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Abstract. The Modular group Γ is the most well-known discrete group with many applications. This work
investigates some subgraphs of the subgroup Γ3, defined by{

( a b
c d ) ∈ Γ : ab + cd ≡ 0 (mod 3)

}
In [1], the subgraph F1,1 of the subgroup Γ3

⊂ Γ is studied, and Fibonacci numbers are obtained by means of
the subgraph of F1,1. In this paper, we give a generalization of the subgraphs generating Fibonacci numbers
for the subgroup Γ3 and some subgraphs having special conditions.

1. Introduction and Preliminaries

The Modular group Γ is a subgroup of the automorphism group of the upper half plane, and defined as

Γ = PSL(2,Z) = {K : z→
az + b
cz + d

: a, b, c, d ∈ Z, ad − bc = 1}

The elements of the Modular group can also be taken as matrices ∓
(
a b
c d

)
with a, b, c, d ∈ Z and ad− bc = 1,

since the Modular group is isomorphic to SL(2,Z)�{±I}. It is generated by matrices U =

(
0 −1
1 0

)
and

V =

(
0 −1
1 1

)
with defining relationships U2 = V3 = I, where I is the identity matrix. The Modular group

acts on the extended rational numbers Q̂ = Q ∪ {∞} with the action defined by

∓

(
a b
c d

)
.
x
y

=
ax + by
cx + dy

where a, b, c, d ∈ Z, and ad − bc = 1 [2]. Some more information about the modular group Γ can be found in
[3, 4, 5, 6].
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The subgroup Γ3 is defined as a subgroup of Γ generated by third power of all elements of Γ in [4, 5]. In
([6],p.33), it is shown that

Γ3 =
{
( a b

c d ) ∈ Γ : ab + cd ≡ 0 (mod 3)
}

In [7], it follows from the definition that the elements of Γ3 are one of the forms ( 3a b
c 3d ), ( a 3b

3c d ), ( a b
c d ) where, in

third matrix, a, b, c, d . 0(mod3). Hence, the subgroup Γ3 acts transitively on the set of Q̂ and the stabilizer
of∞ is the group

{
∓( 1 m

0 1 ) : m ∈ Z
}
. We take the subgroup Γ3

0(n) = {1 ∈ Γ3 : c ≡ 0 (mod n)} and the stabilizer
Γ3
∞, and now we can set up Γ3

− invariant equivalence relation. Since the group Γ3 is transitive, any reduced

fraction
r
s
∈ Q̂ equals 1(∞) for some 1 ∈ Γ3. The diagonal action, given by 1(α, β) = (1α, 1β), of the group

Γ3 on Q̂ × Q̂ defines the suborbitals, which are actually orbits. The orbit O3(α, β) containing (α, β) gives the
suborbital graph G3(α, β) defined as follows:

As in [2], the set of vertices is Q̂, and there is an edge γ→ δ in G3(α, β) if and only if (γ, δ) ∈ O3(α, β). Due

to the transitivity, every suborbital contains a pair (∞,
u
n

) for some u
n ∈ Q̂, (u,n) = 1,n > 0. The congruence

subgroup Γ3
0(n) defines the following equivalence relation on Q̂ by 11(∞) ' 12(∞) for 11, 12 ∈ Γ3 if and only

if 11Γ
3
0(n) = 12Γ

3
0(n). If 11(∞) =

r
s

and 12(∞) =
x
y

, we have r
s '

x
y ⇔ ry − sx ≡ 0(modn)

We will denote the suborbital graph by G3
u,n for short. By virtue of the permuting the blocks transitively

all subgraphs corresponding to the blocks are isomorphic. Hence, we will only consider the subgraph F3
u,n

of G3
u,n whose vertice set is just the equivalence class or the block

[∞] =

{
x
y
∈ Q̂ : y ≡ 0 (mod n)

}
In [7], the author studied the connectivity properties of all subgraphs of the subgroup Γ3 except of

the subgraph F1,1 and in [1], the authors showed that the subgraph F1,1 is disconnected and for all natural
numbers m, the natural numbers b that make the numbers (9m2

−4)b2 +4 square are 0, 1, 3m, 9m2
−1, 3m(9m2

−

1) − 3m, · · · , a, b, 3mb − a, · · · .
In this work, we will investigate some number theoretical problems and give a generalization of the

subgraphs generating Fibonacci numbers for the subgroup Γ3 and subgraphs with some special conditions
by means of some special matrices.

