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Abstract. We study adjointable, bounded operators on the direct sum of two copies of the standard Hilbert
C∗-module over a unital C∗-algebraA that are given by upper triangular 2 by 2 operator matrices. Using the
definition of A-Fredholm and semi-A-Fredholm operators given in [3], [4], we obtain conditions relating
semi-A-Fredholmness of these operators and that of their diagonal entries, thus generalizing the results in
[1], [2]. Moreover, we generalize the notion of the spectra of operators by replacing scalars by the elements
in the C∗-algebra A. Considering these new spectra in A of bounded, adjointable operators on Hilbert
C∗-modules over A related to the classes of A-Fredholm and semi-A-Fredholm operators, we prove an
analogue or a generalized version of the results in [1] concerning the relationship between the spectra of 2
by 2 upper triangular operator matrices and the spectra of their diagonal entries.

1. Introduction

Perturbations of spectra of operator matrices were earlier studied in several papers such as [1]. In [1]
Djordjevic lets X and Y be Banach spaces and the operator MC : X ⊕ Y −→ X ⊕ Y be given as 2 × 2 operator

matrix
[

A C
0 B

]
where A ∈ B(X), B ∈ B(Y) and C ∈ B(Y,X).Djordjevic investigates the relationship between

certain semi-Fredholm properties of A,B and certain semi-Fredholm properties of MC. Then he deduces as
corollaries the description of the intersection of spectra of M′Cs, when C varies over all operators in B(Y,X)
and A,B are fixed, in terms of spectra of A and B. The spectra which he considers are not in general ordinary
spectra, but rather different kind of Fredholm spectra such as essential spectra, left and right Fredholm
spectra etc...

Some of the main results in [1] are Theorem 3.2, Theorem 4.4 and Theorem 4.6. In Theorem 3.2 Djordjevic
gives necessary and sufficient conditions on operators A and B for the operator MC to be Fredholm.

Recall that two Banach spaces U and V are isomorphic up to a finite dimensional subspace, if one of the
following statements hold:

(a) there exists a bounded below operator J1 : U→ V, such that dim V/J1(U) < ∞, or ;
(b) there exists a bounded below operator J2 : V → U, such that dim V/J2(V) < ∞.
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Recall also that for a Banach space X, the sets Φ(X),Φl(X),Φr(X) denote the sets of all Fredholm, left-Fredholm
and right-Fredholm operators on X, respectively.

Theorem 1.1. [1, Theorem 3.2] Let A ∈ L(X) and B ∈ L(Y) be given and consider the statements:
(i) MC ∈ Φ(X ⊕ Y) for some C ∈ L(Y,X);

(ii) (a) A ∈ Φl(X);
(b) B ∈ Φr(Y);
(c) N(B) and X/R(A) are isomorphic up to a finite dimensional

subspace.

Then (i) is equivalent to (ii).

The implication (i) implies (ii) was proved in [2], whereas Djordjevic proves the implication (ii) implies
(i).

Similarly in Theorem 4.4 and Theorem 4.6 of [1] Djordjevic investigates the case when MC is right and
left semi-Fredholm operator, respectively. Here we are going to recall these results as well, but first we
repeat the following definition from [1]:

Definition 1.2. [1, Definition 4.2] Let X and Y be Banach spaces. We say that X can be embeded in Y and write
X � Y if and only if there exists a left invertible operator J : X→ Y. We say that X can essentially be embedded in Y
and write X ≺ Y, if and only if X � Y and Y/T(X) is an infinite dimensional linear space for all T ∈ L(X,Y).

Remark 1.3. [1, Remark 4.3] Obviously, X � Y if and only if there exists a right invertible operator J1 : Y→ X.

If H and K are Hibert spaces, then H � K if and only if dim H ≤ dim K. Also H ≺ K if and only if dim
H < dim K and K is infinite dimensional. Here dim H denotes the dimension of H.

Theorem 1.4. [1, Theorem 4.4] Let A ∈ L(X) and B ∈ L(Y) be given operators and consider the following statements:

(i) (a) B ∈ Φr(Y);
(b) Either A ∈ Φr(X)), or R(A) is closed and complemented in X and X/R(A) � N(B).

(ii) MC ∈ Φr(X ⊕ Y) for some C ∈ L(X,Y).
(iii) (a) B ∈ Φr(Y);

(b) Either A ∈ Φr(X) or R(A) is not closed, orN(B) ≺ X/R(A) does not hold.

Then (i) is equivalent to (ii) which is again equivalent to (iii).

Theorem 1.5. [1, Theorem 4.6] Let A ∈ L(X) and B ∈ L(Y) be given operators and consider the following statements:
(i) (a) A ∈ Φl(Y);

(b) Either B ∈ Φl(X), or R(B) andN(B) are closed and complemented subspaces of Y andN(B)) � X/R(A).
(ii) MC ∈ Φl(X ⊕ Y) for some C ∈ L(Y,X).

(iii) (a) A ∈ Φl(X);
(b) Either B ∈ Φl(X), or R(B) is not closed, or R(A)◦ ≺ N(B) does not hold.

Then (i) is equivalent to (ii) which is again equivalent to (iii).
Now, Hilbert C∗-modules are natural generalization of Hilbert spaces when the field of scalars is replaced

by a C∗-algebra.
Fredholm theory on Hilbert C∗-modules as a generalization of Fredholm theory on Hilbert spaces was

started by Mishchenko and Fomenko in [4]. They have introduced the notion of a Fredholm operator on
the standard module HA. Moreover, they have shown that the set of these generalized Fredholm operators
is open in the norm topology, that it is invariant under compact perturbation and they have proved the
generalization of the Atkinson theorem and of the index theorem. Their definition ofA-Fredholm operator
on HA is the following:

[4, Definition ] A (boundedA linear) operator F : HA → HA is calledA-Fredholm if
1) it is adjointable;
2) there exists a decomposition of the domain HA = M1⊕̃N1, and the range, HA = M2⊕̃N2, where
M1,M2,N1,N2 are closed A-modules and N1,N2 have a finite number of generators, such that F has the
matrix from
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F1 0
0 F4

]
with respect to these decompositions and F1 : M1 →M2 is an isomorphism.
The notation ⊕̃ denotes the direct sum of modules without orthogonality, as given in [5].

In [3] we went further in this direction and defined semi-A-Fredholm operators on Hilbert C∗-modules. We
investigated then and proved several properties of these generalized semi Fredholm operators on Hilbert
C∗-modules as an analogue or generalization of the well-known properties of classical semi-Fredholm oper-
ators on Hilbert and Banach spaces. In particular we have shown that the class of upper semi-A-Fredholm
operators and lower semi-A-Fredholm operators on HA, denoted byMΦ+(HA) andMΦ−(HA), respecively,
are exactly those that are one-sided invertible modulo compact operators on HA. Hence they are natural
generalizations of the classical left and right semi-Fredholm operators on Hilbert spaces.

