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An Infinite Family of Hadamard Matrices Constructed From Paley Type
Matrices
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Abstract. An n X n matrix whose entries are from the set {1, —1} is called a Hadamard matrix if HH™ = nl,.
The Hadamard conjecture states that if 7 is a multiple of four then there always exists Hadamard matrices of
this order. But their construction remain unknown for many orders. In this paper we construct Hadamard
matrices of order 2q(q + 1) from known Hadamard matrices of order 2(g + 1), where g is a power of a prime

number congruent to 1 modulo 4. We show then two ways to construct them. This work is a continuation
of U. Scarpis’ in [7] and Dragomir-Z. Dokovi¢’s in [10].

1. Introduction

Hadamard matrices can be defined as {1, —1} matrices for which the inner product of any pair of distinct
rows (or columns respectively) is 0. There are many applications in signal processing, coding, cryptography,
etc (see [1]). Finding Hadamard matrices has been an elusive problem which has remained unsolved for
one and a half century, and was discussed by many mathematicians. J.J. Sylvester was the first to define
such matrices in 1839 [16] of orders 2™, m € IN, using Kronecker products. Then J.S. Hadamard proved the

existence of such matrices of orders n = 2 and n = 4k, for every k € IN*. But no construction is known for
all possible orders.

Many mathematicians have attempted to solve this problem. For instance, Paley constructed them us-
ing finite fields IF, for n = g + 1 or n = 2(q + 1) when g = 3(mod 4), q = 1(mod 4), respectively (see [2, 9]). ].
Williamson, J.M. Goethales and ].J. Seidel constructed Hadamard matrices for different orders (see [13, 14]).
Using Orthogonal designs (see [4]), the constructions of Williamson and Goethales and Seidel led to the
obtainment of many orders of Hadamard matrices. Latest orders revealed are 1004 in [11] and 764 in [12].
U. Scarpis, by using Hadamard matrices of order n = p + 1 with p = 3(mod 4) a prime number, constructed
a larger matrix of order pn in [7, 8]. This work was generalized by Dragomir-Z. Dokovit in [10] recently.

Hadamard matrices are invariant under row or column permutations as well as multiplication by -1.
Thus, they are partitioned naturally into equivalence classes, each containing a normalised Hadamard ma-
trix (a Hadamard matrix whose first row and column consist of 1’s only). However, the classification of
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Hadamard matrices by equivalence has been a considerable challenge. Hadamard matrices have been
constructed, but complete lists are available only for a few small orders. There is only one equivalence class
for Hadamard matrices of sizes n = 1,2, 4, 8, 12, five equivalence classes for n = 16, three for n = 20, 60 for
n = 24 and 487 for n = 28 (see [6, 15]). From the lower bound n = 40 the number grows rapidly (see [17, 18]).

This paper aims to construct a family of Hadamard matrices of size 2q(q + 1) from a known Hadamard
matrix of size 2(q + 1), where g is a power of a prime number g = 1(mmod 4).

The rest of this paper is organized as follows. In Section 2, we construct a gn-Hadamard matrix where
g is a power of a prime number congruent to 1 modulo 4 and n = 2(g + 1). In Section 3, we give a
matrix-like form to Scarpis constructions by the use of permutations matrices. This construction is of
complexity at most O(t*), where t is the prime power. We show that Scarpis Hadamard matrices may be
different under a choice of bijections. In the last section, we give a conclusion and propose an open problem.

Now we recall some definitions and notations. We denote the set of all n X n Hadamard matrices by
‘H,,. The i-th row of a matrix A is denoted by a;. AT denotes the transpose matrix of A.

Two vectors are orthogonal if their inner product (or dot product) is 0 (i.e., taking x = (x;),y = (i)
two vectors of same size 1 X n, they are orthogonal if < x,y >:= Y."; x;y; = xy' = 0).

The Kronecker (or tensor) product X ® Y of two matrices X = (x;;) and Y is the block matrix X ® Y = (x;;Y).

