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Abstract. In this paper, we introduce the concept of a countably asymptotically Φ−nonexpansive operator.
In addition, we establish new fixed point results for some countably asymptotically Φ−nonexpansive and
sequentially continuous maps, fixed-point results of Krasnosel’skii type in locally convex spaces. Moreover,
we present Leray-Schauder-type fixed point theorems for countably asymptotically Φ−nonexpansive maps
in locally convex spaces. Apart from that we show the applicability of our results to the theory of Volterra
integral equations in locally convex spaces. The main condition in our results is formulated in terms of
the axiomatic measure of noncompactness. Our results improve and extend in a broad sense recent ones
obtained in literature.

1. Introduction

Many nonlinear problems involve the study of nonlinear equations of the form

T(x) + S(x) = x, x ∈ K,

where K is a closed convex subset of a Banach space X (see [12]).
A mapping T defined on a nonempty convex closed subset K of a Banach space X is said to be asymptotically
Φ−nonexpansive if there exists a sequence (kn)n ⊆ [1,∞[ with lim kn = 1 as n −→ ∞ such that for all bounded
subsets D of K,

Φ(Tn(D)) ≤ knΦ(D). (1.1)

In 1997, Vijayaraju [19] proved some fixed point theorems for asymptotically Φ−nonexpansive mapping
in Banach spaces where Φ be a Kuratoski measure of noncompactness.

In 2016, Ben Amar, O’Regan and Touati [4] established some Krasnoselskii type fixed point theorems
for the sum of two operators T and S, where T is asymptotically Φ−nonexpansive in Banach spaces with Φ
is a measure of weak noncompactness.

In this paper, we introduce the concept of a countably asymptotically Φ−nonexpansive (i.e., By assuming
the condition (1.1) holds only for countable bounded sets D in K) in locally convex spaces with we propose
of cleaner axiomatic definition of measure of noncompactness.
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The present paper is organized as follows. After some preliminaries, in Section 3 we shall extend the
results of Ben Amar, Derbel, O’Reagan and Xiang [[2], Theorem 3.1 and 3.2] (see Theorem 3.2 and 3.4), the
result of Ben Amar and Mnif [[3], Theorem 3.3] (see Theorem 3.4) and results of Vijayaraju [[19], Theorem
2.1, 2.2 and 2.3] (see Corollary 3.9, Coraollary 3.12 and Theorem 3.14) in locally convex spaces. Moreover,
we can proved the results of [19] are also true for countably asymptotically Φ−nonexpansive mapping not
necessarily asymptotically Φ−nonexpansive mapping.

Recently, Khchine, Maniar and Taoudi [11] established a collection of new fixed point theorems for
operators of the form T + S on an bounded convex K subset of a locally convex space (X, (pα)α∈I) where T
is assumed to be pα−contraction (or pα−nonexpansive or pα−expansive) operator while S is assumed to be
continuous and S is T−convex-power condensing about x0 and n0 ∈N∗ w.r.t Φ (i.e., for any bounded set N
of K with Φ(N) > 0, we have

Φ(F (n0,x0)(T,S,N)) < Φ(N)

where Φ be a measure of noncompactness on X,
F

(n0,x0)(T,S,N) = F (1,x0)(T,S, conv(F (n0−1,x0)(T,S,N) ∪ {x0})) and
F

(1,x0)(T,S,N) = F (T,S,N) = {x ∈ K : x = T(x) + S(y) f or some y ∈ N}).
In Section 4, we obtain some new forms of Krasnosel-skii’s fixed point theorems for operators of the form
T + S with for each n ∈N, Tn is pα−contraction with a constant kn ∈]0, 1[ such that kn −→ 1 as n −→ ∞, and
for each countable bounded subset D of K, we have

Φ(F (Tn,S,D)) ≤
1
kn

Φ(D),

(or T is asymptotically pα−nonexpansive with a sequence (kn)n ⊆]1,∞[ and for each countable bounded
subset D of K and λ ∈]0, 1[, we have

Φ(F (λTn, λS,D)) ≤ λknΦ(D),

or for each n ∈N, Tn is pα−expansive with a constant kn ∈]1,∞[ such that kn −→ 1 as n −→ ∞, and for each
countable bounded subset D of K, we have

Φ(F (Tn,S,D)) ≤ knΦ(D).)