The idea in this paper was to use the classes of semi-A-Freholm operators on HA and prove that an
analogue or a generalized version of [1, Theorem 3.2], [1, Theorem 4.4], [1, Theorem 4.6] hold in the setting
of these new classes of operators. This is a part of our general research project which aim is to establish
semi-Fredholm theory on Hilbert C∗-modules in the setting of the above mentioned generalized Fredholm
and semi-Fredholm operators over C∗-algebras defined in [4], [3], as a generalization of the classical semi-
Fredholm theory on Hilbert and Banach spaces. The results of this project are contained in several papers
such as [3].
It is worth mentioning that our Theorem 3.2 is a generalization of a result in [2], as the implication in one
way in Theorem 3.2 in [1] was already proved in [2]. In addition, we show that in the case when X = Y = H
where H is a Hilbert space Theorem 4.4 and Theorem 4.6 in [1] can be simplified.

Let us remind now the definition of the essential spectrum of bounded operators on Banach spaces.
Namely, for a bounded operator T on a Banach space, the essential spectrum of T denoted σe(T) is defined
to be the set of all λ ∈ C for which T − λI is not Fredholm.
In [1] Djordjevic considers the essential spectra of A,B,MC and he describes the situation when σe(MC) =
σe(A) ∪ σe(B) in a chain of propositions. He shows first in Proposition 3.1 that σe(MC) ⊂ σe(A) ∪ σe(B) in
general and then, in Proposition 3.5 he gives sufficient conditions on A and B for the equality to hold. Next,
passing from Hilbert spaces to Hilbert C∗-modules we don’t only replace the field of scalars by a C∗-algebra
A, but also work withA valued spectrum instead of the standard one. Namely, given anA-linear, bounded,
adjointable operator F on HA, we consider the operators of the form F − α1 as α varies over A and this
gives rise to a different kind of spectra of F inA as a generalization of ordinary spectra of F in C. Using the
generalized definitions of Fredholm and semi-Fredholm operators on HA given in [4] and [3] together with
these new, generalized spectra inA, we obtain an analogue of [1, Proposition 3.1], [1, Proposition 3.4] and
[1, Proposition 3.5].
Finally we give a description of the intersection, when C varies over Ba(HA), of the generalized essential
spectra inA, of the operator matrix MAC . We deduce this description as corollary from our generalizations
of Theorem 3.2 in [1]. Similar corollaries follow from our generalizations of Theorem 4.4 and Theorem 4.6
in [1], however in these corollaries we consider the generalized left and right Fredholm spectra of MAC inA
instead of the generalized essential spectrum of MAC inA.

2. Preliminaries

In this section we are going to introduce the notation, the definitions in [3] that are needed in this paper
as well as some auxiliary results which are going to be used later in the proofs. Throughout this paper we
let A be a unital C∗-algebra, HA be the standard module over A and we let Ba(HA) denote the set of all
bounded , adjointable operators on HA. Next, for α ∈ A we let αI denote the operator from HA into HA
given by αI(x) = αI(x1, . . . , xn, . . . ) = (αx1, . . . , αxn, . . . ) for all x = (x1, . . . , xn, . . . ) ∈ HA. Here the coordinates
are given w.r.t the standard basis {ek}. The operator αI is obviously A-linear and it is adjointable with its
adjoint α∗I.
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Moreover, if I is the identity operator in HA ⊕ HA, then for α ∈ A we let αI =

[
α1 0
0 α1

]
, that is

αI(x, y) = αI((x1, . . . , xn, . . . )), ((y1, . . . , yn, . . . )) = ((αx1, . . . , αxn, . . . )), ((αy1, . . . , αyn, . . . )) for all x, y ∈ HA.
According to [5, Definition 1.4.1], we say that a Hilbert C∗-module M overA is finitely generated if there
exists a finite set {xi} ⊆M such that M equals the linear span (overA) of this set.
Throughout the paper we will denote by ⊕ the direct sum of orthogonal Hilbert submodules, whereas the
direct sum of Hilbert submodules as Banach subspaces, without orthogonality, will be denoted by ⊕̃, as in
[5].

Definition 2.1. [3, Definition 2.1] Let F ∈ Ba(HA). We say that F is an upper semi-A-Fredholm operator if there
exists a decomposition

HA = M1⊕̃N1
F
−→M2⊕̃N2 = HA

with respect to which F has the matrix

[
F1 0
0 F4

]
,

where F1 is an isomorphism M1,M2,N1,N2 are closed submodules of HA and N1 is finitely generated. Similarly, we
say that F is a lower semi-A-Fredholm operator if all the above conditions hold except that in this case we assume that
N2 ( and not N1 ) is finitely generated.

Set

MΦ+(HA) = {F ∈ Ba(HA) | F is upper semi-A-Fredholm },

MΦ−(HA) = {F ∈ Ba(HA) | F is lower semi-A-Fredholm },

MΦ(HA) = {F ∈ Ba(HA) | F isA-Fredholm operator on HA}.

The decomposition from the [Definition 2.1] for operator F will be called anMΦ+-decomposition, MΦ−-
decomposition or MΦ-decomposition for F depending on whether N1,N2 or both N1 and N2 are finitely
generated.

Lemma 2.2. Let M,N,W be Hilbert C∗-modules over a unital C∗-algebra A. If F ∈ Ba(M,N),D ∈ Ba(N,W) and
DF ∈ MΦ(M,W), then there exists a chain of decompositions

M = M⊥2 ⊕M2
F
−→ F(M⊥2 ) ⊕ R D

−→W1⊕̃W2 = W

w.r.t. which F,D have the matrices
[

F1 0
0 F4

]
,

[
D1 D2
0 D4

]
, respectively, where F1,D1 are isomorphisms, M2,W2

are finitely generated, F(M⊥2 ) ⊕ R = N and in addition M = M⊥2 ⊕M2
DF
−→ W1⊕̃W2 = W is anMΦ-decomposition

for DF.

Proof. By the proof of [5, Theorem 2.7.6 ] applied to the operator

DF ∈ MΦ(M,W),

there exists anMΦ-decomposition

M = M⊥2 ⊕M2
DF
−→W1⊕̃W2 = W

for DF. This is because the proof of [5, Theorem 2.7.6 ] also holds when we consider arbitrary Hilbert C∗-
modules M and W over unital C∗-algebraA and not only the standard module HA. Then we can proceed
as in the proof of Theorem 2.2 [3], part 2) implies 1).
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Lemma 2.3. If D ∈ MΦ−(HA), then there exists anMΦ−-decompo- sition HA = N′1
⊥
⊕N′1

D
−→M2 ⊕N′2 = HA for

D. Similarly, if F ∈ MΦ+(HA), then there exists anMΦ+-decomposition HA = M⊥2 ⊕N1
F
−→ N⊥2 ⊕N2 = HA for F.

Proof. Follows from the proofs of Theorem 2.2 [3] and Theorem 2.3 [3], part 1) implies 2).

