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Abstract. An n× n matrix whose entries are from the set {1,−1} is called a Hadamard matrix if HH> = nIn.
The Hadamard conjecture states that if n is a multiple of four then there always exists Hadamard matrices of
this order. But their construction remain unknown for many orders. In this paper we construct Hadamard
matrices of order 2q(q + 1) from known Hadamard matrices of order 2(q + 1), where q is a power of a prime
number congruent to 1 modulo 4. We show then two ways to construct them. This work is a continuation
of U. Scarpis’ in [7] and Dragomir-Z̆. Dokovic̀’s in [10].

1. Introduction

Hadamard matrices can be defined as {1,−1}matrices for which the inner product of any pair of distinct
rows (or columns respectively) is 0. There are many applications in signal processing, coding, cryptography,
etc (see [1]). Finding Hadamard matrices has been an elusive problem which has remained unsolved for
one and a half century, and was discussed by many mathematicians. J.J. Sylvester was the first to define
such matrices in 1839 [16] of orders 2m,m ∈N, using Kronecker products. Then J.S. Hadamard proved the
existence of such matrices of orders n = 2 and n = 4k, for every k ∈ N∗. But no construction is known for
all possible orders.

Many mathematicians have attempted to solve this problem. For instance, Paley constructed them us-
ing finite fields Fq for n = q + 1 or n = 2(q + 1) when q ≡ 3(mod 4), q ≡ 1(mod 4), respectively (see [2, 9]). J.
Williamson, J.M. Goethales and J.J. Seidel constructed Hadamard matrices for different orders (see [13, 14]).
Using Orthogonal designs (see [4]), the constructions of Williamson and Goethales and Seidel led to the
obtainment of many orders of Hadamard matrices. Latest orders revealed are 1004 in [11] and 764 in [12].
U. Scarpis, by using Hadamard matrices of order n = p + 1 with p ≡ 3(mod 4) a prime number, constructed
a larger matrix of order pn in [7, 8]. This work was generalized by Dragomir-Z̆. Dokovic̀ in [10] recently.

Hadamard matrices are invariant under row or column permutations as well as multiplication by -1.
Thus, they are partitioned naturally into equivalence classes, each containing a normalised Hadamard ma-
trix (a Hadamard matrix whose first row and column consist of 1’s only). However, the classification of
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Hadamard matrices by equivalence has been a considerable challenge. Hadamard matrices have been
constructed, but complete lists are available only for a few small orders. There is only one equivalence class
for Hadamard matrices of sizes n = 1, 2, 4, 8, 12, five equivalence classes for n = 16, three for n = 20, 60 for
n = 24 and 487 for n = 28 (see [6, 15]). From the lower bound n = 40 the number grows rapidly (see [17, 18]).

This paper aims to construct a family of Hadamard matrices of size 2q(q + 1) from a known Hadamard
matrix of size 2(q + 1), where q is a power of a prime number q ≡ 1(mod 4).

The rest of this paper is organized as follows. In Section 2, we construct a qn-Hadamard matrix where
q is a power of a prime number congruent to 1 modulo 4 and n = 2(q + 1). In Section 3, we give a
matrix-like form to Scarpis constructions by the use of permutations matrices. This construction is of
complexity at most O(t3), where t is the prime power. We show that Scarpis Hadamard matrices may be
different under a choice of bijections. In the last section, we give a conclusion and propose an open problem.

Now we recall some definitions and notations. We denote the set of all n × n Hadamard matrices by
Hn. The i-th row of a matrix A is denoted by ai. A> denotes the transpose matrix of A.

Two vectors are orthogonal if their inner product (or dot product) is 0 (i.e., taking x = (xi),y = (yi)
two vectors of same size 1 × n, they are orthogonal if < x,y >:=

∑n
i=1 xiyi = xy> = 0).

The Kronecker (or tensor) product X ⊗ Y of two matrices X = (xi j) and Y is the block matrix X ⊗ Y = (xi jY).
Jm denotes the row vector whose m entries are 1. Om,p is the zero matrix of size m × p, and In is the identity
matrix of order n. For two matrices A and B, we define that

A ⊕ B :=
[

A O
O B

]
.

By deleting the first row and column of a normalized Hadamard matrix H, we obtain a matrix where the inner
product of every two of its rows ( or columns resp) gives −1. This matrix is called the Core of H.

Let α be the bijection
α : {1, 2, ..., q} → Fq

such that, a(x) represents the t-th row at of the matrix A whenever x = α(t).
Throughout l, q denote two prime powers such that l ≡ 3(mod 4), q ≡ 1(mod 4), respectively, and n = 2(q + 1)
for the rest of this paper.
In [10] Dragomir-Z̆.Dokovic̀ considers transformations, which we denote by Φl,α, to define the l(l + 1)-
Hadamard matrices. It can also be presented as

Φl,α : Hl+1 →Hl(l+1)

and Φl,α(H) is a l(l + 1)-Hadamard matrix.

Note that the multiplicative group of permutation matrices of size n, is group isomorphic to the sym-
metric group Sn by corresponding to each π ∈ Sn the permutation matrix Pπ = [δ(π(i), j)], where

δ(i, j) =

{
1 if i = j
0 otherwise .

It is generated by transposition matrices which are permutations that switch only two rows (or two columns).
On the other hand, Sn can also be represented as the group of all bijections from Fd to Fd equiped with
morphisms composition law, when d is a power of a prime number.
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2. Construction of qn-Hadamard Matrices

In this section, we first recall Paley’s Theorem which is used as a generator of input matrices used in
this construction, then we construct a qn-Hadamard Matrix.

A quadratic character χ is a map defined on the cyclic group Fq
∗ by χ(x) = 1 if x is quadratic residue

(i.e., there exists y ∈ Fq
∗ such that y2 = x) and χ(x) = −1 otherwise. It’s extended to Fq by setting χ(0) = 0.

Theorem 2.1 (Paley). For q an odd prime power, and an ordering 10 = 0, 11, ..., 1q−1 ∈ Fq of Fq, set Q =
χ[(1i − 1 j)]0≤i, j≤q. Let S be a matrix of the form

S =

[
0 1

1> Q

]
where 1 is the all-1s string. Then we have the following:

(1) If q ≡ 3(mod 4), then

Pq =

[
1 1

1> Q + Iq

]
is a Hadamard matrix of order (q + 1) called the Paley Type I Hadamard matrix.