2. Main Results

Theorem 1. [7] F3
u,n = F3

u′ ,n′
if and only if n = n′ and u ≡ u′ (mod3n)

Theorem 2. [7] There is an edge
r
s
→

x
y

in F3
n,1 if and only if either

(i) if r ≡ 0(mod3), then y ≡ ∓ns(mod3) and ry − sx = ∓1, or

(ii) if s ≡ 0(mod3), then x ≡ ∓nr(mod3) and ry − sx = ∓1, or

(iii) if r, s . 0(mod3), then x . ∓nr(mod3), y . ∓ns(mod3) and
ry − sx = ∓1

Theorem 3. Let n ∈N. Then, A =

(
−n n2 + 3n + 1
−1 n + 3

)
is in Γ3.

Proof. We have −n.(n2 + 3n + 1) − 1.(n + 3) ≡ −(n3 + 2n) mod (3) for every n ∈N.To prove that the matrix A
is in Γ3, we must show that, for any n,

n3 + 2n ≡ 0 mod (3) (1)
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If n ≡ 0 mod (3), then (1) is true. Otherwise, we have that n ≡ 1 mod (3) or n ≡ −1 mod (3), and so
n2
≡ 1 mod (3). Therefore, in any case, n3 + 2n = n(n2 + 2) ≡ 0 mod (3) for every natural number n. This

gives the proof.

We give following straightforward corollary without proof.

Corollary 4. If m ∈N,m . 0 mod (3), then there exists some natural number k such that 3k− 2 = m2. That is, the
number 3k − 2 = m2 is a perfect square number. Some of the values of the number k are 1, 2, 6, 9, 17, 22, · · · .

Theorem 5. Let n ∈N and A =

(
−n n2 + 3n + 1
−1 n + 3

)
. Then, for all m ∈N

(i) Am(
1
0

)→ Am(
n
1

) in F3
n,1,

(ii) Am(
1
0

)→ Am+1(
1
0

) in F3
n,1.

Proof. (i) We will use mathematical induction principle. For m = 1,A1(
1
0

) = A(
1
0

) =
n
1
→

3n + 1
3

= A(
n
1

) =

A1(
n
1

) is true. Let it be true for m ∈ N. Hence, we must show that the hypothesis is true for m + 1 ∈ N.

From the assumption, we get that A(Am(
1
0

)) = Am+1(
1
0

)→ A(Am(
n
1

)) = Am+1(
n
1

).

(ii)Using (i), we have Am(
1
0

)→ Am(
n
1

) = Am(A(
1
0

)) = Am+1(
1
0

).

Corollary 6. The sequence {Am
}m∈N is strictly monotone increasing and the path

A(
1
0

)→ A2(
1
0

)→ A3(
1
0

)→ · · ·

is an infinite path.

Proof. For all z ∈ R\{n+3}, A(z) =
−nz + (n2 + 3n + 1)
−z + n + 3

and A′(z) > 0. This shows that A is strictly monotone

increasing. Also, the path is an infinite. Because, if for some positive integers m and k such that m > k,

Ak(
1
0

) = Am(
1
0

), then put m = k + l gives Al(
1
0

) =
1
0

. In this case, the element Al has three fixed points as

(2n + 3) ∓
√

5
2

and
1
0

, which gives Al to be the identity. This gives a contradiction, since A is hyperbolic.

Theorem 7. Let A =

(
−n n2 + 3n + 1
−1 n + 3

)
, which is in Γ3 and a, b ∈N such that

n
1
≤

a
b
<

(2n + 3) −
√

5
2

. Then,

(i)
a
b
< A(

a
b

) <
(2n + 3) −

√
5

2
,

(ii)
a
b
→ A(

a
b

) is an edge in F3
n,1 if and only if a =

(2n + 3)b −
√

5b2 + 4
2

and there exists some k ∈ N such that

5b2 + 4 = k2.

Proof.(i) Since
a
b
<

(2n + 3) −
√

5
2

, we get that

2a < 2nb + 3b −
√

5b, 5b2 < (2n + 3)2b2 + 4a2
− 4ab(2n + 3)
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Then, −a2 + abn + 3ab < −anb + b2(n2 + 3n + 1) and
a
b
<
−na + (n2 + 3n + 1)b
−a + b(n + 3)

= A(
a
b

). Further, we show that

A(
a
b

) <
(2n + 3) −

√
5

2
. From the above, a2

− 2abn − 3ab + b2(n2 + 3n + 1) > 0 and so
√

5 <
a − (n + 3)b

3a − (3n + 7)b
and

√

5 − (2n + 3) < −2
−an + b(n2 + 3n + 1)
−a + (n + 3)b

,
(2n + 3) −

√
5

2
> A(

a
b

)

Consequently, we have
a
b
< A(

a
b

) <
(2n + 3) −

√
5

2
.