Jm denotes the row vector whose m entries are 1. Oy, is the zero matrix of size m X p, and I, is the identity
matrix of order n. For two matrices A and B, we define that

A O

ron=[4 9]

By deleting the first row and column of a normalized Hadamard matrix H, we obtain a matrix where the inner
product of every two of its rows ( or columns resp) gives —1. This matrix is called the Core of H.

Let a be the bijection
a:{L,2,.,q9 >

such that, a(x) represents the t-th row a; of the matrix A whenever x = a(t).

Throughout /, g denote two prime powers such that | = 3(mod 4), g = 1(mod 4), respectively, and n = 2(g + 1)
for the rest of this paper.

In [10] Dragomir—Z.Dokovic‘: considers transformations, which we denote by ®;,, to define the I(I + 1)-
Hadamard matrices. It can also be presented as

Oy - Hir — Higeyy
and @;,(H) is a I(l + 1)-Hadamard matrix.

Note that the multiplicative group of permutation matrices of size n, is group isomorphic to the sym-
metric group $, by corresponding to each @ € 5, the permutation matrix P, = [6(n(i), j)], where

. 1 ifi=j
0, j) = { 0 otherwise
Itis generated by transposition matrices which are permutations that switch only two rows (or two columns).

On the other hand, 5, can also be represented as the group of all bijections from [F; to F; equiped with
morphisms composition law, when d is a power of a prime number.
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2. Construction of gn-Hadamard Matrices

In this section, we first recall Paley’s Theorem which is used as a generator of input matrices used in
this construction, then we construct a gn-Hadamard Matrix.

A quadratic character x is a map defined on the cyclic group IF;" by x(x) = 1 if x is quadratic residue
(i.e., there exists y € IF;" such that y* = x) and x(x) = —1 otherwise. It's extended to IF; by setting x(0) = 0.

Theorem 2.1 (Paley). For q an odd prime power, and an ordering go = 0,91,...,9;-1 € Fy of Fy, set Q =
x[(g: = g)lo<i j<q- Let S be a matrix of the form
0 1
| o

where 1 is the all-1s string. Then we have the following:

(1) If g = 3(mod 4), then

1 1
Pq_[lT Q+Iq]

is a Hadamard matrix of order (q + 1) called the Paley Type I Hadamard matrix.
(2) If g = 1(mod 4), then

P = S+ Iq+1 S - Iq+1
q S— Iq+1 -S - Iq+1

is a Hadamard matrix of order 2(q + 1) called the Paley Type Il Hadamard matrix.
Note that Q is skew-symmetric (QT = —Q) when q = 3(mod 4) and symmetric when q = 1(mod 4).

In [10] the author uses Core rows for the construction, in such way that any Hadamard matrix of order
I+1 can be used as an input matrix. But here, Core rows are incompatible to the construction, then we need
to use a sub-matrix extracted from it. This last sub-matrix must verify some conditions and therefore it is
extracted from a particular Hadamard matrix. In the following lemmas, we will discuss the nature of such
Hadamard matrices, by giving the conditions and by describing their existence.

Lemma 2.1. For every normalized Hadamard matrix H = (h;j) of order n there exists an equivalent normalized
Hadamard matrix H = (hl’.j) containing a row i (or a column j resp)of the form (1,-1,1,...,1,-1, ..., —-1).

Proof. By [8] every row or column of H differs in 5 position except the first row ( or column resp) so there
are as many 1s in every such row or column as —1s. Then, applying at most n — 1 permutations on rows (
or columns resp) we can obtain H’. [J

Lemma 2.2. Let g = 1(mod 4) a power of a prime number. Then there exists a normalized Hadamard matrix of order
2(q + 1) with second column (1,-1,1,...,1, -1, ..., =1) and satisfies the following:

(1) By deleting the first two rows and columns respectively and using a column permutation N, we get a matrix

T = [ g ] such that C and D are of size q X 2q satisfying the following:

i. For each row of C, the sum of the first q entries is —1, and the sum of the remaning q entries is also —1.

ii. For each row of D, the sum of the first q entries is 1, and the sum of the remaning q entries is —1.