Definition 2.4. [3, Definition 5.1] Let F ∈ MΦ(HA). We say that F ∈ M̃Φ−+(HA) if there exists a decomposition

HA = M1⊕̃N1
F
−→M2⊕̃N2 = HA

with respect to which F has the matrix [
F1 0
0 F4

]
,

where F1 is an isomorphism, N1,N2 are closed, finitely generated and N1 � N2, that is N1 is isomorphic to a closed
submodule of N2. We define similarly the class M̃Φ+

−
(HA), the only difference in this case is that N2 � N1. Then we

set
MΦ−+(HA) = (M̃Φ−+(HA)) ∪ (MΦ+(HA) \MΦ(HA))

and
MΦ+

−(HA) = (M̃Φ+
−(HA)) ∪ (MΦ−(HA) \MΦ(HA))

3. Perturbations of spectra inA of operator matrices acting on HA ⊕ HA

It this section we will consider the operator MA

C (F,D) : HA ⊕ HA → HA ⊕ HA given as 2 × 2 operator
matrix [

F C
0 D

]
,

where C ∈ Ba(HA).
To simplify notation, throughout this paper, we will only write MA

C instead of MA

C (F,D) when F,D ∈ Ba(HA)
are given.
Let σAe (MA

C ) = {α ∈ A|MA

C − αI is notA-Fredholm }. Then we have the following proposition.

Proposition 3.1. For given F,C,D ∈ Ba(HA), one has

σAe (MA

C ) ⊂ (σAe (F) ∪ σAe (D)).

Proof. Observe first that

MA

C − αI =

[
1 0
0 D − α1

] [
1 C
0 1

] [
F − α1 0
0 1

]
.

Now
[

1 C
0 1

]
is clearly invertible in Ba(HA ⊕ HA) with inverse

[
1 −C
0 1

]
, so it follows that

[
1 C
0 1

]
is A-Fredholm. If, in addition both

[
F − α1 0
0 1

]
and

[
1 0
0 D − α1

]
are A-Fredholm, then MA

C − αI is

A-Fredholm being a composition of A-Fredholm operators. But, if F − αI is A-Fredholm, then clearly[
F − α1 0
0 1

]
isA-Fredholm, and similarly if D − αI isA-Fredholm, then[

1 0
0 D − α1

]
isA-Fredholm. Thus, if both F−αI and D−αI areA-Fredholm, then MA

C −αI isA-Fredholm.

The proposition follows.
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This proposition just gives an inclusion. We are going to investigate in which cases the equality holds. To
this end we introduce first the following theorem.

Theorem 3.2. Let F,D ∈ Ba(HA). If MA

C ∈ MΦ(HA ⊕HA) for some
C ∈ Ba(HA), then F ∈ MΦ+(HA),D ∈ MΦ−(HA) and for all decompositions

HA = M1⊕̃N1
F
−→M2⊕̃N2 = HA,

HA = M′1⊕̃N′1
D
−→M′2⊕̃N′2 = HA

w.r.t. which F,D have matrices
[

F1 0
0 F4

]
,

[
D1 0
0 D4

]
, respectively, where F1,D1 are isomorphisms, and N1,N′2

are finitely generated, there exist closed submodules
Ñ′1,

˜̃N′1, Ñ2, ˜̃N2 such that N2 � Ñ2,N′1 � Ñ′1, ˜̃N2 and ˜̃N′1 are finitely generated and

Ñ2⊕̃
˜̃N2 � Ñ′1⊕̃

˜̃N′1.

Proof. Again write MA

C as MA

C = D′C′F′ where

F′ =

[
F 0
0 1

]
,C′ =

[
1 C
0 1

]
,D′ =

[
1 0
0 D

]
.

Since MA

C isA-Fredholm, if

HA⊕HA = M⊕̃N
MA

C
−→M′⊕̃N′ = HA⊕HA

is a decomposition w.r.t. which MA

C has the matrix
[

(MA

C )1 0
0 (MA

C )4

]
where (MA

C )1 is an isomorphism and

N,N′ are finitely generated, then by Lemma 2.2 and also using that C′ is invertible, one may easily deduce
that there exists a chain of decompositions

HA⊕HA = M⊕̃N F′
−→ R1⊕̃R2

C′
−→ C′(R1)⊕̃C′(R2) D′

−→M′⊕̃N′ = HA⊕HA

w.r.t. which F′,C′,D′ have matrices[
F′1 0
0 F′4

]
,

[
C′1 0
0 C′4

]
,

[
D′1 D′2
0 D′4

]
,

respectively, where F′1,C
′

1,C
′

4,D
′

1 are isomorphisms. So D′ has the matrix[
D′1 0
0 D′4

]
w.r.t. the decomposition

HA⊕HA = WC′(R1)⊕̃WC′(R2) D′
−→M′⊕̃N′ = HA⊕HA,

where W has the matrix
[

1 −D′1
−1D′2

0 1

]
w.r.t the decomposition

C′(R1)⊕̃C′(R2) W
−→ C′(R1)⊕̃C′(R2)

and is therefore an isomorphism.
It follows from this that

F′ ∈ MΦ+(HA⊕HA),D′ ∈ MΦ−(HA⊕HA),

as N and N′ are finitely generated submodules of HA⊕HA . Moreover
R2 � WC′(R2), as WC′ is an isomorphism.
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Since there exists an adjointable isomorphism between HA and HA ⊕HA, using [3, Theorem 2.2 ] and [3,
Theorem 2.3] it is easy to deduce that F′ is left invertible and D′ is right invertible in the ”Calkin” algebra
on Ba(HA ⊕ HA)/ K(HA ⊕ HA). It follows from this that F is left invertible and D is right invertible in the
”Calkin” algebra Ba(HA)/K(HA), hence F ∈ MΦ+(HA) and D ∈ MΦ−(HA) again by [3, Theorem 2.2 ] and [3,
Theorem 2.3 ], respectively. Choose arbitraryMΦ+ andMΦ− decompositions for F and D respectively i.e.

HA = M1⊕̃N1
F
−→M2⊕̃N2 = HA,

HA = M′1⊕̃N′1
D
−→M′2⊕̃N′2 = HA.

