and the numbers y7,n(λ, q).

2.1. Identities and relations for the numbers y7,n(λ, q)
In this section, by using equation (11) with its functional equations, we provide some identities and

relations for not only the numbers y7,n(λ, q), but also the Stirling numbers, Apostol-type numbers and also
combinatorial numbers.

Theorem 2.1. Let n ∈N0. Then we have

y7,n(λ, q) = [2](−1)n (λ2q)nn!
(λq + 1)n+1 . (13)

Proof. By (11), we have

[2]
∞∑

n=0

(−1)n (λ2q)nn!
(λq + 1)n+1

tn

n!
=

∞∑
n=0

y7,n(λ, q)
tn

n!
.

Comparing the coefficients of tn

n! on the both sides of the above equation, we get the derived result.

Theorem 2.2 (Recurrence Relation). Let

y7,0(λ, q) =
1 + q

1 + λq
.

Then we have

y7,n(λ, q) = −
nλ2q
λq + 1

y7,n−1(λ, q) (14)

where n ∈N.
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Proof. By (11), we have

[2] = (λq + 1)
∞∑

n=0

y7,n(λ, q)
tn

n!
+ qλ2

∞∑
n=0

ny7,n−1(λ, q)
tn

n!
.

Therefore we get

[2] = (λq + 1)y7,0(λ, q)

and

0 = (λq + 1)y7,n(λ, q) + qλ2ny7,n−1(λ, q).

Thus we get the result of theorem.

Theorem 2.3. Let m ≥ 1. Then we have

Bm

(
qλ2

qλ2 − qλ − 1

)
=

m
[2]

(qλ2
− qλ − 1)

m−1∑
n=0

S(m − 1,n)y7,n(λ, q). (15)

Proof. Replacing t by et
− 1 in (11), and by using (1), we get

∞∑
n=0

y7,n(λ, q)
(et
− 1)n

n!
=

[2]
t(qλ2 − qλ − 1)

∞∑
m=0

Bm

(
qλ2

qλ2 − qλ − 1

)
tm

m!
.

After some elementary calculations, we get

(qλ2
− qλ − 1)
[2]

∞∑
m=0

m
m−1∑
n=0

S(m − 1,n)y7,n(λ, q)
tm

m!
=

∞∑
m=0

Bm

(
qλ2

qλ2 − qλ − 1

)
tm

m!
.

Comparing the coefficients of tm

m! on the both sides of the above equation, we get the derived result.

By using same computation of equation (15), we also derive the following thoerem:

Theorem 2.4. Let m ∈N0. Then we have

Em

(
−qλ2

qλ2 − qλ − 1

)
= −

2
[2]

(qλ2
− qλ − 1)

m∑
n=0

S(m,n)y7,n(λ, q).

2.2. Logarithm functions associated with integral representation of the numbers
Here, we give integral representation of the numbers y7,n(λ, q) and also give some integral formulas.

Integrating equation (11) with repect to t from 0 to 1, we get

∞∑
n=0

∫ 1

0
y7,n(λ, q)

tn

n!
dt =

[2]
λq + 1

∫ 1

0

dt
λ2q
λq+1 t + 1

.

Hence, we have

∞∑
n=0

y7,n(λ, q)
(n + 1)n!

=
[2]
λ2q

ln
(
λ2q
λq + 1

+ 1
)
.

Thus, we arrive at the following theorem:
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Theorem 2.5.
∞∑

n=0

y7,n(λ, q)
(n + 1)!

=
[2]
λ2q

ln
(
λ2q + λq + 1
λq + 1

)
. (16)

Combining (16) with (13), we get

∞∑
n=0

[2](−1)n(λ2q)nn!
(n + 1)!(λq + 1)n+1 =

[2]
λ2q

ln
(
λ2q + λq + 1
λq + 1

)
.

Therefore, after some elementary calculations, we arrive at a series representation of ln function by the
following corollary:

Corollary 2.6.

ln
(
λ2q
λq + 1

+ 1
)

=

∞∑
n=0

(−1)n

(n + 1)

(
λ2q
λq + 1

)n+1

.

We remark that the above series has also been studied in [6].

3. A new polynomials y7,n(x; λ, q)

In this section, we give some properties of the polynomials y7,n(x;λ, q). By using equation (12), we derive
formulas for these polynomials.

By (12), we get

∞∑
n=0

y7,n(x;λ, q)
tn

n!
=

∞∑
n=0

(x)n
(λt)n

n!

∞∑
n=0

y7,n(λ, q)
tn

n!
.

Therefore

∞∑
n=0

y7,n(x;λ, q)
tn

n!
=

∞∑
n=0

n∑
j=0

(
n
j

)
(x)n− jλ

n− jy7, j(λ, q)
tn

n!
.

Comparing the coefficients of tn

n! on the both sides of the above equation, we get the following theorem.

Theorem 3.1.

y7,n(x;λ, q) =

n∑
j=0

(
n
j

)
(x)n− jλ

n− jy7, j(λ, q). (17)

By (17), we see that

y7,n(x;λ, q) = [2]
n∑

j=0

(−1) j
(
n
j

)
j!

λn+ jq j

(λq + 1) j+1
(x)n− j.

Integrating the above equation from 0 to 1 with respect to x, we get∫ 1

0
y7,n(x;λ, q)dx = [2]

n∑
j=0

(−1) j
(
n
j

)
j!

λn+ jq j

(λq + 1) j+1

∫ 1

0
(x)n− jdx.
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By (6), we derive∫ 1

0
y7,n(x;λ, q)dx = [2]

n∑
j=0

(−1) j
(
n
j

)
j!

λn+ jq j

(λq + 1) j+1
Cn− j. (18)

By (4), we also derive∫ 1

0
y7,n(x;λ, q)dx = [2]

n∑
j=0

(−1) j
(
n
j

)
j!

λn+ jq j

(λq + 1) j+1

n− j∑
k=0

s(n − j, k)
k + 1

. (19)

Combining (18) and (19), we get the following theorem:

Theorem 3.2.
n∑

j=0

(−1) j
(
n
j

)
j!

λn+ jq j

(λq + 1) j+1
Cn− j =

n∑
j=0

(−1) j
(
n
j

)
j!

λn+ jq j

(λq + 1) j+1

n− j∑
k=0

s(n − j, k)
k + 1

. (20)

By using (20), we have

n∑
j=0

(−1) j
(
n
j

)
j!

λn+ jq j

(λq + 1) j+1

(
Cn− j −

n− j∑
k=0

s(n − j, k)
k + 1

)
= 0.

We observe from the above equation that the well-known formula for the Cauchy numbers is given by

Cn− j =

n− j∑
k=0

s(n − j, k)
k + 1

(cf. [5]).

4. Further remarks and observations

Motivation of the numbers y7,n(λ, q) is briefly given by

y7,n(λ, q) = (−1)n+1 q + 1
2qn Yn

(
−qλ

)
. (21)

In addition, substituting q = 1 into (12), we have

2(1 + λt)x

λ(1 + λt) + 1
=

∞∑
n=0

y7,n(x;λ, 1)
tn

n!
.

When λ = 1, we obtain

2(1 + t)x

t + 2
=

∞∑
n=0

y7,n(x; 1, 1)
tn

n!

Hence, we have the following relations between the polynomials y7,n(x;λ, q), Peters polynomials and Boole
polynomials:

sn(x; 1, 1) =
1
2

y7,n(x; 1, 1).

Substituting x = 0, λ = q = 1, we see that

sn(0; 1, 1) = ξn(1) =
1
2

Chn =
1
2

y7,n(0; 1, 1).
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