A. Farouk, Q.W. Wang / Filomat 34:3 (2020), 815-834 818

(2) Wedenote by T the matrix obtained by deleting the first two rows only. Then, there exists a column permutation
matrix M that rearranges the rows of T in such away that any two consecutive entries appear as the elements
of the set A = {(1,1),(-1,-1),(1,-1), (=1, 1)}, where each row contains as many (1,1)s as (-1, —1)s and as
many (—1,1)s as (1, -1)s.

Proof. It follows from Theorem 1 that we can construct the following matrix

1 1 J; Jq

[ O s S Js
i J'iT ]ﬂT Q_Iﬂ _Q_I'i
JqT _JqT Q""Iq Q_Iq

By deleting its first two rows and columns we obtain

= &0 S|
Q+l, Q-1

The quadratic character gives as many 1s as —1s over any finite field. Then, the statement i. follows from
the first ¢ rows of T and the statement ii. follows from the second respectively, and N = I;;. We obtain
consequently the first result.

By deleting the first two rows of P, we obtain

T:[Jq: JqT_I_ Q_Iq _Q_Iq}'
I, ) Q+L Q-

Now, we multiply T by a column permutation matrix that puts every (i +2)-th column side to the (q+i+1)-th
column, wheni € {1,..,q}. Let’s denote the resulted matrix by H’. As the quadratic character gives as many
1s as —1s, then H’ contains as many (-1,1)s as (1, —1)s, one (1, 1) and one (-1, —1) in every row of the first
g rows, as many (1, 1)s as (-1, —1)s, one (1, —1) and one (-1, 1) in every row of the last 4 rows. Hence, the
second result of the lemma follows. Therefore, P; satisfies (1) and (2) of Lemma 2. [J

We describe a procedure whose input is a Hadamard matrix A of order n = 2(q + 1) that satisfies (1) and
(2) of Lemma 2, and output is a Hadamard matrix B of order gn. So, we obtain

W, ﬂn — Hyn

where ﬂn is the set of all Hadamard matrices of order n that satisfies the conditions in Lemma 2. W,
generates a family of Hadamard matrices which depends on variation of the bijections «, and whose orders
depend on variation of g prime powers. Thus, we obtain the following.

Theorem 2.2 (jn-Hadamard construction). Letq = 1(mod 4) be a prime power. Suppose that an order n = 2(q+1)
Hadamard matrix A satisfies the properties of Lemma 2. Then there exists a Hadamard matrix of order qn = 2q(q +1).

Proof. The proof includes two parts. We first show how to construct a square matrix noted here by B
from the given Hadamard matrix A of order n. Then we show that B satisfies row orthogonality require-
ment (Columns orthogonality requirement can be obtained evidently sinceif BB = gnl,,, then B'B = gnl,).

Matrix construction:

Step 1. Let A be a Hadamard matrix of size 2(g + 1) X 2(g + 1) with a;; = 1, if not, we take —A and let
J be a row vector that consists of g ones.

Step 2. For eachi = (2,3, ..., n} if a;; = —1, we multiply the column i by —1. Then, we obtain a first row
of ones similarly if a; = —1. Hence, we obtain an equivalent normalized matrix A’.



A. Farouk, Q.W. Wang / Filomat 34:3 (2020), 815-834 819

Step 3. Permuting A’ rows, we obtain A” a normalized Hadamard matrix with the second column
1,-1,1,..,1,-1,...,—1) as shown in Lemma 1.

Step 4. The matrix obtained by deleting first two rows of A” is T. We define
By=TM®]J,
where M is the permutation matrix from (2) of Lemma 2.