Then
HA ⊕HA = (M1 ⊕HA)⊕̃(N1 ⊕ {0})

↓ F′

HA ⊕HA = (M2 ⊕HA)⊕̃(N2 ⊕ {0})

and
HA ⊕HA = (HA ⊕M′1)⊕̃({0} ⊕N′1)

↓ D′

HA ⊕HA = (HA ⊕M′2)⊕̃({0} ⊕N′2)

areMΦ+ andMΦ−-decompositions for F′ and D′ respectively. Hence the decomposition

HA ⊕HA = M⊕̃N F′
−→ R1⊕̃R2 = HA ⊕HA

and the MΦ+-decomposition given above for F′ are two MΦ+-decompositions for F′. Again, since there
exists an adjointable isomorphism between HA ⊕HA and HA,we may apply [3, Corollary 2.18 ] to operator
F′ to deduce that
((N2 ⊕ {0})⊕̃P) � (R2⊕̃P̃) for some finitely generated submodules P, P̃ of HA ⊕HA. Similarly, since

HA ⊕HA = WC′(R1)⊕̃WC′(R2) D′
−→M′⊕̃N′ = HA ⊕HA

and
HA ⊕HA = (HA ⊕M′1)⊕̃({0} ⊕N′1)

↓ D′

HA ⊕HA = (HA ⊕M′2)⊕̃({0} ⊕N′2)

are twoMΦ−-decompositions for D′, we may by the same arguments apply
[3, Corollary 2.19 ] to the operator D′ to deduce that

(({0} ⊕N′1)⊕̃P′) � (WC′(R2)⊕̃P̃′)

for some finitely generated submodules P′, P̃′ of HA ⊕HA. Since WC′ is an isomorphism, we get

((WC′(R2)⊕̃P̃′) ⊕ P̃) � (WC′(R2) ⊕ P̃′ ⊕ P̃) � (R2 ⊕ P̃ ⊕ P̃′) � ((R2⊕̃P̃) ⊕ P̃′).

Hence
(((N2 ⊕ {0})⊕̃P) ⊕ P̃′) � ((({0} ⊕N′1)⊕̃P′) ⊕ P̃).

This gives (N2 ⊕ P⊕̃P̃′) � (N′1 ⊕ P′ ⊕ P̃) (Here ⊕ always denotes the direct sum of modules in the sense of [5,
Example 1.3.4 ]). Now

N2 ⊕ P⊕̃P̃′ = (N2 ⊕ {0} ⊕ {0})⊕̃({0} ⊕ P ⊕ P′),

N1 ⊕ P′⊕̃P′ = (N′1 ⊕ {0} ⊕ {0})⊕̃({0} ⊕ P′ ⊕ P̃)
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and they are submodules of L5(HA) which is isomorphic to HA ( the notation L5(HA) is as in [5, Example
1.3.4 ]). Call the isomorphism betwen HA for and L5(HA) for U and set

Ñ2 = U(N2 ⊕ {0} ⊕ {0}), ˜̃N2 = U({0} ⊕ P ⊕ P′),

Ñ1 = U(N′1 ⊕ {0} ⊕ {0}),
˜̃N′1 = U({0} ⊕ P′ ⊕ P̃).

Since P,P′, P̃, P̃′ are finitely generated, the result follows.

Remark 3.3. [1, Theorem 3.2 ], part (1) implies (2) follows actually as a corollary from our Theorem 3.2 in
the case when X = Y = H, where H is a Hilbert space. Indeed, by Theorem 3.2 if MC ∈ Φ(H ⊕ H), then
F ∈ Φ+(H) and D ∈ Φ−(H). Hence ImF and ImD are closed, dim ker F,dim ImD⊥ < ∞. W.r.t. the decompositions

H = ker F⊥ ⊕ ker F F
−→ ImF ⊕ ImF⊥ = H and

H = ker D⊥ ⊕ ker D D
−→ ImD ⊕ ImD⊥ = H,

F,D have matrices
[

F1 0
0 F4

]
,

[
D1 0
0 D4

]
, respectively, where F1,D1 are isomorphisms.

From Theorem 3.2 it follows that there exist closed subspaces Ñ2, ˜̃N2, Ñ′1,
˜̃N′1 such that Ñ2 � ImF⊥, Ñ′1 � ker D,dim ˜̃N2,dim ˜̃N′1 <

∞ and
(Ñ2⊕̃

˜̃N2) � ( ˜̃N′1⊕̃
˜̃N′1). But this just means that ImF⊥ and ker D are isomorphic up to a finite dimensional subspace

in the sense of [1, Definition 2.2 ] because we consider Hilbert subspaces now.

Proposition 3.4. Suppose that there exists some C ∈ Ba(HA) such that the inclusion σAe (MA

C ) ⊂ σAe (F) ∪ σAe (D) is
proper. Then for any

α ∈ [σAe (F) ∪ σAe (D)] \ σAe (MA

C )

we have
α ∈ σAe (F) ∩ σAe (D).

Proof. Assume that
α ∈ [σAe (F) \ σAe (D)] \ σAe (MA

C ).

Then (F − α1) <MΦ(HA) and (D − α1) ∈ MΦ(HA). Moreover, since
α < σAe (MA

C ), then (MA

C − α1) isA-Fredholm. From Theorem 3.2, it follows that (F − α1) ∈ MΦ+(HA). Since
(F − α1) ∈ MΦ+(HA), (D − α1) ∈ MΦ(HA), we can find decompositions

HA = M1⊕̃N1
F−α1
−→ M2⊕̃N2 = HA,

HA = M′1⊕̃N′1
D−α1
−→ M′2⊕̃N′2 = HA

w.r.t. which F − α1,D − α1 have matrices[
(F − α1)1 0
0 (F − α1)4

]
,

[
(D − α1)1 0
0 (D − α1)4

]
,

respectively, where (F−α1)1, (D−α1)1 are isomorphisms, N1,N′1 and N′2 are finitely generated. By Theorem
3.2 there exist then closed submodules
Ñ2, ˜̃N2, Ñ′1,

˜̃N′1 such that N2 � Ñ2,N′1 � Ñ′1, (Ñ2⊕̃
˜̃N2) � (Ñ′1⊕̃

˜̃N′1) and ˜̃N2,
˜̃N′1 are finitely generated. But then,

since N′1 is finitely generated (as (D−α1) ∈ MΦ(HA)), we get that Ñ′1 is finitely generated being isomorphic
to N′1. Hence (Ñ′1⊕̃

˜̃N′1) is finitely generated also (as both Ñ′1 and ˜̃N′1 are finitely generated). Thus (Ñ2⊕̃
˜̃N2) is

finitely generated as well, so Ñ2 is finitely generated. Therefore N2 is finitely generated, being isomorphic
to Ñ2. Hence F − α1 is inMΦ(HA). This contradicts the choice of

α ∈ [σAe (F) \ σAe (D)] \ σAe (MA

C ).
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Thus
[σAe (F) \ σAe (D)] \ σAe (MA

C ) = ∅.

Analogously we can prove
[σAe (D) \ σAe (F)] \ σAe (MA

C ) = ∅.

The proposition follows.

Next, we define the following classes of operators on HA :

MS+(HA) = {F ∈ Ba(HA) | (F − α1) ∈ MΦ+
−(HA)

whenever α ∈ A and (F − α1) ∈ MΦ±(HA)},

MS−(HA) = {F ∈ Ba(HA) | (F − α1) ∈ MΦ−+(HA)

whenever α ∈ A and (F − α1) ∈ MΦ±(HA)}.