(2) If q ≡ 1(mod 4), then

P′q =

[
S + Iq+1 S − Iq+1
S − Iq+1 −S − Iq+1

]
is a Hadamard matrix of order 2(q + 1) called the Paley Type II Hadamard matrix.

Note that Q is skew-symmetric (Q> = −Q) when q ≡ 3(mod 4) and symmetric when q ≡ 1(mod 4).

In [10] the author uses Core rows for the construction, in such way that any Hadamard matrix of order
l + 1 can be used as an input matrix. But here, Core rows are incompatible to the construction, then we need
to use a sub-matrix extracted from it. This last sub-matrix must verify some conditions and therefore it is
extracted from a particular Hadamard matrix. In the following lemmas, we will discuss the nature of such
Hadamard matrices, by giving the conditions and by describing their existence.

Lemma 2.1. For every normalized Hadamard matrix H = (hi j) of order n there exists an equivalent normalized
Hadamard matrix H′ = (h′i j) containing a row i (or a column j resp)of the form (1,−1, 1, ..., 1,−1, ...,−1).

Proof. By [8] every row or column of H differs in n
2 position except the first row ( or column resp) so there

are as many 1s in every such row or column as −1s. Then, applying at most n − 1 permutations on rows (
or columns resp) we can obtain H′.

Lemma 2.2. Let q ≡ 1(mod 4) a power of a prime number. Then there exists a normalized Hadamard matrix of order
2(q + 1) with second column (1,−1, 1, ..., 1,−1, ...,−1) and satisfies the following:

(1) By deleting the first two rows and columns respectively and using a column permutation N, we get a matrix

T =

[
C
D

]
such that C and D are of size q × 2q satisfying the following:

i. For each row of C, the sum of the first q entries is −1, and the sum of the remaning q entries is also −1.

ii. For each row of D, the sum of the first q entries is 1, and the sum of the remaning q entries is −1.
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(2) We denote by T the matrix obtained by deleting the first two rows only. Then, there exists a column permutation
matrix M that rearranges the rows of T in such away that any two consecutive entries appear as the elements
of the set A = {(1, 1), (−1,−1), (1,−1), (−1, 1)}, where each row contains as many (1, 1)s as (−1,−1)s and as
many (−1, 1)s as (1,−1)s.

Proof. It follows from Theorem 1 that we can construct the following matrix

P′q =


1 1 Jq Jq
1 −1 −Jq Jq

Jq
> Jq

> Q − Iq −Q − Iq
Jq
>
−Jq

> Q + Iq Q − Iq

 .
By deleting its first two rows and columns we obtain

T =

[
Q − Iq −Q − Iq
Q + Iq Q − Iq

]
.

The quadratic character gives as many 1s as −1s over any finite field. Then, the statement i. follows from
the first q rows of T and the statement ii. follows from the second respectively, and N = I2q. We obtain
consequently the first result.
By deleting the first two rows of P′q we obtain

T =

[
Jq
> Jq

> Q − Iq −Q − Iq
Jq
>
−Jq

> Q + Iq Q − Iq

]
.

Now, we multiply T by a column permutation matrix that puts every (i+2)-th column side to the (q+ i+1)-th
column, when i ∈ {1, .., q}. Let’s denote the resulted matrix by H′. As the quadratic character gives as many
1s as −1s, then H′ contains as many (−1, 1)s as (1,−1)s, one (1, 1) and one (−1,−1) in every row of the first
q rows, as many (1, 1)s as (−1,−1)s, one (1,−1) and one (−1, 1) in every row of the last q rows. Hence, the
second result of the lemma follows. Therefore, P′q satisfies (1) and (2) of Lemma 2.

We describe a procedure whose input is a Hadamard matrix A of order n = 2(q + 1) that satisfies (1) and
(2) of Lemma 2, and output is a Hadamard matrix B of order qn. So, we obtain

Ψq,α : Hn →Hqn

where Hn is the set of all Hadamard matrices of order n that satisfies the conditions in Lemma 2. Ψq,α
generates a family of Hadamard matrices which depends on variation of the bijections α, and whose orders
depend on variation of q prime powers. Thus, we obtain the following.

Theorem 2.2 (qn-Hadamard construction). Let q ≡ 1(mod 4) be a prime power. Suppose that an order n = 2(q+1)
Hadamard matrix A satisfies the properties of Lemma 2. Then there exists a Hadamard matrix of order qn = 2q(q+1).

Proof. The proof includes two parts. We first show how to construct a square matrix noted here by B
from the given Hadamard matrix A of order n. Then we show that B satisfies row orthogonality require-
ment ( Columns orthogonality requirement can be obtained evidently since if BB> = qnIqn, then B>B = qnIqn).

Matrix construction:

Step 1. Let A be a Hadamard matrix of size 2(q + 1) × 2(q + 1) with a11 = 1 , if not, we take −A and let
J be a row vector that consists of q ones.

Step 2. For each i = {2, 3, ...,n} if a1i = −1, we multiply the column i by −1. Then, we obtain a first row
of ones similarly if ai1 = −1. Hence, we obtain an equivalent normalized matrix A′.
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Step 3. Permuting A′ rows, we obtain A′′ a normalized Hadamard matrix with the second column
(1,−1, 1, ..., 1,−1, ...,−1) as shown in Lemma 1.

Step 4. The matrix obtained by deleting first two rows of A′′ is T. We define

B0 = TM ⊗ J,

where M is the permutation matrix from (2) of Lemma 2.

Step 5. By deleting the first two columns of T we obtain a matrix T′. Using the permutation matrix
N defined as in (1) of Lemma 2, we get a matrix T = T′N of size 2q× 2q. We divide T into C, the first q
rows and D, the last q rows. The inner product of two rows of C ( or two rows of D resp) is −2. While,
the inner product of one row of C and another from D is 0.

Step 6. We partition B into q + 1 block matrices of sizes 2q × qn

B =



B0
B1
.
.
.

Bq


.

Then, for each r ∈ {1, 2, ..., q}we partition Br into 2n blocks of size q × q such that

Br =

[
B[1]

r,0 B[1]
r,1 ... B[1]

r,q
B[2]

r,0 B[2]
r,1 ... B[2]

r,q

]
.

Let B[1]
r,0 = JT

⊗ cr and B[2]
r,0 = JT

⊗ dr. Next we define B[1]
r,i, B[2]

r,i for i ∈ {1, 2, ..., q}.

Step 7. For each r, i, we specify the rows of the block matrices B[1]
r,i and B[2]

r,i as follows.