(ii) Let
a
b
→ A(

a
b

)be an edge in F3
n,1. By (i) and by Theorem 2, we have

a2
− (2n + 3)ab + (n2 + 3n + 1)b2 > 0

and a2
− (2n + 3)ab + (n2 + 3n + 1)b2 = 1. Hence, we multiply the equation by 4 and add 5b2, we get

4a2
−4ab(2n+3)+4b2(n2+3n+1)+5b2 = 4+5b2. Also, since (2n+3)b−2a > 0, we have a =

(2n + 3)b −
√

5b2 + 4
2

.

Furthermore, since 4 + 5b2 is a natural number, there exists some k ∈N such that 5b2 + 4 = k2.

Conversely, let a =
(2n + 3)b −

√

5b2 + 4
2

. Then, after some calculations it is easily seen that

−b2(n2 + 3n + 2)(2n + 3) + nb(n + 3)
√

5b2 + 4
2

≡ 0 mod (3)

Therefore, the matrix

B =


−(2n + 3)b +

√

5b2 + 4
2

(n2 + 3n + 1)b

−b
(2n + 3)b +

√

5b2 + 4
2


is in Γ3. Also, B(

1
0

) =
a
b

, B(
n
1

) =
a
b

. Hence by Theorem 5, we get that
a
b
→ A(

a
b

) is an edge in F3
n,1.

Corollary 8. Let k,n ∈N. Then,

(i) The path
1
0
→ n +

0
1
→ n +

1
3
→ · · · → n +

ak

bk
→ n +

bk

3bk − ak
→ · · ·

is an infinite path under the matrix A.

(ii) All vertices in (i) are less than
(2n − 3) +

√
5

2
.

(iii) For the numbers ak, bk in (i),ak =
3bk −

√
5b2

k + 4

2
and the numbers 5a2

k + 4, 5b2
k + 4 are perfect squares.

Proof. (i) From the Theorem 5, we get that Am(
1
0

) =
xm

ym
→ Am+1(

1
0

) = n+
ym

3ym − (xm − nym)
→ Am+2(

1
0

) =

n +
3ym − (xm − nym)

3(3ym − (xm − nym)) − ym
for m ∈N, and so this gives the proof.

(ii) It is clear from (i) of the Theorem 7.
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(iii) From (ii) of the Theorem 7, if
ak

bk
→ A(

ak

bk
) , then ak =

(2n + 3)bk −

√
5b2

k + 4

2
. Hence, we have

ak

bk
=

(2n + 3)bk −

√
5b2

k + 4

2
bk

→ n+
bk

3bk −


(2n + 3)bk −

√
5b2

k + 4

2
− nbk


= n+

bk

3bk −


3bk −

√
5b2

k + 4

2


. There-

fore, by (i) of this Corollary, we get that ak =
3bk −

√
5b2

k + 4

2
.

Let S =

(
n + 3 −(n2 + 3n + 1)

1 −n

)
be the inverse matrix of the above matrix A.

Theorem 9. Let a, b ∈N such that
2n + 1

1
≤

a
b
<

(2n + 3) +
√

5
2

. Then,

(i)
a
b
< S(

a
b

) <
(2n + 3) +

√
5

2
,

(ii)
a
b
→ S(

a
b

) is an edge in F3
n+3,1 if and only if a =

(2n + 3)b +
√

5b2 − 4
2

and there exists l ∈N such that 5b2
−4 = l2.

Proof. (i) Since
a
b
<

(2n + 3) +
√

5
2

, 2a − b(2n + 3) <
√

5b. From this, 4a2
− 4ab(2n + 3) + (2n + 3)b2 < 5b2,

and so a2
− (2n + 3)ab + (n2 + 3n + 1)b2 < 0. Therefore,

a
b
<

(n + 3)a − b(n2 + 3n + 1)
a − nb

= S(
a
b

) (2)

Also, since S is increasing on
[

(2n+1)
1 , (2n+3)+

√
5

2

)
∩Q and S

(
(2n + 3) +

√
5

2

)
=

(2n + 3) +
√

5
2

,

we obtain that

S(
a
b

) <
(2n + 3) +

√
5

2
(3)

By (2) and (3), we get that
a
b
< S(

a
b

) <
(2n + 3) +

√
5

2
.