Proposition 3.5. If F ∈ MS+(HA) or D ∈ MS−(HA), then for all
C ∈ Ba(HA), we have

σAe (MA

C ) = σAe (F) ∪ σAe (D)

Proof. By Proposition 3.4, it suffices to show the inclusion. Assume that

α ∈ [σAe (F) ∪ σAe (D)] \ σAe (MA

C ).

Then, (MA

C − α1) ∈ MΦ(HA ⊕HA). By Theorem 3.2, we have

(F − α1) ∈ MΦ+(HA), (D − α1) ∈ MΦ−(HA).

Let again

HA = M1⊕̃N1
F−α1
−→ M2⊕̃N2 = HA,

HA = M′1⊕̃N′1
D−α1
−→ M′2⊕̃N′2 = HA

be decompositions w.r.t. which F − α1,D − α1 have matrices[
(F − α1)1 0
0 (F − α1)4

]
,
[

(D − α1)1 0
0 (D − α1)4

]
,

respectively, where (F − α1)1, (D − α1)1, are isomorphisms and N1,N′2 are finitely generated submodules
of HA. Again, by Theorem 3.2, there exist closed submodules Ñ2, ˜̃N2, Ñ′1,

˜̃N′1 such that N2 � Ñ2,N′1 � Ñ′1,
(Ñ2⊕̃

˜̃N2) � (Ñ′1⊕̃
˜̃N′1) and ˜̃N2,

˜̃N′1 are finitely generated submodules. If F ∈ MS+(HA), then since
(F − α1) ∈ MΦ±(HA), we get that (F − α1) ∈ MΦ+

−
(HA). Thus

(F − α1) ∈ MΦ−(HA) in particular. So (F − α1) ∈ MΦ+(HA) ∩ MΦ−(HA) and by [3, Corollary 2.4], we
know thatMΦ+(HA) ∩MΦ−(HA) =MΦ(HA). Then, by [3, Lemma 2.16], we have that N2 must be finitely
generated, hence Ñ2 must be finitely generated. Thus Ñ2⊕̃

˜̃N2 is finitely generated.
Since (Ñ2⊕̃

˜̃N2) � (Ñ′1⊕̃
˜̃N′1), it follows that Ñ′1 is finitely generated, hence N′1 is finitely generated also. So

(D − α1) ∈ MΦ(HA). Similarly, we can show that if D ∈ S−(HA), then (F − α1) ∈ MΦ(HA). In both cases
(F − α1) ∈ MΦ(HA) and (D − α1) ∈ MΦ(HA), which contradicts that α ∈ σAe (F) ∪ σAe (D).

Theorem 3.6. Let F ∈ MΦ+(HA),D ∈ MΦ−(HA) and suppose that there exist decompositions

HA = M1⊕̃N1
F
−→ N⊥2 ⊕N2 = HA

HA = N′1
⊥
⊕N′1

D
−→M′2⊕̃N′2 = HA

w.r.t. which F,D have matrices
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F1 0
0 F4

]
,
[

D1 0
0 D4

]
,

respectively, where F1,D1 are isomorphims, N1,N′2 are finitely generated and assume also that one of the following
statements hold:
a) There exists some J ∈ Ba(N2,N′1) such that N2 � ImJ and ImJ⊥ is finitely generated.
b) There exists some J′ ∈ Ba(N′1,N2) such that N′1 � ImJ′, (ImJ′)⊥ is finitely generated.
Then MA

C ∈ MΦ(HA ⊕HA) for some C ∈ Ba(HA).

Remark 3.7. ImJ⊥ in part a) denotes the orthogonal complement of ImJ in N′1 and ImJ′⊥ denotes the orthogonal
complement of ImJ′ in N2.
By [5, Theorem 2.3.3 ], if ImJ is closed, then ImJ is indeed orthogonally complementable, so since in assumption a)
above ImJ � N2, it follows that ImJ is closed, so N′1 = ImJ ⊕ ImJ⊥. Similarly, in b) N2 = ImJ′ ⊕ ImJ′⊥.

Proof. Suppose that b) holds, and consider the operator J̃′ = J′PN′1 where PN′1 denotes the orthogonal
projection onto N′1.Then J̃′ can be considered as a bounded adjointable operator on HA (as N2 is orthogonally
complementable in HA). To simplify notation, we let M2 = N⊥2 ,M

′

1 = N′1
⊥ and we let

MA

J̃′
= MJ̃′ . We claim then that w.r.t. the decomposition

HA ⊕HA = (M1 ⊕HA)⊕̃(N1 ⊕ {0})

↓MJ̃′

HA ⊕HA = ((M2⊕̃ImJ′) ⊕M′2)⊕̃(ImJ′⊥ ⊕N′2),

MJ̃′ has the matrix [
(MJ̃′ )1 (MJ̃′ )2

(MJ̃′ )3 (MJ̃′ )4

]
,

where (MJ̃′ )1 is an isomorphism. To see this observe first that

(MJ̃′ )1 = u(M2⊕̃ImJ′)⊕M′2
MJ̃′ |M1⊕HA

=

[
F|M1

J̃′

0 DuM′1

]
( as uM′2 D = DuM′1 ), where u(M2⊕̃ImJ′)⊕M′2

denotes the projection onto
(M2⊕̃ImJ′) ⊕M′2 along ImJ′⊥ ⊕N′2 and uM′1 denotes the projection onto M′1 along N′1. Clearly, (MJ̃′ )1 is onto

M2⊕̃ImJ′ ⊕M′2. Now, if (MJ̃′ )1

[
x
y

]
=

[
0
0

]
for some x ∈ M1, y ∈ HA, then D uM′1 y = 0, so y ∈ N′1 as

D|M′1
is bounded below. Also Fx + J̃′y = 0. But, since y ∈ N′1, then J̃′y = J′y, so we get Fx + J′y = 0. Since

Fx ∈ M2, J′y = N2 and M2 ∩ N2 = {0}, we get Fx = J′y = 0. Since F|M1
and J′ are bounded below, we get

x = y = 0. So (MJ̃′ )1 is injective as well, thus an isomorphism. Recall next that N1 ⊕ {0} and ImJ′⊥ ⊕ N′2
are finitely generated. By using the procedure of diagonalisation of MJ̃′ as done in the proof of [5, Lemma
2.7.10], we obtain that MJ̃′ ∈ MΦ(HA ⊕HA).
Assume now that a) holds. Then there exists ι ∈ Ba(ImJ,N2) s.t ιJ = idN2 .
Let ι̂ = ιPImJ where PImJ denote the orthogonal projection onto ImJ (notice that ImJ is orthogonally com-
plementable in HA since it is orthogonally complementable in N′1 and HA = N′1 ⊕ N′1

⊥). Thus ι̂ ∈ Ba(HA).