• rows of B[1]
r,i will be c(αiαr + αk) with k ∈ {1, 2, ..., q},

• rows of B[2]
r,i will be d(αiαr + αk) with k ∈ {1, 2, ..., q}.

This completes the definition of B of size 2q(q + 1) × 2q(q + 1).

Orthogonality verification:

1. Two distinct rows of B0 are orthogonal by the fact that the tensor product preserves rows orthogonality.

2. If we take two distinct rows of Br, then we must investigate 3 different cases.

(i) Two rows l, k from B[1]
r, the dot product gives

crcr
> +

q∑
t=1

c(αiαr + αk)c(αiαr + αl)> = 2q − 2q = 0.

Because, cic j
> = −2, if i , j, and multiplying a row by itself give its length 2q. The verification is

similar if they are taken from B[2]
r.

(ii) Taking the l-th row of B[1]
r and the k-th row of B[2]

r, we have

cldk
> +

q∑
t=1

c(αiαr + αk)d(αiαr + αl)
> = 0,

by the construction of T.
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3. A row of B0 and another from Br, r , 0:
k-th row of B0 has the form [tk ⊗ J] and the a-th row of Br has the form

[cr c(α1αr + αb) ... c(αqαr + αb)] (1)

or

[dr d(α1αr + αb) ... d(αqαr + αb)], (2)

where b = a(mod q) + 1.

Considering (2.1), the inner product of the two rows is the result of summing the terms obtained from
the following:

tk 1

q∑
u=1

cr u + tk 2

2q∑
u=q+1

cr u = −(tk 1 + tk 2).

For 0 < v < q,

tk 2v+1

q∑
u=1

[c(αvαr + αb)]u + tk 2v+2

2q∑
u=q+1

[c(αvαr + αb)]u = −(tk 2v+1 + tk 2v+2).

Here, [c(αiαr + αl)]u are components of the row c(αiαr + αl), and we obtain −(tk 1 + tk 2),−(tk 3 +

tk 4), ...,−(tk 2q+1 + tk 2q+2). In sum, we get −
∑n

v=1 tk v = 0, and hence, the orthogonality is shown.

Similarly, considering (2.2) we have

tk 1

q∑
u=1

dl u + tk 2

2q∑
u=q+1

dl u = tk 1 − tk 2

and for 0 < v < q:

tk 2v+1

q∑
u=1

[d(αvαr + αb)]u + tk 2v+2

2q∑
u=q+1

[d(αvαr + αb)]u = tk 2v+1 − tk 2v+2

yielding the terms (tk 1 − tk 2), (tk 3 − tk 4), ..., (tk 2q+1 − tk 2q+2). If tk 2v+1 = −tk 2v+2 = 1, the v-th term has the
value 2, if tk 2v+1 = −tk 2v+2 = −1, then it yields −2. But by part 2 of Lemma 2, we have as many (1,−1)s
as (−1, 1)s. Therefore, the inner product of the two rows is zero, i.e,

q∑
v=0

tk 2v+1 −

q+1∑
v=1

tk 2v = 0

implying the orthogonality follows.

4. Lastly, a row from Br and another from Bs with r, s , 0 and r , s:

(i) If one is from B[1]
r and another from B[2]

s, the inner product of the two rows is equal to

crds
> +

q∑
t=1

c(αtαr + αk)d(αtαs + αl)
>,

the result evidently is 0 ( as mentioned in Step 5.).
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(ii) If they are from the same upper indexed block B[1], the product gives

crcs
> +

q∑
t=1

c(αtαr + αk)c(αtαs + αl)>

For every t ∈ {1, ..., q}, the product c(αtαr + αk)c(αtαs + αl)> is equal to −2 except in one case t′

such that αt′ = (αl − αk)(αr − αs)−1 where it is equal to 2q. Thus, the total sum is equal to zero ( as
in case 2. (i)). Similar computations are concluded considering two rows of B[2].

We have shown that B is qn-Hadamard matrix, and this completes the proof.

By using Paley’s type II Hadamard matrices P′q we can always find an input Hadamard matrix of size
2(q + 1). Therefore, we obtain the following Corollary.

Corollary 2.1. Suppose that q ≡ 1(mod 4) is a prime power. Then there exists a Hadamard matrix of size 2q(q + 1).

3. Other Form for Scarpis Hadamard matrices

In this section we propose another matrix shape of Scarpis constructions when q ≡ 1(mod 4) or
l ≡ 3(mod 4). It is much easier to implement on programming devices, as it’s based on rows permuta-
tions of the input matrix, insertion of matrices of orders less or equal to the order of the input matrix, and
the computation of powers of a generator over a finite field. Hence, the construction is of a complexity that
do not exceed O(m3), where m ∈ {l, q}.

We start by defining the shift permutation matrix:

Ud =


0 1 0 ... 0
0 0 1 ... 0
...

...
... ...

...
1 0 0 0

 .
Ud is of order d, and Ud

d = Id.
Let’s take the bijection α as:

α(i) =

{
0 i f i = 1,

γi−1 i f i ∈ {2, ..., l}(or{2, ...q})

where γ is a primitive root of the unity of Fl ( or Fq respectively).
When l (or q) is a prime number, the fieldFl (orFq ) is the same as the quotient ringZ/lZ = {0, 1, 2, .., l−1}

(or Z/qZ = {0, 1, 2, .., q − 1}, respectively). Therefore, we can define the matrix

Vl =
[
δ(α(i) + 1, j)

]
,

where Vl is the permutation matrix correspond to α, taking α as a permutation of {0, ..., l − 1}. Similarly, we
define Vq.
On the other hand, if l = pd ( a power d , 1 of a prime number p), then the field Fl is isomorphic to Fp[z]/〈 f 〉
by a field homomorphism s(x) = fx(z), where Fp[z] is the polynomial ring over Fp, and 〈 f 〉 is the ideal
generated by an irreducible polynomial f of degree d (see Chapter 2 in [3]). We define the set mapping

t :
Fp[z]/〈 f 〉 → Z/lZ

fx(z) → fx(p) .
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Clearly, t is a bijection. If we take a0, a1, ..., ad−1 ∈ Fp, then
∑d−1

i=0 aipi = 0 implies that the ais are all identical
to 0, then the injectivity follows, and so, surjectively ( as the two sets have the same cardinality).
Taking ∆(i) = t ◦ s ◦ α(i), we define the permutation matrix correspond to α by

Vl =
[
δ(∆(i) + 1, j)

]
.