(ii) Let
a
b
→ S(

a
b

) be an edge in F3
n+3,1. So, a2

− 2nab − 3ab + n2b2 + 3nb2 + b2 < 0 and from Theorem

5, a2
− (2n + 3)ab + (n2 + 3n + 1)b2 = −1. Then, (2a − (2n + 3)b)2 = −4 + 5b2 and taking square root, we

get |2a − (2n + 3)b| =
√

−4 + 5b2. Since 2a − (2n + 3)b > 0, this shows that a =
(2n + 3)b +

√

5b2 − 4
2

. For

2a − (2n + 3)b ∈N, there exists some w ∈N such that 5b2
− 4 = w2. Conversely, let a =

(2n + 3)b +
√

5b2 − 4
2

and let w be in N such that 5b2
− 4 = w2. Then,

a
b

=

(2n + 3)b +
√

5b2 − 4
2
b

,

S(
a
b

) =
(n + 3)

(2n + 3)b +
√

5b2 − 4
2

− b(n2 + 3n + 1)

3b +
√

5b2 − 4
2



S. Öztürk / Filomat 34:2 (2020), 631–638 636

From Theorem 5, we have that
a
b
→ S(

a
b

) is an edge in F3
n+3,1.

Corollary 10. Let k ∈N. Then,

(i) The path (2n + 3) − 1
1 → (2n + 3) − 1

2 → (2n + 3) − 2
5 → · · · → (2n + 3) −

ak

bk
→ (2n + 3) −

bk

(3bk − ak)
→ · · · is

an infinite path under the matrix S.

(ii) The vertices in (i)are less than
(2n + 3) +

√
5

2
.

(iii) For the numbers ak, bk in (i),ak =
3bk −

√
5b2

k − 4

2
and the numbers 5a2

k − 4, 5b2
k − 4 are perfect squares.

From the Corollaries 8-(i) and 10-(i), we get that the following two corollaries.

Corollary 11. The numbers bk ∈ Z
+ making 5b2

k + 4 perfect square are 0, 1, 3, 8, · · · , x, y, 3y − x, · · ·

Corollary 12. The numbers bk ∈ Z
+ making 5b2

k − 4 perfect square are 1, 2, 5, · · · , x, y, 3y − x, · · ·

Corollary 13. Let the sequences {ak}k∈N, {bk}k∈N be (0, 1, 3, 8, · · · , x, y, 3y − x, · · · ) and (1, 2, 5, · · · , r, s, 3s − r, · · · ),
respectively. Then, the sequence {ck}k∈N, defined by (0, 1, 1, 2, 3, 5, 8, · · · , ak, bk, ak+1, bk+1, · · · ) is the Fibonacci se-
quence.

Proof. We must show that ak + bk = ak+1 and bk + ak+1 = bk+1 for all k ∈ N. By the mathematical induction
principle, for k = 1, a1 + b1 = a2 and b1 + a2 = b2 are true. Let it true be for k ∈ N. Let us see that
ak+1 + bk+1 = ak+2 and bk+1 + ak+2 = bk+2. Since, ak+1 = 3ak − ak−1 and bk+1 = 3bk − bk−1, we get that
ak+1+bk+1 = 3(ak+bk)−(ak−1+bk−1) = 3ak+1−ak = ak+2 and bk+1+ak+2 = 3(bk+ak+1)−(bk−1+ak) = 3bk+1−bk = bk+2.

Theorem 14. [7] There is an edge
r
s
→

x
y

in F3
1,n if and only if either

(i) if r ≡ 0(mod3), then x ≡ ∓r(mod3), y ≡ ∓s(mod3n) and ry − sx = ∓n, or

(ii) if s ≡ 0(mod3), then x ≡ ∓r(mod3n), y ≡ ∓s(modn) and ry − sx = ∓n, or

(iii) if r, s . 0(mod3), then x ≡ ∓r(modn), y ≡ ∓s(modn), x . ∓r(mod3n), y . ∓s(mod3n) and ry − sx = ∓n

Now, we consider a new matrix K =

(
−1 1
−n n − 1

)
for n ∈ N, n ≥ 4. It is easily proved that the matrix K

is in Γ3 if and only if n ≡ 2 mod (3).

