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A Generalization of the Suborbital Graphs Generating Fibonacci
Numbers for the Subgroup I'?

Seda Oztiirk?

?Karadeniz Technical University, Faculty of Sciences, Department of Mathematics, Trabzon-Turkey
Abstract. The Modular group I is the most well-known discrete group with many applications. This work
investigates some subgraphs of the subgroup I°, defined by
{(“4)eT:ab+cd=0 (mod 3)}

In [T], the subgraph F; ; of the subgroup I® c T is studied, and Fibonacci numbers are obtained by means of

the subgraph of F; ;. In this paper, we give a generalization of the subgraphs generating Fibonacci numbers
for the subgroup I'® and some subgraphs having special conditions.

1. Introduction and Preliminaries

The Modular group I' is a subgroup of the automorphism group of the upper half plane, and defined as

r=PSLR,Z) = (K:z— B0 0 b cdeZ,ad—be =1)
cz+d

The elements of the Modular group can also be taken as matrices (Z Z) witha,b,c,d € Zandad —bc =1,

since the Modular group is isomorphic to SL(2,Z)/{+I}. It is generated by matrices U = (0 _1) and

1 0
V= ((1) _11) with defining relationships U? = V® = I, where [ is the identity matrix. The Modular group

acts on the extended rational numbers Q = Q U {oo} with the action defined by

_(a b) x ax+by
- _

c d)'y " cx+dy

where a,b,c,d € Z, and ad — bc = 1 [2]. Some more information about the modular group I' can be found in
34,5, 6].
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The subgroup I'® is defined as a subgroup of I generated by third power of all elements of T in [4}5]. In
([6]],p.33), it is shown that

P ={(4)el:ab+cd=0 (mod 3)|

In [7], it follows from the definition that the elements of I'® are one of the forms 36” 3bd ), (4, 3; ), (¢ Z) where, in

third matrix, a,b, c,d Z 0(mod3). Hence, the subgroup I'® acts transitively on the set of Q and the stabilizer
of oo is the group {$((1) my:ime Z}. We take the subgroup I'}() = {7 € I* : ¢ = 0 (mod 1)} and the stabilizer
I3, and now we can set up I°*— invariant equivalence relation. Since the group I'® is transitive, any reduced
fraction g € Q equals g(c0) for some g € I'°. The diagonal action, given by g(, B) = (ga, gp), of the group
I® on Q x Q defines the suborbitals, which are actually orbits. The orbit O*(a, f) containing (a, f) gives the
suborbital graph G3(a, ) defined as follows:

As in [2], the set of vertices is Q, and there is an edgey — din G3(a, p) if and only if (y, 6) € O3(a, B). Due

to the transitivity, every suborbital contains a pair (co, E) for some 1 € Q,(u,n) =1,1n> 0. The congruence
subgroup I3 (1) defines the following equivalence relation on Q by g1(c0) = ga(c0) for gy, g, € T? if and only
if g1T3(n) = g2l (). If g1 (c0) = g and g»(c0) = j—;, wehave { ~ % & ry - sx = 0(modn)

We will denote the suborbital graph by G , for short. By virtue of the permuting the blocks transitively

all subgraphs corresponding to the blocks are isomorphic. Hence, we will only consider the subgraph F}

un
of G3 ,, whose vertice set is just the equivalence class or the block

[oo]:{ie@:yEO (modn)}

In [7], the author studied the connectivity properties of all subgraphs of the subgroup I'* except of
the subgraph F; ; and in [1]], the authors showed that the subgraph F;; is disconnected and for all natural
numbers m, the natural numbers b that make the numbers (9m? —4)b? +4 square are 0, 1, 3m, 9m*—1, 3m(9m? —
1)—-3m,--- ,a,b,3mb—a,---.

In this work, we will investigate some number theoretical problems and give a generalization of the
subgraphs generating Fibonacci numbers for the subgroup I® and subgraphs with some special conditions
by means of some special matrices.

2. Main Results

Theorem 1. [7] F} , = Fz,,n, ifand only if n = n’ and u = u'(mod3n)

Theorem 2. [[7] There is an edge g - i in Fi/l if and only if either

(i) if r = 0(mod3), then y = Fns(mod3) and ry — sx = F1, or
(ii) if s = 0(mod3), then x = Fnr(mod3) and ry — sx = ¥1, or

(iii) if r,s # 0(mod3), then x # Fnr(mod3), y # Fns(mod3) and
ry —sx =¥l

2
Theorem 3. Let n € IN. Then,A:( non +3”+1)~ ;

3
1 0+ 3 isinI>.