Step 5. By deleting the first two columns of T we obtain a matrix T". Using the permutation matrix
N defined as in (1) of Lemma 2, we get a matrix T = T'N of size 2q X 2q. We divide T into C, the first g
rows and D, the last g rows. The inner product of two rows of C ( or two rows of D resp) is —2. While,
the inner product of one row of C and another from D is 0.

Step 6. We partition B into g + 1 block matrices of sizes 2q X gn

By
By

B,
Then, for each r € {1, 2, ..., q} we partition B, into 2n blocks of size g X g such that

B[Hr’0 B[lln1 B[”W

B, =
"7 B, B3, .. BB,

Let B,y =J" ® ¢, and B, = JT ® d,. Next we define B, ;, B1?l, ; fori € {1,2, ..., q}.
Step 7. For each r, i, we specify the rows of the block matrices B[”m and B[Z]m- as follows.

e rows of B!, ; will be c(aa, + ay) with k € {1,2, ..., q},
e rows of B, ; will be d(a;a, + ay) with k € {1,2, ..., q}.

This completes the definition of B of size 2g(g + 1) X 2g9(g + 1).
Orthogonality verification:
1. Two distinct rows of By are orthogonal by the fact that the tensor product preserves rows orthogonality.
2. If we take two distinct rows of B,, then we must investigate 3 different cases.

(i) Two rows [,k from B, the dot product gives

q
cC + Z c(aia, + ag)c(aia, + a))" =29 -2 =0.
=1

Because, ci¢;” = -2, if i # j, and multiplying a row by itself give its length 2q. The verification is
similar if they are taken from B (21,
(ii) Taking the I-th row of Bl!l, and the k-th row of B?l,, we have

q
qd;” + Z c(aia, + ap)d(aia, + )" =0,
=1

by the construction of T.
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3. A row of By and another frOIp B,, r#0:
k-th row of By has the form [t; ® J] and the a-th row of B, has the form

[e; c(ra, + ap) ... claga, + ap)] (1)
or
[d; d(a1a, + ap) ... d(agar + )], (2)

where b = a(mod q) + 1.

Considering (2.1), the inner product of the two rows is the result of summing the terms obtained from
the following:

q 29 _
tk1 Zcru + tr2 Z Cru=—(te1 + tk2)-
u=1 u=g+1
For0<v <y,
q 2q _ _
tr 2041 Z[C(avar + ap)lu + tr2os2 Z [c(aoas + ap)lu = —(tk 2041 + tr 2042)-
u=1 u=g+1

Here, [c(eja, + a)], are components of the row c(a;e, + a;), and we obtain —(fx1 + k2), —(tes +
m 4)) wees —(fk 241 + e 2q+2). In sum, we get — Zzzl tr» = 0, and hence, the orthogonality is shown.

Similarly, considering (2.2) we have

tklzd1u+sz Z iy = te1 — te2
u=1

u=qg+1

and for 0 < v < gt

q 2q
bk 2041 Z[d(avar +ap)lu + tr 2042 Z [d(aoy + ap)lu = tr 2041 — tk 2042
u=1 u=g+1

yielding the terms (tr1—tr2), (bes —tea), ..., (B 241 — e 2+2)- If teovi1l = —tkovio = 1, the v-th term has the
value 2, if b pp41 = —fr 2042 = —1, then it yields —2. But by part 2 of Lemma 2, we have as many (1, -1)s
as (-1, 1)s. Therefore, the inner product of the two rows is zero, i.e,

q q+1
Z tk2o+1 — Z tkoo =0
v=0 v=1

implying the orthogonality follows.
4. Lastly, a row from B, and another from B; with r,s # 0 and r # s:

(i) If one is from B!!l, and another from B, the inner product of the two rows is equal to

q
CrdsT + Z‘ C(atar + ak)d(atas + al)Tr
t=1

the result evidently is 0 ( as mentioned in Step 5.).
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(i) If they are from the same upper indexed block B!, the product gives

q
C,Cs + Z c(ara, + ap)e(aas + ap) "
=1

For every t € {1, ..., g}, the product c(a:a, + ax)c(aras + ap) ' is equal to —2 except in one case t’
such that ay = (a; — ax)(a, — as) ™! where it is equal to 2. Thus, the total sum is equal to zero ( as
in case 2. (i)). Similar computations are concluded considering two rows of Bl2l.