In the same way we can define Vq when q = p′d
′

, respectively.
Using these matrices and a Hadamard matrix of order (l + 1) or 2(q + 1) we can define Scarpis matrix.

We elaborate the constructions of the new form in the following proposition.

Proposition 3.1. Let H be a normalized Hadamard matrix. Then the following holds:

(1) For l ≡ 3(mod 4) a prime power, H of size l + 1, has a Core C. Taking

B0 = H′ ⊗ Jl,

where H′ is the matrix obtained by deleting the first row of H, and

B =


Jl
>
⊗ c1 SlC ... Sl

l−2C C
Jl
>
⊗ c2 SlUlC ... Sl

l−2UlC UlC

Jl
>
⊗ C

...
...

... ...
...

Jl
>
⊗ cl SlUl

l−1C ... Sl
l−2Ul

l−1C Ul
l−1C


where Sl = Vl

−1(1 ⊕Ul−1)Vl.Then,

Φ =

[
B0
B

]
is a Hadamard matrix of order l(l + 1).

(2) For q ≡ 1(mod 4) a prime power, H is of order 2(q+1) whose second column is in the form (1,−1, 1, ..., 1,−1, ...,−1).
Then if H verifies (1) and (2) of Lemma 2 for some permutation matrices N and M, respectively, the matrix:

Ψ =

[
B′0
B′

]
where B′0 = TM ⊗ Jq, with T the matrix obtained by deleting the first two rows of H, and

B′ =


T̃1 S̃qT ... S̃q−2

q T T
T̃2 S̃qŨqT ... S̃q−2

q ŨqT ŨqT

Jq
>
⊗ T

...
...

... ...
...

T̃q S̃qŨq
q−1

T ... S̃q−2
q Ũq

q−1
T Ũq

q−1
T


where Ũq = I2 ⊗ Uq, S̃q = I2 ⊗ (Vq

−1(1 ⊕ Uq−1)Vq), T = T′N such that, T′ is the matrix obtained by deleting

the first two rows and columns of H, and T̃i =

(
Jq
>
⊗ ti

Jq
>
⊗ tq+i

)
, is a Hadamard matrix.

Proof. We prove the first case of the proposition, and the second case can be concluded similarly. Using a
construction obtained via the bijection α, we denote by B the matrix


B1
...

Bl

 (3)
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constructed as in Theorem 1 in [10]. The first form above is revealed using rows permutations on B.
We permute the rows of B in a way to obtain

B̂ =


Γ1
...
Γl

 (4)

where each Γk is a l × l(l + 1) matrix of rows [cr c(α1αr + αk) ... c(αqαr + αk)] with r ∈ {1, ..., l}. Thus we
have, for k = 1:

Γ1 =



i = 1
c1 c(α1) c(α1) ... c(α1)
c2 c(α1) c(α2α2) ... c(αlα2)
c3 c(α1) c(α2α3) ... c(αlα3)
...

...
... ...

...
cl c(α1) c(α2αl) ... c(αlαl)


,

which is equal to: 

i = 1
c1 c1 c1 c1 ... c1

c(γ) c1 c(γ2) c(γ3) ... c(γ)
c(γ2) c1 c(γ3) c(γ4) ... c(γ2)
...

...
...

... ...
...

c(1) c1 c(γ) c(γ2) ... c(1)


.

Starting from the 2l + 1-th column, every l columns of Γ1 present the columns of the Core C, in which
the rows are exchanging positions following a shifting over the finite field Fl. That to say that every such l
columns become StC, where S = Vl

−1(1 ⊕Ul−1)Vl, and t ∈ {1, ..., l − 1} . Hence, Γ1 is also equal to

[
C Jl

>
⊗ c1 SlC Sl

2C ... Sl
l−2C C

]
.

When k , 1, we have

Γk =



i = 1
c1 c(αk) c(αk) ... c(αk)
c2 c(αk) c(α2α2 + αk) ... c(αlα2 + αk)
c3 c(αk) c(α2α3 + αk) ... c(αlα3 + αk)
...

...
... ...

...
cl c(αk) c(α2αl + αk) ... c(αlαl + αk)


.

Proceeding as before, the matrix Γk is equal to:[
C Jl

>
⊗ c(αk) SlC Sl

2C ...Sl
q−2C C

]
,

where

C =


c((1+a)( mod l)+1)
c((2+a)( mod l)+1)

...
c((l+a)( mod l)+1)

 = Ul
aC

such that, a = αk if l is a prime number, and a = ∆(k) otherwise. Then, Γk is identical to
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[
C Jl

>
⊗ ca SlUl

aC Sl
2Ul

aC ... Sl
l−2Ul

aC Ul
aC

]
.

Note that Sl and Ul cannot permute.
Finally, we rearrange the rows of B̂ following the permutation Vl ⊗ Il, and we get B as defined in the

proposition above. B0 is the same as the one defined in Theorem 1 in [10].
For the second case by using C and D defined in the construction of Theorem 2, and proceeding similarly

we obtain S̃q and Ũq.

Taking a Scarpis construction obtained via an arbitrary bijection, then the results in Proposition 1 lead to
the following.

Proposition 3.2. (1) Let β be any bijection from {1, ..., l} to Fl, and H be a normalized Hadamard matrix of order
l + 1. Then, Φl,β(H) is equivalent to

Φβ =

[
B0,β
Bβ

]
,

where B0,β = H′P ⊗ J, P = 1 ⊕ Pβ for some permutation matrix Pβ depending on the choice of β, and

Bβ =


Jl
>
⊗ c1 SlC ... Sl

l−2C C
Jl
>
⊗ c2 SlUlC ... Sl

l−2UlC UlC

Jl
>
⊗ PβC

...
...

... ...
...

Jl
>
⊗ cl SlUl

l−1C ... Sl
l−2Ul

l−1C Ul
l−1C

 .

(2) Same result can be obtained for Ψq,β(H) by taking an appropriate Hadamard matrix H, and a permutation β
acting on {1, .., q}. In this case, we use P̃ = (1 ⊕ Pβ) ⊗ I2 and P̃β = I2 ⊗ Pβ instead of P and Pβ, respectively.

Proof. Let β be a bijection from {1, ..., l} to Fl, and

σ :
Fl → Fl
βi → αi

.