Proof. We have —n.(n? + 3n + 1) — 1.(n + 3) = —(n® + 2n) mod (3) for every n € IN.To prove that the matrix A
is in I3, we must show that, for any n,

n® +2n = 0 mod (3) (1)
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If n = 0 mod (3), then (1) is true. Otherwise, we have that n = 1 mod (3) or n = —1 mod (3), and so
n* = 1 mod (3). Therefore, in any case, n° + 2n = n(n* + 2) = 0 mod (3) for every natural number 7. This
gives the proof.

We give following straightforward corollary without proof.

Corollary 4. Ifm € N, m # 0 mod (3), then there exists some natural number k such that 3k — 2 = m?. That is, the
number 3k —2 = m?isa perfect square number. Some of the values of the number k are 1,2,6,9,17,22,---.

n n2+3n+1

Theorem 5. Letne€ Nand A=
-1 n+3

). Then, for all m € IN

(i) Am(%) = A’”(?) in I8

n,1’

(ii) A"(%) > A’"”(%) inF3 .

0
Proof. (i) We will use mathematical induction principle. For m = l,Al(%) = A(%) = ? - 3”—;1 = A(%) =
Al(?) is true. Let it be true for m € IN. Hence, we must show that the hypothesis is true for m + 1 € IN.
From the assumption, we get that A(Am(%)) = Am”(%) - A(Am(?)) = A’””(?).

(ii)Using (i), we have A’"(%) 5 A’”(?) - A'”(A(%)) = A’"”(%).

Corollary 6. The sequence {A™},,c is strictly monotone increasing and the path

AG) — A2(5) —» AYZ) = -+

is an infinite path.
2

- 1
Proof. Forallz € R\ {n+3}, A(z) = nz tz(rjr ;fz +1)
increasing. Also, the path is an infinite. Because, if for some positive integers m and k such that m > k,

1
Ak(=
(0
@n+3)F V5

2

and A’(z) > 0. This shows that A is strictly monotone

) = Am(%), then put m = k + [ gives Al(%) = % In this case, the element A’ has three fixed points as

1
and o which gives A to be the identity. This gives a contradiction, since A is hyperbolic.

-n n?2+3n+1

a (n+3)-15
1 n+3 <E<— Then

< > . ,

—

Theorem 7. Let A = ( ) which is in T% and a,b € N such that

. a a (2n+3)—\/§
(z)E<A(E)< —

_ (n+3)b— V52 +4

(ii);l—) - A(%) is an edge in F>  if and only if a = > and there exists some k € IN such that
50 +4 = k2.

Proof.(i) Since 2 M

b > , we get that

2a < 2nb + 3b — V5b,56% < (21 + 3)2b* + 4a® — 4ab(2n + 3)
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a a
b —a+bm+d) A(3)- Further, we show that
a—(n+3)b

Then, —a? + abn + 3ab < —anb + b*(n> + 3n + 1) and 5
2 —
A(?—)) < M From the above, a2 — 2abn — 3ab + b?(n® + 3n + 1) > 0 and so V5 < 30— Gni 70 an
VE— @n+3) < _z—an+b(n2+3n+1) 2n+3)- 5 >A(E)
—-a+m+30b 2 b
2n+3)— V5
Consequently, we have % < A(%) < w

(ii) Let LN A(g)be an edge in Fi,l‘ By (i) and by Theorem 2, we have

a* —2n+3)ab+ > +3n+1)p* >0
1. Hence, we multiply the equation by 4 and add 5b%, we get
(2n+3)b — V52 + 4

and a?> — (2n + 3)ab + (n® + 3n + 1)b?
4a®—4ab(2n+3)+4b*(n>+3n+1)+5b> = 4+5b*. Also, since (2n+3)b—2a > 0, wehavea =

Furthermore, since 4 + 5b? is a natural number, there exists some k € IN such that 5% + 4 = k2.
2n +3)b— V5b2 + 4
( ) . Then, after some calculations it is easily seen that

Conversely, leta = 5
—b?(n?* + 3n +2)(2n + 3) + nb(n + 3) V5b2 + 4
5 =0 mod (3)
Therefore, the matrix
-2 b+ V5b% +4
@1 +3) 2+ ob” + (n®+3n+1)b
B —
b (2n+3)b+ V5b2 +4
2
R 1, a n a a a . .3
isin I. Also, B(a) =7 B(T) =5 Hence by Theorem 5| we get that 5 - A(E) isanedgein F, ;.
Corollary 8. Let k,n € N. Then,
(i) The path
1—>n+9—>n+1—> R bk
0 1 3 by 3bx — ax
is an infinite path under the matrix A.
on —
(i1) All vertices in (i) are less than M
3bk — A /5bi +4
and the numbers 5a; + 4, 5b7 + 4 are perfect squares.