We have shown that B is gn-Hadamard matrix, and this completes the proof. [

By using Paley’s type Il Hadamard matrices P} we can always find an input Hadamard matrix of size

2(q + 1). Therefore, we obtain the following Corollary.

Corollary 2.1. Suppose that q = 1(mod 4) is a prime power. Then there exists a Hadamard matrix of size 2q(q + 1).

3. Other Form for Scarpis Hadamard matrices

In this section we propose another matrix shape of Scarpis constructions when g = 1(mod 4) or
I = 3(mod 4). It is much easier to implement on programming devices, as it's based on rows permuta-
tions of the input matrix, insertion of matrices of orders less or equal to the order of the input matrix, and
the computation of powers of a generator over a finite field. Hence, the construction is of a complexity that
do not exceed O(m?), where m € {1, q}.

We start by defining the shift permutation matrix:

010 0

0 01 0
U; = .

1 00 0

Uy is of order d, and U, = I;.
Let’s take the bijection « as:

0 if i=1,
a(i) = { yiTbif i€ 2, 1)(or{2,...9})

where y is a primitive root of the unity of IF; ( or IF; respectively).
When (or g) is a prime number, the field IF; (or IF, ) is the same as the quotient ring Z/17 = {0, 1,2, ..,1 -1}
(orZ/q2 ={0,1,2,..,q — 1}, respectively). Therefore, we can define the matrix

Vi=[sai+1)) |,

where V; is the permutation matrix correspond to «, taking a as a permutation of {0, ...,/ — 1}. Similarly, we
define V.

On the other hand, if | = p? (a power d # 1 of a prime number p), then the field I, is isomorphic to F,[z]/{f)
by a field homomorphism s(x) = f.(z), where F,[z] is the polynomial ring over IF,, and (f) is the ideal
generated by an irreducible polynomial f of degree d (see Chapter 2 in [3]). We define the set mapping

F,[z]/{f) — Z/IZ

e o R
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Clearly, t is a bijection. If we take ag, a1, ...,44-1 € F,, then Zﬁiz_ol aipi = 0 implies that the a;s are all identical
to 0, then the injectivity follows, and so, surjectively ( as the two sets have the same cardinality).
Taking A(i) = t o s o a(i), we define the permutation matrix correspond to a by

vi=[ oA +1,) |

In the same way we can define V, when g = p'?, respectively.
Using these matrices and a Hadamard matrix of order (I + 1) or 2(q + 1) we can define Scarpis matrix.
We elaborate the constructions of the new form in the following proposition.

Proposition 3.1. Let H be a normalized Hadamard matrix. Then the following holds:
(1) For I = 3(mod 4) a prime power, H of size | + 1, has a Core C. Taking

Bo=H'®],,
where H' is the matrix obtained by deleting the first row of H, and

J'®al| SC .. S C

5 T | SUC .. S7Puc  ucC
Tec ) ) )

]"eq | SUC . sPuf'c ultlc
where S; = V"Y1 @ Uj_1)V,.Then,

is a Hadamard matrix of order I(I + 1).

(2) Forq = 1(mod 4)a prime power, H is of order 2(q+1) whose second column is in the form (1,-1,1, ..., 1,1, ..., =1).
Then if H verifies (1) and (2) of Lemma 2 for some permutation matrices N and M, respectively, the matrix:

B/
=1 "o
v| 7]
where B} = TM ®]J,, with T the matrix obtained by deleting the first two rows of H, and

| sT .. ST T
T, | Ss,uT .. S°U, u,

B - q4q
J,"eT

~ | = ~q-1

g —
T, | SU; T .. S&u, T Uy T
where fl; =hL®U, gq =L® (Vq_l(l ® U,;-1)V,), T = T'N such that, T is the matrix obtained by deleting

J,"®t

the first two rows and columns of H, and T = ( 5T @t
q q+1

), is a Hadamard matrix.