Consider Mι̂ =

[
F ι̂
0 D

]
. We claim that w.r.t. the decomposition

HA ⊕HA = (M1 ⊕ (M′1⊕̃ImJ))⊕̃(N1 ⊕ ImJ⊥))
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↓Mι̂

HA ⊕HA = (HA ⊕M′2)⊕̃({0} ⊕N′2),

Mι has the matrix
[

(Mι̂)1 (Mι̂)2
(Mι̂)3 (Mι̂)4

]
, where (Mι̂)1 is an isomorphism. To see this, observe again that

(Mι̂)1 = u(HA⊕M′2)Mι̂ |M1⊕(M′1⊕ImJ)
=

[
F|M1

ι̂
0 DuM′1

]
, so (Mι̂)1 is obviously onto HA ⊕M′2.

Moreover, if (Mι̂)1

[
x
y

]
=

[
0
0

]
for some x ∈M1 and y ∈M′1⊕̃ImJ, we get that D uM′1 y = 0, so y ∈ ImJ.

Hence ι̂y = ιy, so, Fx + ι̂y = Fx + ιy = 0. Since Fx ∈M2, ιy ∈ N2 and M2∩N2 = {0}, we get Fx = ιy = 0. As F|M1

and ι are bounded below, we deduce that x = y = 0. So (Mι̂)1, is also injective, hence an isomorphism. In
addition, we recall that N1 ⊕ ImJ⊥ and {0} ⊕N′2 are finitely generated, so by the same arguments as before,
we deduce that Mι̂ ∈ MΦ(HA ⊕HA).

Remark 3.8. We know from the proofs of [3, Theorem 2.2] and [3, Theorem 2.3], part 1) implies 2) that since

F ∈ MΦ+(HA),D ∈ MΦ−(HA),

we can find the decompositions

HA = M1⊕̃N1
F
−→ N⊥2 ⊕N2 = HA,

HA = N′1
⊥
⊕N′1

D
−→M′2⊕̃N′2 = HA,

w.r.t. which F,D have matrices [
F1 0
0 F4

]
,
[

D1 0
0 D4

]
,

respectively, where F1,D1 are isomorphisms, N1,N′2 are finitely generated. However, in this theorem we have also the
additional assumptions a) and b).

Remark 3.9. [1, Theorem 3.2 ], part (ii) implies (i) follows as a direct consequence of Theorem 3.6 in the case when
X = Y = H, where H is a Hilbert space. Indeed, if F ∈ Φ+(H),D ∈ Φ−(H), ker D and ImF⊥ are isomorphic up to a
finite dimensional subspace, then we may let

M1 = ker F⊥,N1 = ker F⊥,N2
⊥ = ImF,N2 = ImF⊥,N′1 = ker D,

M′2 = ImD,N′2 = ImD⊥,N′1 = ker D.

Since ker D and ImF⊥ are isomorphic up to a finite dimensional subspace, by [1, Definition 2.2 ] this means that
either the condition a) or the condition b) in Theorem 3.6 holds. By Theorem 3.6 it follows then that MC ∈ Φ(H ⊕H).

Let W̃(F,D) be the set of all α ∈ A such that there exist decompositions

HA = M1⊕̃N1
F−α1
−→ M2⊕̃N2 = HA,

HA = M′1⊕̃N′1
D−α1
−→ M′2⊕̃N′2 = HA,

w.r.t. which F − α1,D − α1 have matrices[
(F − α1)1 0
0 (F − α1)4

]
,

[
(D − α1)1 0
0 (D − α1)4

]
,
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where (F−α1)1, (D−α1)1 are isomorphisms, N1,N′2 are finitely generated submodules and such that there are
no closed submodules Ñ2, ˜̃N2, Ñ′1,

˜̃N′1 with the property that N2 � Ñ2,N′1 � Ñ′1,
˜̃N2, ˜̃N1 are finitely generated

and
(Ñ2 ⊕

˜̃N2) � (Ñ2
′
⊕

˜̃N′2).

Set W(F,D) to be the set of all α ∈ A such that there are no decompositions

HA = M1⊕̃N1
F−α1
−→ N⊥2 ⊕̃N2 = HA,

HA = N′1
⊥
⊕̃N′1

D−α1
−→ M′2⊕̃N′2 = HA,

w.r.t. which F − α1,D − α1 have matrices[
(F − α1)1 0
0 (F − α1)4

]
,

[
(D − α1)1 0
0 (D − α1)4

]
,

where (F − α1)1, (D − α1)1, are isomorphisms N1,N′2 are finitely generated and with the property that a) or
b) in the Theorem 3.6 hold. Then we have the following corollary:

Corollary 3.10. For given F ∈ Ba(HA) and D ∈ Ba(HA),

W̃(F,D) ⊆
⋂

C∈Ba(HA)

σAe (MA

C ) ⊆W(F,D).

Theorem 3.11. Suppose MA

C ∈ MΦ−(HA⊕HA) for some C ∈ Ba(HA). Then D ∈ MΦ−(HA) and in addition the
following statement holds:
Either F ∈ MΦ−(HA) or there exists decompositions

HA ⊕HA = M1⊕̃N1
F′
−→M2⊕̃N2 = HA ⊕HA,

HA ⊕HA = M′1⊕̃N′1
D′
−→M′2⊕̃N′2 = HA ⊕HA,

w.r.t. which F′,D′ have the matrices
[

F′1 0
0 F′4

]
,

[
D′1 0
0 D′4

]
, where F′1,D

′

1 are isomorphisms, N′2 is finitely gener-

ated, N1,N2,N′1 are closed, but not finitely generated, and M2 � M′1,N2 � N′1.

Proof. If MA

C ∈ MΦ−(HA⊕HA), then there exists a decomposition

HA ⊕HA = M1 ⊕N1
MA

C
−→M2⊕̃N2 = HA⊕̃HA

w.r.t. which MC has the matrix
[

(MA

C )1 0
0 (MA

C )4

]
, where (MA

C )1 is an isomorphism and N2 is finitely

generated. By the part of [3, Theorem 2.3], part 1) implies 2) we may assume that M1 = N⊥1 . Hence
F′
|M1

is adjointable. Since F′
|M1

can be viewed as an operator in Ba(M1, (D′C′)−1(M2)), as M1 is orthogonally
complementable,
by [5, Theorem 2.3.3.], F′(M1) is orthogonally complementable in (D′C′)−1(M2). By the same arguments as
in the proof of [3, Theorem 2.2] part 2) implies 1) we deduce that there exists a chain of decompositions

M1⊕̃N1
F′
−→ R1⊕̃R2

C′
−→ C′(R1)⊕̃C′(R2) D′

−→M2⊕̃N2

w.r.t. which F′,C′,D′ have matrices
[

F′1 0
0 F′4

]
,

[
C′1 0
0 C′4

]
,

[
D′1 D′2
0 D′4

]
,

where F′1,C
′

1,C
′

4,D
′

1 are isomorphisms. Hence D′ has the matrix
[

D′1 0
0 D̃′4

]
, w.r.t. the decomposition

HA ⊕HA = WC′(R1)⊕̃WC′(R2) D′
−→M2⊕̃N2 = HA ⊕HA,
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where W is an isomorphism. It follows that D′ ∈ MΦ−(HA⊕̃HA), as N2 is finitely generated. Hence
D ∈ MΦ−(HA) (by the same arguments as in the proof of Theorem 3.2). Next, assume that F <MΦ−(HA),
then

F′ <MΦ−(HA⊕HA).Therefore R2 can not be finitely generated (otherwise F′would be inMΦ−(HA⊕HA)
). Now, R1 � WC′(R1),R2 = WC′(R2).