Xm m+1 1 _ Ym m+21 —
— A (O)—n+3ym_(xm_nym)—>A (O)_

(iii) For the numbers ay, by in (i),a; =

1
Proof. (i) From the Theorem/|5, we get that A" (=) =
& 0~ Y

3 - - m
Ym — (X — 1Ym) for m € N, and so this gives the proof.

n+
3(BYm = (Xm = 1Ym)) = Ym
(ii) It is clear from (i) of the Theorem |7}
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(2n +3)by — /5bi +4

. Hence, we have

(iii) From (ii) of the TheoremH if % _, A(Z—k) , then gy =
k

by 2
(2n +3)by — /507 + 4
;ﬂ — bz - n+ b =n+ bi . There-
k k (21 +3)by — [502 + 4 3by — 502 +4
3by — 5 — nby 3b — | ————
3bi — o[5b% +4

fore, by (i) of this Corollary, we get that a; = 5

n+3 —-(m?+3n+1)

LetS = 1 i

) be the inverse matrix of the above matrix A.

Theorem 9. Let a, b € IN such that 2n1+ ! < g < w Then,
. a a 2n+3) + \5
Wy <S@<—7—

(2n +3)b+ V5b%2 — 4
2

3
n+3,1

(i) 2 — S(g) isan edgein F and there exists | € IN such that 5b*>—4 = 2.

5 ifand only ifa =

< w 20— b2n + 3) < V5b. From this, 442 — 4ab(2n + 3) + (2n + 3)b? < 502,
and so a® — (2n + 3)ab + (n* + 3n + 1)b? < 0. Therefore,
a (m+3)a-bn®+3n+1)
- <
b a—nb

Proof. (i) Since %

- 5(%) )

Also, since S is increasing on [(2711_+1), w) NQand S (

n +3) + x/E)_ @n+3)+ V5
2 B 2 ’

we obtain that
_@n+ 3)+ V5

a
S(E) > @3)
2
By (2) and (3), we get that 7 < S(7) < w
(i) Let N S(E) be an edge in F,,,. So, > — 2nab — 3ab + n*b* + 3nb* + b* < 0 and from Theorem

5, a> — (2n + 3)ab + (n*> + 3n + 1)b> = —1. Then, (2a — (2n + 3)b)> = —4 + 5b* and taking square root, we
g 59

2 V52 — 4
get [20 — (21 + 3| = VAT 5I2. Since 24 — (20 +3)b > 0, this shows that a = 2D . Fo

T

2
2 3)b + V5b2 — 4
2a — (2n + 3)b € IN, there exists some w € N such that 56> — 4 = w?. Conversely, leta = @1 +3) ;
(2n +3)b+ V5b%2 -4
and let w be in N such that 56*> — 4 = w?. Then, g = i ,
2 b+ V5b%2 -4
. (n+3) 23 ; > b +3n+1)
5(7) =
b 3b+ V502 — 4

2
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From Theorem we have that % - S(g) is an edge in Fi 31

Corollary 10. Let k € IN. Then,
by

; _1 _1 _2 ... _ % . S
(i) Thepath 2n+3) -1 > 2n+3) -3 > 2n+3)— % > -+ > (2n +3) bk—>(2n+3) (3bk_l7lk)—> is

an infinite path under the matrix S.

(2n+3)+ V5
—

3b — /502 — 4

2

(ii) The vertices in (i)are less than

(iii) For the numbers ax, by in (i),a = and the numbers 5a; — 4, 5b7 — 4 are perfect squares.

From the Corollaries 8}(i) and [T0}(i), we get that the following two corollaries.
Corollary 11. The numbers by € Z* making Sbi + 4 perfect square are 0,1,3,8,--- ,x,y,3y —x,---
Corollary 12. The numbers by € Z.* making 5b7 — 4 perfect square are 1,2,5,--- ,x,y,3y = x,---

Corollary 13. Let the sequences {ax}ren, {bilken be (0,1,3,8,--- ,x,y,3y —x,---)and (1,2,5,--- ,1,5,3s —1,--+),
respectively. Then, the sequence {cilken, defined by (0,1,1,2,3,5,8, -+, ax, by, ax+1, bis1, - -+ ) is the Fibonacci se-
quence.