It is easy to see that σ is a one-to-one and onto, and the equation σ(x) = a has a unique solution for
each a ∈ Fl. Then, σ is a bijection of Fl, and then a permutation of Sl. Let Pβ denotes its corresponded
permutation matrix.
Taking same assumptions as in Proposition 1, let’s define Bβ as in (3.1) via the bijection β. Let also B̂β denote
the matrix obtained as in (3.2) from Bβ following a permutation matrix that we denote it by P̂. Then let t be
the integer such that, βt = 0. Hence, Γt is the block matrix

i = t
c1 c(β1β1) c(β2β1) ... c(0) ... c(βlβ1)
c2 c(β1β2) c(β2β2) ... c(0) ... c(βlβ2)
...

...
... ...

... ...
...

ct c(0) c(0) ... c(0) ... c(0)
...

...
... ...

... ...
...

cl c(β1βl) c(β2βl) ... c(0) ... c(βlβl)


.
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Multiplying B̂β by a column permutation Q = [P ⊗ Il], for P = 1 ⊕ Pβ, Γt becomes equivalent to

ΓtQ =


c1 c1 c(α2β1) ... c(αlβ1)
c2 c1 c(α2β2) ... c(αlβ2)
c3 c1 c(α2β3) ... c(αlβ3)
...

...
... ...

...
cl c1 c(α2βl) ... c(αlβl)


.

Q involves also columns permutations on the other Γts that permute their columns such that, for each
βk , 0, the block Γk becomes

ΓkQ =


c1 c(βk) c(α2β1 + βk) ... c(αlβ1 + βk)
c2 c(βk) c(α2β2 + βk) ... c(αlβ2 + βk)
c3 c(βk) c(α2β3 + βk) ... c(αlβ3 + βk)
...

...
... ...

...
cl c(βk) c(α2βl + βk) ... c(αlβl + βk)


.

Moreover, multiplying Q on the right of Φl,β(H) involves also columns permutations on B0, that results
H′P ⊗ J.

If we permute the rows of Γt following Pβ, then we obtain

PβΓtQ =


c(β1) c1 c1 c1 ... c1
c(β2) c1 c(γ2) c(γ3) ... c(γ)
c(β3) c1 c(γ3) c(γ4) ... c(γ2)
...

...
...

... ...
...

c(βq) c1 c(γ) c(γ2) ... c(1)


.

So, to deduce (1), we use similar row permutations on the blocks Γk, for each k ∈ {1, ..., l}, followed by
permutations of the blocks Γk following Pβ ⊗ Il, and consequently the Scarpis matrix constructed via β way
is equivalent to the form

Φβ = PΦl,β(H)Q =



H′P ⊗ J
Jl
>
⊗ c1 SlC ... Sl

l−2C C
Jl
>
⊗ c2 SlUlC ... Sl

l−2UlC UlC

Jl
>
⊗ PβC

...
...

... ...
...

Jl
>
⊗ cl SlUl

l−1C ... Sl
l−2Ul

l−1C Ul
l−1C


,

where P = Il ⊕ [(Pβ ⊗ Il)(Il ⊗ Pβ)P̂]. Taking same steps for the case Ψq,β(H) we obtain the results in (2).

From Proposition 2 we conclude that two Scarpis Hadamard matrices can be inequivalent under a
different choice of bijections, and it divides them into n! classes, hereby they can be classified in a more
compatible way. If we take for example l = 3, then we have only 1 class of order 12 Hadamard matrices.
But Proposition 2 states that we have 3! = 6 classes. Thus, this classification can be more specific.

The binary Hadamard matrix is the matrix A =
J −H

2
, where J is the all one’s array of size m × m and

H a Hadamard matrix of order m. The vector subspace over F2 generated by the rows of A is called the
(binary) Hadamard code, and the dimension of its image is its binary rank.

The matrices obtained by the new construction Ψ are of orders not divisible by 8, and then of a maxi-
mal binary rank qn − 1 (see [5]). Hence, they generate Hadamard codes with length 2t−1

· q(q + 1) of all
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possible ranks, for every t ≥ 2, (see Theorems 2, 3 in [19]).

Finally, the first Hadamard matrices obtained using the construction Ψ are of orders 60, when q = 5 a prime
number, and 180 for q = 9 a power of prime number. Using Paley type II matrix of order 12 = 2 · (5 + 1) as
input, we can present an example of order 60 based on Proposition 1 for q = 5. The example is performed
by MATLAB in the Appendix of this paper.

4. Conclusion

We gave an analogue of Scarpis’ theorem on Hadamard matrices of size l(l+1) that construct Hadamard
matrices of size 2q(q + 1). Moreover, another form was deduced for these matrices in both cases. We noticed
that this family of matrices can be variant under different choice of bijections. So, we extended the second
form to a family of matrices defined in function of permutation matrices. As 2q(q + 1) is not divisible by 8,
we became interested in the obtained matrices in the construction of Hadamard codes.

To conclude this paper, we propose an open problem: how to obtain a recursion that uses a Hadamard
matrix of order m to construct Hadamard matrices of order qm, where q is a power of a prime number
chosen randomly?

Acknowledgements We would like to thank Vehbi Paksoy for his comments that helped to improve
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Appendix

Here, we use MATLAB program to apply the results obtained in this paper. Inputting a Paley type II matrix
of order 12, we can present an example of order 60 based on Proposition 1 for q = 5. In the implementation,
by H we denote the output Scarpis matrix, q = pr, and we define the functions:

• Paley1(p, r) = P′pr , returns the Paley type II Hadamard matrix of order 2(q + 1). The function is of a
complexity O(q2).

• TCore(P′pr ) gives T and T′M (defined in Lemma 2). For any two suitable matrices A and B, insertA − B(A,B) =[
A B

]
. insertA(A,B) =

[
A
B

]
. Each of this functions is of a complexity O(q).

• Instead of using the matrix product to compute the product of permutations, we use the corresponding
composition law over Sq, to reduce the complexity. So, to define a permutation, we take the row vector
X = (π(1), ..., π(q)) instead of the matrix P = [δ(π(i), j)]. Hence, the product of two matrices A and B
associated to the permutations X and Y, can be done using the following function:

function [circ]= circ(X,Y)

K=size(X);

q=K(1,2);

for(i=1:q)

Z(i)= Y(X(i));

end

circ=Z;

end

It returns the row vector Y ◦X corresponded to the matrix AB. Clearly, the function is of a complexity
O(q).

• Alpha(r, p) = Vpr is a vector that represent a permutation of {1, ..., q} following α. Considering a known
generator of the multiplicative group, the function is of a complexity O(q).