Remark 3.12. In case of ordinary Hilbert spaces, [1, Theorem 4.4 ] part 2) implies 3) follows as a corollary from
Theorem 3.11. Indeed, suppose that D ∈ B(H) and that F ∈ B(H) (where H is a Hilbert space). If ker D ≺ ImF⊥, this
means by [1, Remark 4.4 ] that dim ker D < ∞. So, if (2) in [1, Theorem 4.4 ] holds, that is MC ∈ Φ−(H ⊕ H) for
some C ∈ B(H), then by Theorem 3.11 D ∈ Φ−(H) and either F ∈ Φ−(H) or there exist decompositions

H ⊕H = M1⊕̃N1
F′
−→M2⊕̃N2 = H ⊕H,

H ⊕H = M′1⊕̃N′1
D′
−→M′2⊕̃N′2 = H ⊕H,

which satisfy the conditions described in Theorem 3.11. In particular N2,N′1 are infinite dimensional whereas N′2
is finite dimensional. Suppose that F < Φ−(H) and that the decompositions above exist. Observe that ker D′ =
{0} ⊕ ker D. Hence, if dim ker D < ∞, then dim ker D′ < ∞ . Since D′

|M′1

is an isomorphism, by the same arguments

as in the proof of [5, Proposition 3.6.8 ] one can deduce that ker D′ ⊆ N′1 . Assume that dim ker D = dim ker D′ < ∞
and let Ñ1

′ be the orthogonal complement of ker D′ in N1
′, that is N′1 = ker D′ ⊕ Ñ′1. Now, since ImD′ is closed as

D′ ∈ MΦ−(H ⊕H), then D′
|Ñ′1

is an isomorphism. Since dim N′1 = ∞ and dim ker D′ < ∞ , we have dim N′1 = ∞

. Hence D′(Ñ′1) is infinite dimensional subspace of N′2. This is a contradiction since dim N′2 is finite. Thus, if
F < Φ−(H), we must have that ker D is infinite dimensional. Hence, we deduce, as a corollary, [1, Theorem 4.4 ] in
case when X = Y = H, where H is a Hilbert space. In this case, part (3b) in [1, Theorem 4.4 ] could be reduced to the
following statement: Either F ∈ Φ−(H) or dim ker D = ∞.

Theorem 3.13. Let F,D ∈ Ba(HA) and suppose that D ∈ MΦ−(HA) and either F ∈ MΦ−(HA) or that there exist
decompositions

HA = M1⊕̃N1
F
−→ N⊥2 ⊕̃N2 = HA,

HA = N′1
⊥
⊕̃N′1

D
−→M′2⊕̃N′2 = HA,

w.r.t. which F,D have the matrices
[

F1 0
0 F4

]
,

[
D1 0
0 D4

]
, respectively, where F1,D1 are isomorphisms N′2, is

finitely generated and that there exists some
ι ∈ Ba(N2,N′1) such that ι is an isomorphism onto its image in N′1 . Then MA

C ∈ MΦ−(HA ⊕ HA) for some
C ∈ Ba(HA).

Proof. Since Imι is closed and ι ∈ Ba(N2,N′1), Imι is orthogonally complementable in N′1 by [5, Theorem 2.3.3
], that is N′1 = Im ι ⊕Ñ′1 for some closed submodule Ñ′1.
Hence HA = Imι ⊕ Ñ′1 ⊕ N′1

⊥, that is Imι is orthogonally complementable in HA. Also, there exists J ∈
Ba(Imι,N2) such that Jι = idN2 , ιJ = idImι. Let PImι be the orthogonal projection onto Imι and set C = JPImι.
Then C ∈ Ba(HA). Moreover, w.r.t. the decomposition

HA ⊕HA = (M1 ⊕ (M′1⊕̃Imι))⊕̃(N1 ⊕ Ñ′1)
MA

C
−→

(HA ⊕M′2)⊕̃({0} ⊕N′2) = HA ⊕HA,

MA

C has the matrix
[

(MA

C )1 (MA

C )2

(MA

C 3) (MA

C )4

]
,where (MA

C )1 is an isomorphism. This follows by the same arguments

as in the proof of Theorem 3.6. Using that N′2 is finitely generated and proceeding further as in the proof of
the above mentiond theorem, we reach the desired conclusion.
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Remark 3.14. In the case of ordinary Hilbert spaces, [1, Theorem 4.4] part (1) implies (2) can be deduced as a
corollary from Theorem 3.13. Indeed, if F is closed and D ∈ Φ−(H), which gives that ImD is closed also, then the pair
of decompositions

H = (ker F)⊥ ⊕ ker F F
−→ ImF ⊕ ImF⊥ = H,

H = (ker F)⊥ ⊕ ker D D
−→ ImD ⊕ ImD⊥ = H

for F and D, respectively, is one particular pair of decompositions that satisfies the hypotheses of Theorem 3.13 as long
(ImF)⊥ � ker D.

Let R(F,D) be the set of all α ∈ A such that there exists no decompositions

HA = M1⊕̃N1
F−αI
−→ N2

⊥
⊕̃N2 = HA,

HA = N′2
⊥
⊕̃N′1

D−αI
−→ M′2⊕̃N′2 = HA

that satisfy the hypotheses of the Theorem 3.13. Set R′(F,D) to be the set of all α ∈ A such that there exist
no decompositions

HA ⊕HA = M1⊕̃N1
F′−αI
−→ M2⊕̃N2 = HA ⊕HA,

HA ⊕HA = M′1⊕̃N′1
D′−αI
−→ M′2⊕̃N′2 = HA ⊕HA

that satisfy the hypotheses of the Theorem 3.11. Moreover, for F ∈ Ba(HA) we set σAre (F) = {α ∈ A | (F−αI) ,
MΦ−(HA)}.
Then we have the following corollary:

Corollary 3.15. Let F,D ∈ Ba(HA). Then

σAre (D) ∪ (σAre (F) ∩ R′(F,D)) ⊆
⋂

C∈Ba(HA)

σAre (MA

C ) ⊆ σAre (D) ∪ (σAre (F) ∩ R(F,D))

Theorem 3.16. Let MA

C ∈ MΦ+(HA ⊕HA). Then F′ ∈ MΦ+(HA ⊕HA) and either D ∈ MΦ+(HA) or there exist
decompositions

HA ⊕HA = M1⊕̃N1
F′
−→M2⊕̃N2 = HA ⊕HA,

HA ⊕HA = M′1⊕̃N′1
D′
−→M′2⊕̃N′2 = HA ⊕HA,

w.r.t. which F′,D′ have matrices
[

F′1 0
0 F′4

]
,

[
D′1 0
0 D′4

]
, respectively, where F′1,D

′

1 are isomorphisms, M2 � M′1
and N2 � N′1, N1 is finitely generated and N2,N′1 are closed, but not finitely generated.

