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Abstract. Due to their applications in many branches of science, topological graph indices are becoming
more popular every day. Especially as one can model chemical molecules by graphs to obtain valuable
information about the molecules using solely mathematical calculations on the graph. The inverse problem
for topological graph indices is a recent problem proposed by Gutman and is about the existence of a graph
having its index value equal to a given non-negative integer. In this paper, the inverse problem for Bell
index which is one of the irregularity indices is solved. Also a recently defined graph invariant called
omega invariant is used to obtain several properties related to the Bell index.

1. Introduction

Let G = (V,E) be an undirected, connected and unweighted graph having | V(G) |= n vertices and
| E(G) |= m edges without isolated vertices. The degree of a vertex v ∈ V(G) is denoted by dG(v) or dv. A
vertex of degree one will be called a pendant vertex.

Graph indices have been defined in the last few decades to study several properties of atoms and
molecules by means of some mathematical techniques. Nearly three hundreds graph indices are defined
by mathematicians and chemists as molecular graphs are obtained from molecules by replacing atoms with
vertices and bonds between them with edges. In this way, every chemical molecule can be modelled by a
graph and studying this graph helps us to obtain information on the properties of the molecule without
needing money and time-consuming experiments. These indices are invariants measuring several physi-
cal, chemical or biological properties of graphs. Two popular graph indices are called the first and second
Zagreb indices defined by Gutman and Trinajstic, [9]. In [3], the first Zagreb index is related to some other
indices. In [4], multiplicative versions of these indices are considered. Zagreb indices are related to ABC,
GA and Randic indices in [12]. In [15], Zagreb indices of subdivision graphs were obtained and in [14],
inequalities for Zagreb indices of r-subdivision graphs were found.

Inverse problems have very fundamental role in many areas of science and the one for the graph theory
is a new one. The inverse problem for graph indices is about the existence of graphs having index equal
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to an integer and was first proposed in [10]. The inverse problem for the first Zagreb index M1(G) was
solved in [13] and for Wiener index in [16]. Inverse problem for four topological indices were studied
in [11]. Recently, the problem for the second Zagreb index M2(G), forgotten Zagreb index F(G), and the
hyper-Zagreb index HM(G) were completely solved in [17].

If the degree of all vertices of a graph are equal, then the graph is regular. Regularity has many
advantages in graph theory. A graph which is not regular is called irregular. Several measures for
irregularity are used and the most investigated ones are the Albertson index

Alb(G) =
∑

uv∈E(G)

|du − dv|,

[1] and [7], the Bell index

B(G) =
∑

v∈V(G)

(
dv −

2m
n

)2

,

[2] and [7] and the sigma index
σ(G) =

∑
uv∈E(G)

(du − dv)2.

In [8], the inverse problem for σ index is solved. In this paper, we study the inverse problem for Bell index.

2. Inverse problem for Bell index

In this section, we investigate the inverse problem for the Bell index B(G). As with all irregularity
indices, we know that G is regular iff B(G) = 0. Let d denote the average vertex degree of a connected simple
graph G. First we obtain the relation between the Bell index and the first Zagreb index:

Theorem 2.1. The relation between the Bell index B(G) and the first Zagreb index M1(G) is

B(G) = M1(G) − d(4m − nd).

Proof. By the definition, we can write

B(G) =
∑

v∈V(G)

(
dv − d

)2

=
∑

v∈V(G)

d2
v − 2d

∑
v∈V(G)

dv +
∑

v∈V(G)

d
2

= M1(G) − d(4m − nd).

The following is a well known property of a connected simple graph:

Lemma 2.2. Let G be a connected simple graph with order n and size m. Then

n − 1 ≤ m ≤
n(n − 1)

2
.

Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)
}. If there is at least one graph having the elements of D as its vertex

degrees, then D is called realizable. In [5], an invariant number denoted by Ω(G) for a given degree sequence
and all its realization graphs was defined and some of its properties were studied. The motivation to define
Ω was its similarity to the number of leaves (pendant vertices) of a tree. This number closely related to the
cyclomatic number of the graph gives direct information on all the realizations of a given degree sequence:
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Definition 2.3 ([5]). Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)
} be a realizable degree sequence and its realization be the

graph G. The Ω(G) of G is defined in terms of the degree sequence as

Ω(G) = a3 + 2a4 + 3a5 + · · · + (∆ − 2)a∆ − a1

=

∆∑
i=1

(i − 2)ai.

Ω(G) has the following important computational property:

Theorem 2.4 ([5]). For any graph G,
Ω(G) = 2(m − n).

In the same paper, the number r of the closed regions (faces) which are bounded by the edges of the
graph G was formulized. Note that a closed region could be bounded by any n-cycle (n-gon) where n ≥ 3,
a loop (1-gon) or a pair of multiple edges (2-gon). Hence

Theorem 2.5 ([5]). Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)
}. If D is realizable as a connected planar graph G, then the

number r of closed regions is given by

r =
Ω(G)

2
+ 1.