• Perms(Vpr ) = L is a function that define shift permutations Upr , then use Vpr to compute S = V>pr (1 ⊕
Upr−1)Vpr and its powers. It returns a tensor L such that L(i, :, j) is a permutation of {1, .., q} following
SiU j

pr . This function is of a complexity O(q3).

• KronPerms(L) = Q is a function that returns a tensor Q such that,

Q(i, :, j) = [Li,1, j, ...,Li,q, j,Li,1, j + q, ...,Li,q, j + q].

Then of a complexity O(q2).

• PermMat(Q,T) = R is a function that return a tensor R such that, R(:, :, i, j) present a row permutation
of T following the permutation Q(i, :, j), and then of a complexity O(q3).

Ψ5,α(P′5):

clear;

clc;

%entries__________________________________

p=5;

r= 1;

%entry matrix__________________________________________
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[PAL1]=Paley1(p,r);

[ST,T]=Tcore(PAL1);

%Help____________________________________________________

K=size(T);

m=K(1,1);

J=ones(m/2);

JT=J(:,1);

J=J(1,:);

%permutations_______________________________________________

[U]=Alpha(r,p);

[L]=Perms(U);

[Q]=KronPerms(L);

[R]=PermMat(Q,T);

%B0____________________________________________

B0=kron(ST,J);

%BR__________________________________________

B=kron(JT,T);

[L]=InsertA(kron(JT,T(1,:)),kron(JT,T((m/2)+1,:)));

for(j=2:m/2)

[A]=InsertA(kron(JT,T(j,:)),kron(JT,T(m/2+j,:)));

[L]=InsertA(L,A);

end

[B]=InsertA_B(B,L);

for(i=1:m/2-1)

for(j=1:m/2-1)

[BR]=InsertA(BR,R(:,:,i,j));

end

[B]=InsertA_B(B,BR);

end

% %final result_______________________________________

n=2*pˆr*(pˆr+1)

[H]=InsertA(B0,B);

H=diag(H(:,1))*H*diag(H(1,:))

%%Verification__________________________________________

if (H*transpose(H)==n*eye(n))

fprintf(’H is a Hadamard matrix’);

end

Results:

n = 60

H =

Columns 1 through 13

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 -1 -1 -1

1 1 1 1 1 -1 -1 -1 -1 -1 1 1 1

1 1 1 1 1 -1 -1 -1 -1 -1 1 1 1

1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
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1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

1 1 1 1 1 -1 -1 -1 -1 -1 1 1 1

1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 1

1 1 1 -1 -1 -1 1 -1 1 1 -1 -1 1

1 -1 -1 -1 1 -1 1 -1 1 -1 1 1 -1

1 1 -1 -1 -1 -1 -1 1 -1 1 1 1 -1

1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1

1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 -1

1 -1 1 -1 -1 1 1 1 -1 -1 1 -1 1

1 -1 1 -1 1 1 -1 -1 -1 1 -1 1 -1

1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 -1

1 -1 -1 1 -1 1 -1 -1 1 1 1 -1 1

1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1

1 1 1 -1 -1 -1 1 -1 1 1 -1 -1 -1

1 -1 -1 -1 1 -1 1 -1 1 -1 1 1 1

1 1 -1 -1 -1 -1 -1 1 -1 1 1 1 1

1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 -1

1 -1 1 1 -1 -1 -1 1 1 -1 1 -1 1

1 -1 1 -1 -1 1 1 1 -1 -1 -1 1 -1

1 -1 1 -1 1 1 -1 -1 -1 1 1 -1 1

1 1 -1 1 -1 1 1 -1 -1 -1 1 -1 1

1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 -1

1 1 -1 -1 1 1 -1 1 1 -1 1 -1 -1

1 1 1 -1 -1 -1 1 -1 1 1 1 -1 -1

1 -1 -1 -1 1 -1 1 -1 1 -1 -1 1 1

1 1 -1 -1 -1 -1 -1 1 -1 1 -1 1 1

1 -1 -1 1 1 -1 1 1 -1 1 1 -1 -1

1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 -1

1 -1 1 -1 -1 1 1 1 -1 -1 1 -1 1

1 -1 1 -1 1 1 -1 -1 -1 1 -1 1 -1

1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 -1

1 -1 -1 1 -1 1 -1 -1 1 1 1 -1 1

1 1 -1 -1 1 1 -1 1 1 -1 1 1 -1

1 1 1 -1 -1 -1 1 -1 1 1 1 1 -1

1 -1 -1 -1 1 -1 1 -1 1 -1 -1 -1 1

1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 1

1 -1 -1 1 1 -1 1 1 -1 1 1 1 -1

1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1

1 -1 1 -1 -1 1 1 1 -1 -1 1 1 -1

1 -1 1 -1 1 1 -1 -1 -1 1 -1 -1 1

1 1 -1 1 -1 1 1 -1 -1 -1 -1 -1 1

1 -1 -1 1 -1 1 -1 -1 1 1 1 1 -1

1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1

1 1 1 -1 -1 -1 1 -1 1 1 -1 1 1

1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1

1 1 -1 -1 -1 -1 -1 1 -1 1 1 -1 -1

1 -1 -1 1 1 -1 1 1 -1 1 -1 1 1

1 -1 1 1 -1 -1 -1 1 1 -1 1 -1 -1

1 -1 1 -1 -1 1 1 1 -1 -1 -1 1 1

1 -1 1 -1 1 1 -1 -1 -1 1 1 -1 -1

1 1 -1 1 -1 1 1 -1 -1 -1 1 -1 -1

1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 1
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Columns 14 through 26