Proof. We prove the first case of the proposition, and the second case can be concluded similarly. Using a
construction obtained via the bijection @, we denote by B the matrix

By
.
B
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constructed as in Theorem 1 in [10]. The first form above is revealed using rows permutations on B.
We permute the rows of B in a way to obtain

I
B=| : (4)
I,

where each Ty is a [ X [(I + 1) matrix of rows [¢, c(a1a; + a) ... c(aza, + ax)] with 7 € {1,...,1}. Thus we
have, fork = 1:

i=1
c | clar) | cla) .. cla)
¢ | c(m) | c(apmr) ... c(aaz)
=1 ¢ | ) | clmas) .. clamas) |-
o | ) | clava) . clma) |
which is equal to:
i=1
C1 C1 C1 C1 C1
«y) | a [P <) .. op)
)| a |0 Y . ()
L) | @ | ) 0B . ) |

Starting from the 2I + 1-th column, every I columns of I'y present the columns of the Core C, in which
the rows are exchanging positions following a shifting over the finite field IF;. That to say that every such [
columns become S'C, where S = V, ' (1@ U;_1)V, and t € {1,...,] — 1} . Hence, I'; is also equal to

[clnTea|sC sPC .. s/?C C.

When k # 1, we have

i=
c1 | (o) () c(ax)
e | c(ag) | clapan +ag) ... c(oyan + ag)
Te=1 ¢ c(ag) | clapas +ag) ... clagas+ ag)
| o | clay) | clmoar+ax) ... ol +ag) |

Proceeding as before, the matrix Iy is equal to:

[ cl1®can|sC s*C .s2C C |,
where

C(1+a)( mod N)+1)

C(2+a)( mod N)+1)
= . = UlaC

Ol

C((I+a)( mod N)+1)

such that, a = ay if | is a prime number, and a = A(k) otherwise. Then, Iy is identical to
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[climec | SUC sPusC .. s2urc uec ).

Note that S; and U; cannot permute.

Finally, we rearrange the rows of B following the permutation V; ® I;, and we get B as defined in the
proposition above. By is the same as the one defined in Theorem 1 in [10].

For the second case by using C and D defined in the construction of Theorem 2, and proceeding similarly
we obtain §q and 'u}
U

Taking a Scarpis construction obtained via an arbitrary bijection, then the results in Proposition 1 lead to
the following.

Proposition 3.2. (1) Let B be any bijection from {1, ..., 1} to IF;, and H be a normalized Hadamard matrix of order
I + 1. Then, ®,4(H) is equivalent to
_ | Bos
- [ By ]

where Byg = H'P ®J, P = 1@ Py for some permutation matrix Pg depending on the choice of B, and

I'®a | SC .. SFC C

B J[T ® Cp Su,C Sll‘ZUIC u,Cc
"Tlimerc| L :

J[T ® ¢ SZUIHC S,I‘ZUIHC UZHC

(2) Same result can be obtained for W, g(H) by taking an appropriate Hadamard matrix H, and a permutation f3
acting on {1, ..,q}. In this case, we use P = (1 ® Pg) ® I and Pg = I ® Py instead of P and Pg, respectively.

Proof. Let f be a bijection from {1, ..., I} to IF;, and

IFI - ]Fl
o: .
ﬁi -

It is easy to see that o is a one-to-one and onto, and the equation o(x) = a4 has a unique solution for
each a € IF. Then, o is a bijection of IF;, and then a permutation of §;. Let Py denotes its corresponded
permutation matrix.