For example, for all trees including path and star graphs, we have Ω(G) = −2, for all unicyclic graphs
Ω(G) = 0, for all bicyclic graphs Ω(G) = 2, and for all graphs having k cycles, we have Ω(G) = 2k− 2, giving
the number of faces as 0, 1, 2 and k, respectively.

In [6], some extremal problems on the numbers of components and loops of all realizations of a given
degree sequence were given. We now apply this new invariant Ω to Bell irregularity index. First we prove

Lemma 2.6. The necessary and sufficient condition for the average vertex degree of a connected simple graph to be
greater than 2 is that Ω(G) ≥ 2.

Proof. Let the average vertex degree of a connected simple graph G be denoted by d. d > 2 iff m > n iff G
has at least two cycles iff Ω(G)

2 + 1 ≥ 2 by Theorem 2.5 iff Ω(G) ≥ 2.

As we consider the integer values of the Bell index, we shall assume that the average vertex degree d of
G is an integer. In general, if n|2m, then d is a positive integer. In particular, when n is odd and n|m, then d is
a positive integer. As the average vertex degree plays an important role in the study of the inverse problem
for Bell index, we shall now study some properties of it by means of the omega invartiant. We first have

Lemma 2.7. A tree Tn with n vertices has integer average vertex degree iff n|2.

Proof. Let G � Tn be a tree with n vertices. Then it is well known that n = m + 1. Then the average vertex
degree is

d =
2m
n

=
2(n − 1)

n
= 2 −

2
n

and for this number to be an integer we must have n|2.

That is, amongst all trees, only those with 1 or 2 vertices, that is, graphs having a single vertex and a single
edge, respectively, can have integer average vertex degree.

The following result gives the necessary and sufficient conditions for a graph being unicyclic in terms
of average vertex degree and can be proven by easy calculations:

Theorem 2.8. Let G be a connected graph. Adding a pendant edge to G does not change the average vertex degree iff
G is unicyclic. That is

dG+e = dG ⇔ r = 1.
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The following are immediate consequences of Theorem 2.4, 2.8 and Lemma 2.2:

Corollary 2.9. If G is a connected unicyclic graph, then dG = 2.

Corollary 2.10. The necessary and sufficient condition for Ω(G) = 0 is dG = 2.

Corollary 2.11. Let G be a connected simple graph. Then G is unicyclic iff m = n.

Corollary 2.12. If Ω(G) = 0, then n ≥ 3.

Corollary 2.13. Let G be a connected simple graph with average vertex degree dG ≥ 2. Then

Ω(G) = (dG − 2)n.

Let G be a connected unicylic graph and let u ∈ V(G) have degree dGu. Then it can easily be shown
that adding a pendant edge to G at u increases the Bell index of G by 2dGu − 2. Hence if G is a connected
unicyclic graph and if u ∈ V(G) is a pendant vertex so that dGu = 1, then adding a new pendant edge to G
at u does not change the Bell index. Similarly, if G is a connected graph having at least three vertices and
if u and v are two non-adjacent vertices having degree dGu and dGv, respectively, then adding a new edge
e = uv to G, the obtained graph G + e has non-integer average vertex degree.

We are now in a position to solve the inverse problem for the Bell index. For this, we need the following
tool:

Transformation 2.14. Let G be a graph possessing a vertex v of degree dGv ≥ 3. Let u be a pendant vertex of G
adjacent to v. Construct the graph G∗ by attaching two new pendant edges to u, cf. Fig. 1.

Figure 1: Transformation 2.14 giving G∗

The following result says that applying Transformation 2.14 to a connected simple graph having a pendant
vertex and average vertex degree d = 2 increases the Bell index by 2:

Lemma 2.15. Let G be a connected simple graph having a pendant vertex and d = 2. Transformation 2.14 increases
the Bell index by 2. That is,

B(G∗) = B(G) + 2. (1)

Proof. First we prove that Transformation 2.14 does not effect the average vertex degree d = 2 and so all
the graphs constructed by successively applying Transformation 2.14 would have the same average vertex
degree 2: Average vertex degree of G is 2 by the assumption:

2 =

∑
x∈V(G) dGx

n
=

∑
x∈V(G−u) dGx + dGu

n
=

∑
x∈V(G−u) dGx + 1

n
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and hence
∑

x∈V(G−u) dGx = 2n − 1. Similarly the average vertex degree of G∗ is

d =

∑
x∈V(G−u) dG∗x + dG∗u + dG∗w1 + dG∗w2

n + 2

=

∑
x∈V(G−u) dGx + dGu + dGw1 + dGw2

n + 2

=
2n − 1 + 3 + 1 + 1

n + 2
= 2.