1 1 1 1 1 1 1 1 1 1 1 1 1

-1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 1

1 1 -1 -1 -1 -1 -1 1 1 1 1 1 1

1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1

1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1

-1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 -1

1 1 1 1 1 1 1 1 1 1 1 1 -1

1 -1 -1 1 -1 -1 1 1 1 -1 -1 1 -1

1 -1 -1 1 -1 -1 1 -1 -1 1 1 1 -1

-1 1 1 -1 1 1 -1 -1 -1 -1 1 1 -1

-1 1 1 -1 1 1 -1 -1 1 1 -1 -1 -1

1 -1 -1 1 -1 -1 1 -1 1 1 1 -1 -1

-1 1 1 1 -1 -1 1 1 -1 1 1 -1 1

1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1 1

-1 1 1 1 -1 -1 1 -1 1 -1 1 1 1

-1 1 1 1 -1 -1 1 -1 1 1 -1 1 1

1 -1 -1 -1 1 1 -1 -1 1 -1 1 -1 1

1 1 1 -1 1 -1 -1 1 1 1 -1 -1 1

1 1 1 -1 1 -1 -1 1 -1 -1 1 1 1

-1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 1

-1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1

1 1 1 -1 1 -1 -1 -1 -1 1 1 1 -1

-1 -1 1 1 1 -1 -1 -1 1 -1 1 1 1

1 1 -1 -1 -1 1 1 1 -1 -1 1 -1 -1

-1 -1 1 1 1 -1 -1 1 -1 1 -1 1 -1

-1 -1 1 1 1 -1 -1 1 -1 1 1 -1 1

1 1 -1 -1 -1 1 1 -1 -1 1 -1 1 1

-1 1 -1 1 -1 1 -1 -1 1 1 1 -1 -1

-1 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1

1 -1 1 -1 1 -1 1 1 1 -1 -1 -1 1

1 -1 1 -1 1 -1 1 -1 -1 -1 1 1 -1

-1 1 -1 1 -1 1 -1 1 -1 -1 1 1 1

1 -1 -1 1 1 1 -1 1 -1 1 -1 1 -1

-1 1 1 -1 -1 -1 1 -1 1 -1 -1 1 -1

1 -1 -1 1 1 1 -1 1 1 -1 1 -1 -1

1 -1 -1 1 1 1 -1 -1 1 -1 1 1 1

-1 1 1 -1 -1 -1 1 1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1 1 -1 -1 1 1 1 -1

-1 -1 -1 -1 1 -1 1 1 1 1 -1 -1 1

1 1 1 1 -1 1 -1 -1 1 1 -1 -1 -1

1 1 1 1 -1 1 -1 1 -1 -1 -1 1 1

-1 -1 -1 -1 1 -1 1 1 1 -1 -1 1 -1

-1 1 -1 -1 1 1 1 1 1 -1 1 -1 -1

1 -1 1 1 -1 -1 -1 1 -1 1 -1 -1 -1

-1 1 -1 -1 1 1 1 -1 1 1 -1 1 1

-1 1 -1 -1 1 1 1 1 -1 1 -1 1 -1

1 -1 1 1 -1 -1 -1 -1 1 -1 -1 1 -1
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-1 -1 1 -1 -1 1 -1 1 -1 -1 1 1 1

-1 -1 1 -1 -1 1 -1 -1 1 1 1 -1 -1

1 1 -1 1 1 -1 1 -1 -1 1 1 -1 1

1 1 -1 1 1 -1 1 1 1 -1 -1 -1 1

-1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 1

1 -1 1 -1 -1 1 1 -1 1 1 -1 1 1

-1 1 -1 1 1 -1 -1 -1 1 -1 1 -1 1

1 -1 1 -1 -1 1 1 1 -1 1 1 -1 1

1 -1 1 -1 -1 1 1 1 1 -1 1 -1 -1

-1 1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1

Columns 27 through 39

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 1 1 1 1 1 1 1 1 1

1 1 1 1 -1 -1 -1 -1 -1 1 1 1 1

-1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1

1 1 1 1 1 1 1 1 1 1 1 1 1

-1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 1

-1 1 -1 1 -1 1 1 -1 -1 -1 1 1 -1

1 -1 1 1 -1 -1 1 1 1 -1 -1 1 -1

1 1 -1 1 -1 1 1 1 -1 -1 1 -1 1

1 -1 1 -1 -1 -1 -1 1 1 -1 1 -1 1

1 -1 -1 1 -1 1 -1 -1 1 -1 -1 1 1

1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 1

1 1 -1 -1 -1 -1 1 -1 1 1 1 -1 -1

-1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 -1

-1 -1 -1 1 -1 1 -1 1 1 1 1 1 -1

-1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1 1

-1 -1 1 -1 -1 -1 1 1 -1 1 -1 1 1

-1 1 -1 1 1 -1 -1 1 1 1 -1 -1 1

-1 1 1 -1 -1 -1 1 1 1 -1 -1 1 -1

-1 1 -1 1 1 -1 -1 -1 1 1 -1 1 -1

1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1

1 1 -1 -1 1 -1 1 1 -1 1 1 -1 -1

1 1 1 -1 1 -1 -1 1 -1 -1 1 1 -1

1 -1 -1 1 -1 -1 1 -1 1 1 1 -1 -1

1 -1 -1 -1 1 -1 1 -1 1 -1 1 1 1

1 -1 1 -1 1 -1 -1 -1 1 1 -1 1 -1

1 -1 -1 1 -1 -1 -1 1 1 -1 1 -1 1

1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 -1

1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1

-1 -1 1 -1 1 1 -1 -1 -1 1 1 -1 1

1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 -1

-1 1 1 -1 -1 1 -1 1 1 1 1 1 -1

-1 1 1 1 -1 1 -1 -1 1 -1 -1 1 1

1 1 -1 -1 1 -1 -1 1 -1 -1 1 1 -1

1 1 -1 -1 1 1 -1 1 -1 -1 -1 1 1
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-1 1 -1 1 1 1 -1 -1 -1 1 1 -1 1

-1 1 -1 -1 1 -1 -1 -1 1 1 -1 1 -1

1 1 -1 1 1 1 1 -1 -1 1 -1 1 -1

-1 1 -1 1 1 1 -1 -1 1 -1 1 -1 -1

1 -1 -1 1 -1 1 1 -1 -1 -1 1 1 -1

-1 1 1 1 -1 -1 1 -1 1 1 1 -1 -1

-1 -1 1 1 1 -1 1 -1 1 -1 1 1 1

-1 -1 1 1 1 -1 1 -1 -1 -1 -1 -1 1

1 1 1 -1 -1 1 -1 -1 1 -1 -1 1 1

-1 1 1 -1 -1 1 1 -1 1 1 -1 -1 1

-1 -1 1 -1 -1 1 1 -1 -1 -1 1 1 -1

1 -1 1 -1 1 1 -1 -1 -1 1 1 -1 1

-1 1 1 -1 -1 1 1 1 -1 -1 1 -1 1

1 -1 1 -1 1 1 1 -1 -1 1 -1 1 -1

-1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 1

-1 -1 1 1 1 -1 -1 1 -1 -1 1 1 -1

-1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1

1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1

-1 1 1 1 1 -1 1 -1 -1 -1 -1 -1 1

-1 -1 1 1 1 -1 1 1 -1 1 1 -1 -1

Columns 40 through 52

1 1 1 1 1 1 1 1 1 1 1 1 1

-1 1 1 1 1 1 1 1 1 1 1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 1 1 1 1 1 -1 -1 -1 -1 -1 1 1