Proof. We must show that ax + by = 41 and by + ay1 = byyq for all k € IN. By the mathematical induction
principle, for k = 1, a; + by = a, and by + a, = b, are true. Let it true be for k € IN. Let us see that
k1 + ber1 = Grep and bryq + Akeo = bigo. Since, agy1 = 3ap — a1 and bryr = 3bk — br-1, we get that
Ags1 +brsr = 3(ax+br) — (ax-1+br-1) = 3axe1 —ax = ax2 and by +agy2 = 3(bx+ars1) — (br-1+ax) = 3bgs1 —bx = brya.

Theorem 14. [[7] There is an edge g - g in Fin if and only if either

(i) if r = 0(mod3), then x = Fr(mod3), y = Fs(mod3n) and ry — sx = Fn, or
(ii) if s = 0(mod3), then x = Fr(mod3n), y = Fs(modn) and ry — sx = Fn, or
(iii) if r,s # O(mod3), then x = Fr(modn), y = ¥s(modn), x # Fr(mod3n), y # Fs(mod3n) and ry —sx = n

-1

Now, we consider a new matrix K = (—n

" 1 1) forn € N, n > 4. It is easily proved that the matrix K

is in I if and only if n = 2 mod (3).
-1 1 -
Theorem 15. Letn € N,n >4, and K = n on-1 be in I°. Then,
) Ym € N, K™ ! K™ 1y I
() Vm € N, (6) — (;)zn L
1 1
(ii) Ym € N, Km(a) - K'””(ﬁ) in Fin.
(iii) The sequence {K™},,c is increasing and the path

K(g) = KA(3) = K2(5) = -

is infinite path.

nF (n—4)n

(iv) The fixed points of K are z1, = >
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From (ii) of Theorem (15| we obtain the following result
A Ay — by 1 by,

m 1 = 1 -
K (0) - nbm'then n by 1 * n((n = 2)bw = (@m — b))’

-1 1
-n n-1

n— (n-4)mn

Theorem 16. Let n € N, n > 4,and K = £ < .
nb 2n

Then,

) e I'® and a,b € N such that rll <

. a a n— /(n—4)mn
Vo Ky < T
nb — \n(n —4)b2 + 4

> and there exists some t € IN such that

.. i i . . 3 . . —
(ii) b - K(nb) is an edge in Fl,n if and only if a
nn — 4> + 4 = 2,

—\(n—-4
Proof. (i) Since 2 - u

o > , a%> — nab + nb? > 0. From this, we have na? — n%ab + n?b* > 0, and so

a —a+nb a
K(E)

nb<—an+(n—1)b:

n’ 2n

Y oy n—
On the other hand, for the mapping K is increasing on [1 L(114)) N Q and K(

n— ynn—4) ¢ that
> , we get tha
~ Ju—4
nb 2n
a a n—+(n-4Hn
From (4) an;i (5), weahave pr < K(n_b) < — Yy
(ii) Let i K(%)be anedgein F} . So,a*—nab+nb* > 0 and from Theoremﬂ a® —nab+nb* = 1. Then,

(2a — nb)* = 4 + n(n — 4)b? and taking square root, we have |2a — nb| = /4 + n(n — 4)b2. Since 2a — nb < 0,

nb — \/n(n —4)b2 + 4

2

nb— \/n(n —4)b2 + 4 . ) )
Conversely, a = and there exists some t € IN such that n(n — 4)b° + 4 = t.

2
nb— \nn—4)v2 +4 nb— \nn—4)v2 +4

this shows that a =
nn —4)b* +4 = 2.

. Also, since nb — 2a € IN, there exists some t € IN such that

Then, 2 - 2 ,K(i) = 2 . From Theorem |7, we get that
nb nb nb (n—2)b— \Jn(n —4)b? + 4
n . )
a

a. . .
i K(%) is an edge in F} .

Now, we give the following two corollaries without a proof.

Corollary 17. Let k,n € N;n > 4. Then,

, 1 1 1 1 1 a 1 by . o
T N TSN T SN h
(i)The path 0, Lt pr— m_ P + (1= Db — ) is an infinite path under

the matrix K.
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n—mn-4)n

(ii) All above vertices are less than oy

(n=2)bx — Jn(n —4)b7 + 4

2

(iii) For the numbers ay, by in (i), ar = and the numbers n(n — 4){1% +4,n(n - 4)b]% +4

are perfect squares.

Corollary 18. The integers b € Z* U {0} in the equality n(n — 4)b> + 4 = > are
0,1,(n-2), - ,x,y,(n=2)y—x,---

Proof. It is easily seen from (i) of the Corollary

Note. By the Corollary[18] we get that the number (9m? — 4)b?4 = 1 in []] for n = 3m + 2.
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