Now

B(G∗) − B(G) =
∑

x∈V(G∗)

(dx − 2)2
−

∑
x∈V(G)

(dx − 2)2

=
∑

x∈V(G−u)

(dx − 2)2 + (du − 2)2 + (dw1 − 2)2 + (dw2 − 2)2

−

∑
x∈V(G−u)

(dx − 2)2
− (du − 2)2

= 2.

Under the assumption that the average vertex degree is an integer, the Bell index of any connected
simple graph can only take even values:

Theorem 2.16. Let G be a connected simple graph with integer average vertex degree. Then B(G) is always even.

Proof. If d is even, for each vertex vi of degree di, we know that (di − d)2 is either even or odd. The number
of odd ones is even by handshaking lemma implying that B(G) is even. Let secondly d be odd. As the sum
of all vertex degrees is even, the product n · d must also be even. Then n must be even. In this case, as
the number of odd di’s is even, the number of even di’s must also be even. For each odd vertex degree di,
(di − d)2 is even and for each even vertex degree di, (di − d)2 is odd. So even times odd numbers and even
times even numbers add up to an even number, so B(G) is again even.

In fact when the average degree is 1, the values of the Bell index are more limited:

Corollary 2.17. If G is a graph with average vertex degree 1, then B(G) = 0.

Proof. Let d = 1. As we do not allow isolated vertices, all vertices must have degree 1. Hence we have
B(G) = 0.

We can give an alternative proof of Theorem 2.16 by means of the first Zagreb index:

Proof. Let the degrees of G be d1, d2, · · · , dn. Then B(G) = 2k + 1, k is an integer iff 2k + 1 =
∑n

i=1(di − d)2 iff
(2k + 1)n2 =

∑n
i=1(n · di − 2m)2 iff (2k + 1)n = n ·M1(G)− 4m2 iff M1(G) = 4m2

n + 2k + 1 iff M1(G) is odd iff
∑n

i=1 d2
i

is odd iff
∑n

i=1 di is odd, which is a contradiction.

The following is a useful property:

Corollary 2.18. If G is a connected simple graph with integer average vertex degree d, then

n ≥ d + 1.
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Proof. By Lemma 2.2, we have

n − 1 ≤ m ≤
n(n − 1)

2
implying

n − 1 ≤
n · d

2
≤

n(n − 1)
2

and hence the result is obtained.

Now we are ready to give another main result of this paper:

Theorem 2.19. Let the average vertex degree d of a connected simple graph G be a positive integer. Then the Bell
index of a connected simple graph can take all non-negative even integer values.

Proof. First, the Bell index of the tadpole graph T3,1 is 2, see Fig. 2. Applying Transformation 2.14 repeatedly,

Figure 2: Tadpole graph T3,1 has Bell index 2

we get the graphs in Fig. 3 with Bell indices 4, 6, 8, · · · . Interestingly enough, all these graphs have average
vertex degree 2. Finally the cycle graph Cn has B(Cn) = 0

Figure 3: Graphs with Bell index 4, 6, 8, · · ·

In fact, to prove Theorem 2.19, one does not need to look at all the connected simple graphs with integer
average vertex degree. Considering only those connected simple graphs with d = 2 would be enough to
reach the target:

Corollary 2.20. Let A2 be the set of all connected simple graphs with average vertex degree 2. The Bell index of any
graph in A2 can take all non-negative even integer values.

If the average vertex degree is 3, we have

Theorem 2.21. Let G be a connected simple graph with average vertex degree 3. Then B(G) can take the values
18k(2k − 1) for a positive integer k.

Proof. If d = 3, then

B(G) =

n∑
i=1

(di − 3)2 = M1(G) − 12m + 9n.
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As 2m = 3n by the assumption, we have B(G) = M1(G) − 6m. Hence

B(G) =

n∑
i=1

d2
i − 3 ·

n∑
i=1

di =

n∑
i=1

di(
n∑

i=1

di − 3) = 2m(2m − 3) = 9n(n − 1) = 18k(2k − 1)

as n must be even, say 2k for an integer k.

Similarly, if the average vertex degree is 4, we have

B(G) = M1(G) − 16(m − n) = M1(G) − 8Ω(G) = M1(G) − 8m = M1(G) − 16n =

n∑
i=1

di(
n∑

i=1

di − 8) = 4n(n − 4).

Here we can at least consider the complete graphs as connected simple graphs with average vertex degree
4. Hence we have proved

Theorem 2.22. Let G be a connected simple graph with average vertex degree 4. Then B(G) can take the values
4n(n − 4) where n is the order of G.

3. Conclusion

In this paper, one of the recent problems of graph theory related to the most applicative area of it called
the inverse problem is solved for the Bell index, one of the irregularity indices. As this index depends on
the average vertex degree, the properties of this specific number is studied by means of a recently defined
graph invariant called omega.
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