Taking same assumptions as in Proposition 1, let’s define Eﬁ as in (3.1) via the bijection . Let also Eﬁ denote
the matrix obtained as in (3.2) from E,g following a permutation matrix that we denote it by P. Then let t be
the integer such that, §; = 0. Hence, I'; is the block matrix

) iss .
c cBif1) c(Bf1) .. | c0) | ... c(Bip1)
2 cBifa) c(Baf2) ... | cO) | ... c(Bip2)

G ) © |0 | <O

L cBB) By | cO) | cBip) |

0 ...
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Multiplying ﬁﬁ by a column permutation Q = [P ® I|], for P = 1 ® Pg, I'; becomes equivalent to

a ¢ claf) ... claipr)
¢ o claxfs) ... claif)
rQ=| ¢ a c(azfs) ... c(aiBs)

(;l C.1 C(Oé.zﬁl) C((X.lﬁl)

Q involves also columns permutations on the other I';s that permute their columns such that, for each
Br # 0, the block I'y becomes

c c(Br) claxfi+Pr) - clafr+ Pr)
& c(Br) clazfo+Pr) ... claf2+Pr)
rQ=| < c(Br) clazfs+Pr) ... claPs+ Pr)

a ofr) clazfr+pPr) - claiPi+Pr)
Moreover, multiplying Q on the right of ®; 3(H) involves also columns permutations on By, that results
HP®].

If we permute the rows of I'; following Pg, then we obtain

cpf1) a «a ¢ .. q
cB) a cr?) ¥ .. )
PiliQ = cB) a c(®) b .. (P

By a ) P .. <)
So, to deduce (1), we use similar row permutations on the blocks I, for each k € {1, ..., I}, followed by

permutations of the blocks I'y following Py ® I;, and consequently the Scarpis matrix constructed via § way
is equivalent to the form

HP®]J
JT®a  SC . s/~2C C
Dy = PPy (H)Q = I"®c  SUC ” sfuc  uc |
J]T ® P,;C
JZT (2} SIUIHC 51172 UZHC UIHC

where P =1, ® [(Ps ® [))(I; ® Pﬂ)ﬁ]. Taking same steps for the case W, 3(H) we obtain the results in (2). O

From Proposition 2 we conclude that two Scarpis Hadamard matrices can be inequivalent under a
different choice of bijections, and it divides them into n! classes, hereby they can be classified in a more
compatible way. If we take for example | = 3, then we have only 1 class of order 12 Hadamard matrices.
But Proposition 2 states that we have 3! = 6 classes. Thus, this classification can be more specific.

-H
The binary Hadamard matrix is the matrix A = IT, where | is the all one’s array of size m X m and

H a Hadamard matrix of order m. The vector subspace over IF, generated by the rows of A is called the
(binary) Hadamard code, and the dimension of its image is its binary rank.

The matrices obtained by the new construction W are of orders not divisible by 8, and then of a maxi-
mal binary rank gn — 1 (see [5]). Hence, they generate Hadamard codes with length 271 - g(g + 1) of all
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possible ranks, for every t > 2, (see Theorems 2, 3 in [19]).

Finally, the first Hadamard matrices obtained using the construction W are of orders 60, when g = 5 a prime
number, and 180 for g = 9 a power of prime number. Using Paley type Il matrix of order 12 =2-(5 + 1) as
input, we can present an example of order 60 based on Proposition 1 for g = 5. The example is performed
by MATLAB in the Appendix of this paper.

4. Conclusion

We gave an analogue of Scarpis’ theorem on Hadamard matrices of size [(I + 1) that construct Hadamard
matrices of size 2q(q +1). Moreover, another form was deduced for these matrices in both cases. We noticed
that this family of matrices can be variant under different choice of bijections. So, we extended the second
form to a family of matrices defined in function of permutation matrices. As 24(g + 1) is not divisible by 8,
we became interested in the obtained matrices in the construction of Hadamard codes.