Proof. Since MA

C ∈ MΦ+(HA ⊕HA), there exists anMΦ+-decomposition for MA

C ,

HA ⊕HA = M1⊕̃N1
MA

C
−→M′2⊕̃N′2 = HA ⊕HA,

so N1 is finitely generated. By the proof of [5, Theorem 2.7.6 ], we may assume that M1 = N⊥1 . Hence F′|M1
,

is adjointable. As in the proof of Lemma 2.2 and Theorem 3.2 we may consider a chain of decompositions

HA ⊕HA = M1⊕̃N1
F′
−→ R1⊕̃R2

C′
−→ C′(R1)⊕̃C′(R2) D′

−→M′2⊕̃M′2 = HA ⊕HA

w.r.t. which F′,C′,D′ have matrices
[

F′1 0
0 F′4

]
,

[
C′1 0
0 C′4

]
and
[

D′1 D′2
0 D′4

]
, respectively, where F′1,C

′

1,C
′

4,D
′

1

are isomorphisms. Then we can proceed in the same way as in the proof of Theorem 3.11.
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Remark 3.17. In the case of Hilbert spaces, the implication (2) implies (3) in
[1, Theorem 4.6] follows as a corollary of Theorem 3.16. Indeed, for the implication (2) implies (3b), we may proceed
as follows: Since Im(F)0 � Im(F)⊥ and (ker D)′ � ker D when one considers Hilbert spaces, then by [1, Remark
4.3], (ImF)0

≺ (ker D)′ means simply that dim ImF⊥ < ∞ whereas dim ker D = ∞. If in addition D < Φ+(H), then
D′ < Φ+(H⊕H). Now, if dim Im(F)⊥ < ∞, then dim ker D = ∞, and F ∈ Φ(H) as F ∈ Φ+(H) and dim Im(F)⊥ < ∞.
Then F′ ∈ Φ(H ⊕ H), so by [3, Lemma 2.16 ] N2 must be finitely generated. Thus N′1 must be finitely generated
being isomorphic to N2. By the same arguments as earlier, we have that ker D′ � ker D and ker D′ ⊆ N′1. Since we
consider Hilbert spaces now, the fact that N′1 is finitely generated means actually that N′1 is finite dimensional. Hence
ker D′ must be finite dimensional, so dim ker D = dim ker D′ < ∞. This is in a contradiction to ImF⊥ ≺ ker D. So,
in the case of Hilbert spaces, if MC ∈ Φ+(H⊕H), from Theorem 3.16 it follows that F ∈ Φ+(H) and either D ∈ Φ+(H)
or ImF⊥ is infinite dimensional.

Theorem 3.18. Let F ∈ MΦ+(HA) and suppose that either D ∈ MΦ+(HA) or that there exist decompositions

HA = M1⊕̃N1
F
−→ N⊥2 ⊕̃N2 = HA,

HA = N′1
⊥
⊕̃N′1

D
−→M′2⊕̃N′2 = HA

w.r.t. which F,D have matrices
[

F1 0
0 F4

]
,

[
D1 0
0 D4

]
, respectively, where F1,D1 are isomorphisms, N′1 is finitely

generated and in addition there exists some
ι ∈ Ba(N′1,N2) such that ι is an isomorphism onto its image. Then

MA

C ∈ MΦ+(HA ⊕HA),

for some C ∈ Ba(HA).

Proof. Let C = PN′1 ι where PN′1 denotes the orthogonal projection onto N′1, then apply similar arguments as
in the proof of Theorem 3.6 and Theorem 3.13

Remark 3.19. The implication (1) implies (2) in [1, Theorem 4.6] in case of Hilbert spaces could also be deduced as a
corollary from Theorem 3.18. Indeed, if ImD is closed, then D is an isomorphism from ker D⊥ onto ImD. Moreover,
if F ∈ Φ+(H), then F is also an isomorphism from ker F⊥ onto ImF and dim ker F < ∞. If in addition ker D � ImF⊥,
then the pair of decompositions

H = ker F⊥ ⊕ ker F F
−→ ImF ⊕ ImF⊥ = H,

H = ker D⊥ ⊕ ker D D
−→ ImD ⊕ ImD⊥ = H

is one particular pair of decompositions that satisfies the hypotheses of Theorem 3.18.

Let L′(F,D) be the set of all α ∈ A such that there exist no decompositions

HA ⊕HA = M1⊕̃N1
F′−αI
−→ M2⊕̃N2 = HA ⊕HA,

HA ⊕HA = M′1⊕̃N′1
D′−αI
−→ M′2⊕̃N′2 = HA ⊕HA,

for F′ − αI,D′ − αI respectively, which satisfy the hypotheses of Theorem 3.16.
Set L(F,D) to be the set of all α ∈ A such that there exist no decompositions

HA = M1⊕̃N1
F−α1
−→ N⊥2 ⊕̃N2 = HA,

HA = N′1
⊥
⊕̃N′1

D−α1
−→ M′2⊕̃N′2 = HA,

for F − α1,D − α1 respectively which satisfy the hypotheses of Theorem 3.18. Moreover, for F ∈ Ba(HA) we
set σAle (F) = {α ∈ A | (F − αI) ,MΦ+(HA)}.
Then we have the following corollary:
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Corollary 3.20. Corollary: Let F,D ∈ Ba(HA). Then

σAle (F) ∪ (σAle (D) ∩ L′(F,D)) ⊆
⋂

C∈Ba(HA)

σAle (MA

C ) ⊆ σAle (F) ∪ (σAle (D) ∩ L(F,D))

Remark 3.21. If we let Z(A) denote the center of the C∗- algebraA, that is Z(A) = {β ∈ A | αβ = βα ∀α ∈ A} then
we may also consider the operators I · α given by (I · α)(x) = x · α for all x ∈ HA, where α ∈ Z(A). Since α ∈ Z(A),
the operator I · α is obviouslyA-linear, bounded and adjointable. Its adjoint is given by I · α∗. Here again we use that
α ∈ Z(A), so that < x ·α, y >= α∗ < x, y >=< x, y > α∗ =< x, y ·α∗ > as Z(A) is closed under taking the involution.
For F ∈ Ba(HA) the operators of the form F− Iα, when α runs throught Z(A), will induce another kind of generalized
spectra of the operator F which now takes values in Z(A). All the results in this paper concerning generalized spectra
remain valid also if we consider this new kind of generalized spectra in Z(A).
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