Theorem 15. Let n ∈N,n ≥ 4, and K =

(
−1 1
−n n − 1

)
be in Γ3. Then,

(i) ∀m ∈N, Km(
1
0

)→ Km(
1
n

) in F3
1,n.

(ii) ∀m ∈N, Km(
1
0

)→ Km+1(
1
0

) in F3
1,n.

(iii) The sequence {Km
}m∈N is increasing and the path

K(
1
0

)→ K2(
1
0

)→ K3(
1
0

)→ · · ·

is infinite path.

(iv) The fixed points of K are z1,2 =
n ∓

√
(n − 4)n
2n

.
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From (ii) of Theorem 15, we obtain the following result

Km(
1
0

) :=
am

nbm
, then

1
n

+
am − bm

nbm
→

1
n

+
bm

n((n − 2)bm − (am − bm))
.

Theorem 16. Let n ∈ N, n ≥ 4,and K =

(
−1 1
−n n − 1

)
∈ Γ3 and a, b ∈ N such that

1
n
≤

a
nb

<
n −

√
(n − 4)n
2n

.

Then,

(i)
a

nb
< K(

a
nb

) <
n −

√
(n − 4)n
2n

,

(ii)
a

nb
→ K(

a
nb

) is an edge in F3
1,n if and only if a =

nb −
√

n(n − 4)b2 + 4
2

and there exists some t ∈ N such that

n(n − 4)b2 + 4 = t2.

Proof. (i) Since
a

nb
<

n −
√

(n − 4)n
2n

, a2
− nab + nb2 > 0. From this, we have na2

− n2ab + n2b2 > 0, and so

a
nb

<
−a + nb

−an + (n − 1)b
= K(

a
nb

) (4)

On the other hand, for the mapping K is increasing on
[

1
n ,

n−
√

n(n−4)
2n

)
∩ Q and K

n −
√

n(n − 4)
2n

 =

n −
√

n(n − 4)
2n

, we get that

K(
a

nb
) <

n −
√

(n − 4)n
2n

(5)

From (4) and (5), we have
a

nb
< K(

a
nb

) <
n −

√
(n − 4)n
2n

.

(ii) Let
a

nb
→ K(

a
nb

) be an edge in F3
1,n. So, a2

−nab+nb2 > 0 and from Theorem 7, a2
−nab+nb2 = 1. Then,

(2a − nb)2 = 4 + n(n − 4)b2 and taking square root, we have |2a − nb| =
√

4 + n(n − 4)b2. Since 2a − nb < 0,

this shows that a =
nb −

√
n(n − 4)b2 + 4

2
. Also, since nb − 2a ∈ N, there exists some t ∈ N such that

n(n − 4)b2 + 4 = t2.

Conversely, a =
nb −

√
n(n − 4)b2 + 4

2
and there exists some t ∈ N such that n(n − 4)b2 + 4 = t2.

Then,
a

nb
=

nb −
√

n(n − 4)b2 + 4
2

nb
,K(

a
nb

) =

nb −
√

n(n − 4)b2 + 4
2

n(
(n − 2)b −

√
n(n − 4)b2 + 4
2

)

. From Theorem 7, we get that

a
nb
→ K(

a
nb

) is an edge in F3
1,n.

Now, we give the following two corollaries without a proof.

Corollary 17. Let k,n ∈N; n ≥ 4. Then,

(i)The path
1
0
→

1
n
→

1
n

+
1

n(n − 2)
→ · · · →

1
n

+
ak

nbk
→

1
n

+
bk

n((n − 2)bk − ak)
→ · · · is an infinite path under

the matrix K.



S. Öztürk / Filomat 34:2 (2020), 631–638 638

(ii) All above vertices are less than
n −

√
(n − 4)n
2n

.

(iii) For the numbers ak, bk in (i), ak =
(n − 2)bk −

√
n(n − 4)b2

k + 4

2
and the numbers n(n − 4)a2

k + 4,n(n − 4)b2
k + 4

are perfect squares.

Corollary 18. The integers b ∈ Z+
∪ {0} in the equality n(n − 4)b2 + 4 = t2 are

0, 1, (n − 2), · · · , x, y, (n − 2)y − x, · · ·

Proof. It is easily seen from (i) of the Corollary 17.

Note. By the Corollary 18, we get that the number (9m2
− 4)b24 = t2 in [1] for n = 3m + 2.
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