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

1 -1 -1 -1 -1 -1 1 1 1 1 1 -1 -1

-1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1

1 1 1 1 1 1 -1 -1 -1 -1 -1 1 1

-1 1 1 1 1 1 1 1 1 1 1 -1 -1

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 1 1 -1 1 -1 1 1 -1 1 1

1 1 -1 -1 -1 1 1 -1 1 -1 1 1 1

1 1 -1 -1 1 1 1 -1 -1 1 -1 1 -1

-1 1 1 1 -1 -1 1 -1 1 -1 -1 1 1

1 1 1 -1 -1 -1 1 1 -1 1 -1 1 -1

-1 -1 1 -1 -1 1 -1 -1 1 1 -1 1 -1

1 1 -1 1 -1 1 -1 1 1 1 -1 1 -1

-1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1

1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1

-1 1 1 -1 1 -1 -1 -1 1 1 1 1 -1

1 -1 -1 -1 1 1 -1 1 -1 1 1 1 1

-1 1 1 -1 -1 -1 1 1 -1 1 -1 -1 1

-1 1 1 -1 -1 1 -1 1 -1 -1 1 1 1

1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 1

1 -1 1 1 -1 -1 -1 1 1 -1 1 1 1

1 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1

1 1 1 -1 1 -1 -1 -1 1 1 1 -1 1

-1 -1 1 -1 -1 1 -1 -1 1 1 -1 1 1

-1 -1 1 -1 1 -1 1 -1 -1 -1 1 -1 1

-1 -1 1 1 -1 1 1 -1 -1 1 1 -1 1
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1 1 -1 -1 -1 1 1 -1 1 -1 1 -1 1

1 -1 1 1 -1 -1 -1 1 1 -1 1 -1 -1

1 1 1 1 -1 -1 1 -1 1 -1 -1 -1 1

-1 -1 -1 1 1 1 -1 -1 1 -1 1 -1 -1

-1 -1 -1 1 1 -1 1 -1 1 1 -1 1 1

1 -1 1 -1 1 -1 1 -1 -1 -1 1 1 -1

-1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1

-1 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1

-1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 -1

1 1 -1 1 1 -1 1 1 -1 -1 1 1 -1

-1 1 1 -1 -1 -1 1 1 -1 1 -1 -1 -1

1 -1 -1 1 1 -1 1 -1 1 1 -1 1 -1

-1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 -1

1 1 -1 -1 1 1 1 -1 -1 1 -1 -1 -1

1 -1 -1 -1 1 1 -1 1 -1 1 1 -1 1

-1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 1

-1 1 -1 1 1 -1 1 1 -1 -1 1 1 -1

1 -1 1 -1 1 -1 1 -1 -1 -1 1 1 -1

-1 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 1

1 -1 1 -1 1 1 1 1 1 -1 -1 -1 1

1 -1 1 1 -1 -1 -1 1 1 -1 1 1 -1

-1 -1 -1 -1 1 1 -1 1 -1 1 1 1 1

-1 -1 -1 1 1 1 -1 -1 1 -1 1 -1 -1

-1 1 1 -1 -1 1 -1 1 -1 -1 1 1 -1

-1 1 -1 -1 -1 1 1 -1 1 -1 1 -1 -1

-1 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 1

1 -1 1 -1 1 1 1 1 1 -1 -1 -1 1

1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 1

1 -1 1 -1 -1 1 -1 -1 1 1 -1 1 -1

1 1 -1 1 -1 1 -1 1 1 1 -1 -1 -1

Columns 53 through 60

1 1 1 1 1 1 1 1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

1 1 1 1 1 1 1 1

-1 -1 -1 1 1 1 1 1

-1 -1 -1 1 1 1 1 1

1 1 1 -1 -1 -1 -1 -1

1 1 1 -1 -1 -1 -1 -1

-1 -1 -1 1 1 1 1 1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 1 -1 1 -1 -1 1

1 -1 -1 1 -1 1 -1 -1

-1 -1 1 1 -1 1 -1 1

-1 -1 -1 1 1 -1 1 -1

-1 1 1 1 -1 -1 1 -1

1 1 -1 1 1 -1 -1 1

1 -1 -1 -1 -1 -1 1 1

1 -1 1 -1 1 1 1 -1

-1 1 -1 -1 -1 1 1 1

-1 1 -1 -1 1 1 -1 -1
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1 -1 -1 1 -1 1 -1 -1

1 1 -1 -1 1 -1 1 -1

-1 -1 -1 1 1 -1 1 -1

1 -1 -1 -1 1 1 -1 1

-1 -1 1 -1 1 -1 -1 1

-1 1 1 1 1 1 -1 -1

-1 1 -1 1 -1 -1 -1 1

-1 1 -1 -1 -1 1 1 1

1 -1 1 1 -1 -1 1 1

-1 -1 1 -1 -1 1 1 -1

1 1 -1 -1 1 -1 1 -1

1 1 1 -1 -1 1 -1 1

1 -1 -1 -1 1 1 -1 1

1 1 -1 1 -1 1 1 -1

1 -1 -1 1 -1 1 -1 -1

1 -1 1 -1 1 1 1 -1

1 -1 1 1 1 -1 -1 -1

1 -1 1 1 -1 -1 1 1

1 1 -1 1 1 -1 -1 1

1 -1 -1 -1 -1 -1 1 1

1 1 1 -1 -1 1 -1 1

-1 1 1 1 -1 -1 1 -1

1 1 -1 1 -1 1 1 -1

-1 1 1 -1 1 -1 1 1

1 1 -1 -1 1 -1 1 -1

-1 1 -1 -1 -1 1 1 1

-1 1 -1 -1 1 1 -1 -1

1 1 -1 1 1 -1 -1 1

-1 1 1 1 1 1 -1 -1

-1 1 -1 1 -1 -1 -1 1

-1 1 1 1 -1 -1 1 -1

-1 -1 1 -1 1 -1 -1 1

-1 1 1 -1 1 -1 1 1

-1 -1 1 1 -1 1 -1 1

1 1 1 -1 -1 1 -1 1

1 -1 1 1 -1 -1 1 1

-1 -1 1 -1 -1 1 1 -1

-1 1 1 1 1 1 -1 -1

1 -1 1 -1 1 1 1 -1

1 -1 1 1 1 -1 -1 -1

H is a Hadamard matrix.