To conclude this paper, we propose an open problem: how to obtain a recursion that uses a Hadamard
matrix of order m to construct Hadamard matrices of order gm, where q is a power of a prime number
chosen randomly?
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Appendix

Here, we use MATLAB program to apply the results obtained in this paper. Inputting a Paley type Il matrix
of order 12, we can present an example of order 60 based on Proposition 1 for g = 5. In the implementation,
by H we denote the output Scarpis matrix, g = p”, and we define the functions:

Paleyl(p,r) = P, returns the Paley type Il Hadamard matrix of order 2(7 + 1). The function is of a
complexity O(¢?).

TCore(P;,) gives T and T’M (defined in Lemma 2). For any two suitable matrices A and B, insertA — B(A, B) =

[ A B ] insertA(A, B) =[ A

B ] Each of this functions is of a complexity O(g).

Instead of using the matrix product to compute the product of permutations, we use the corresponding
composition law over S, to reduce the complexity. So, to define a permutation, we take the row vector
X = (n(1),..., m(q)) instead of the matrix P = [6(n(i), j)]. Hence, the product of two matrices A and B
associated to the permutations X and Y, can be done using the following function:

function [circ]= circ(X,Y)
K=size(X);
q=K(1,2);
for(i=1:q)
Z(i)= YXX@E@);
end
circ=Z;
end

It returns the row vector Y o X corresponded to the matrix AB. Clearly, the function is of a complexity

o).

Alpha(r,p) = V) is a vector that represent a permutation of {1, ..., q} following a. Considering a known
generator of the multiplicative group, the function is of a complexity O(q).

Perms(V,r) = L is a function that define shift permutations U,r, then use V) to compute S = V;(l @
Uy-1)V, and its powers. It returns a tensor L such that L(i, :, j) is a permutation of {1, .., q} following
S'U),. This function is of a complexity O(¢°).

KronPerms(L) = Q is a function that returns a tensor Q such that,
QG,: ) =ILi1j, - Ligj, Lirj +q, ..., Ligj + gl
Then of a complexity O(g?).

PermMat(Q, T) = R is a function that return a tensor R such that, R(;, ;, i, j) present a row permutation
of T following the permutation Q(i, ;, j), and then of a complexity O(4%).

Ws (P ’5)

clear;

clc;

%entries

p=5;

r=1;
%entry matrix
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[PAL1]=Paleyl(p,r);
[ST,T]=Tcore(PAL1);
%Help

K=size(T);
m=K(1,1);
J=ones(m/2);
JT=31(:,1);
J=3(1,:);
%permutations

[U]=Alpha(r,p);
[L]1=Perms(U);
[Q]=KronPerms(L);
[R]=PermMat (Q,T);
%B0O

BO®=kron(ST,J);
%BR.

B=kron(JT,T);

[L]=InsertA(kron(JT,T(1,:)),kron(JT,T((m/2)+1,:)));

for(j=2:m/2)

[A]=InsertA(kron(JT,T(j,:)),kron(JT,T(m/2+j,:)))

[L]=InsertA(L,A);
end
[B]=InsertA_B(B,L);

for(i=1:m/2-1)
for(j=1:m/2-1)
[BR]=InsertA(BR,R(:,:,i,3));
end
[B]=InsertA_B(B,BR);
end
% %final result

n=2*p r*(p"r+1)
[H]=InsertA(BO,B);
H=diag(H(:,1))*H*diag(H(1,:))
%%Verification

if (H*transpose(H)==n*eye(n))

fprintf("H is a Hadamard matrix’);

end

Results:

n = 60

H =

Columns 1 through 13
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 -1
1 1 1 1 1 -1
1 1 1 1 1 -1

[ T Y

-1
-1

[ W G Y

-1
-1
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Columns 14 through 26
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Columns 27 through 39
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Columns 40 through 52
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Columns 53 through 60
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H is a Hadamard matrix.