Moreover, we establish a Krasnoselskii type fixed point theorem for the sum of two sequentially continu-
ous operators T and S with T is countably asymptotically Φ−nonexpansive (see Theorem 4.7). Note our
result (Theorem 4.7) improves and generalizes Theorem 2.5 in [18] and Theorem 3.3 in [4]. In addition, we
present a Leray-Schauder alternative type of Krasnosel’skii fixed point theorem for countably asymptoti-
cally Φ−nonexpansive (see Theorem 4.11). We note that this result (Theorem 4.11) improves Theorem 3.4
in [4].
In the last section of this paper we show the applicability of our result (Theorem 4.3) to the theory of the
nonlinear integral equation

x(t) = 1(x(t)) + h(t) +

∫ t

0
f (s, x(s))ds

in a locally convex space.

2. Preliminaries

Let (X,Γ) denote a locally convex Hausdorff space withP = (pα)α∈I a family of seminorms that generated
the topology of X with the zero element θ, where I is any index set.
We write xn −→ x the convergence in (X,Γ) (i.e., for each α ∈ I, pα(xn − x) −→ 0 as n −→ ∞) and xn ⇀ x to
denote the weak convergence.

Definition 2.1. Let K be a nonempty subset of X. A mapping T : K −→ K is called
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(a) pα−contraction mapping, if for each α ∈ I, there is a real number 0 ≤ kα < 1 such that

pα(T(x) − T(y)) ≤ kαpα(x − y) f or all x, y ∈ K.

(b) pα−nonexpansive mapping, if for each α ∈ I we have

pα(T(x) − T(y)) ≤ pα(x − y) f or all x, y ∈ K.

(c) pα−expansive mapping, if for each α ∈ I, there is a real number kα > 1 such that

pα(T(x) − T(y)) ≥ kαpα(x − y) f or all x, y ∈ K.

(d) asymptotically pα−nonexpansive, if for each α ∈ I

pα(Tn(x) − Tn(y)) ≤ knpα(x − y)

for all x, y ∈ K and for all n ∈ N, where (kn)n ⊆ [1,∞[ such that kn −→ 1 as n −→ ∞.

(e) asymptotically regular, if for each α ∈ I and for each x ∈ K

pα(Tn(x) − Tn−1(x)) −→ 0 as n −→ ∞.

(f) asymptotically regular with respect to S with S : K −→ X be a mapping, if for each α ∈ I and for each x ∈ K

pα(Tn(x) − Tn−1(x) + S(x)) −→ 0 as n −→ ∞.

We state the following Banach’s contraction principle that we be repeatedly used in the sequel.

Theorem 2.2. ([6], Theorem 2.2) Let K be a nonempty sequentially complete subset of X. If T is pα−contraction
mapping of K into itself, then T has a unique fixed point u in K and Tn(x) −→ u as n −→ ∞ for each x ∈ K.

Lemma 2.3. [11] Let (X, (pα)α∈I) be a sequentially complete Hausdorff locally convex space and K be a closed subset
of X. Assume T : K −→ X is pα−expansive mapping and K ⊂ T(K). Then, there exists a unique point x ∈ K such
that T(x) = x.

Theorem 2.4. [16] Let K be a nonempty compact convex subset of X. If T is continuous mapping of K into itself,
then T has a fixed point in K.

Definition 2.5. Let K be a nonempty subset of X. An operator T : K −→ X is said to be sequentially continuous,
if for every sequence (xn) ⊂ K with pα(xn − x) −→ 0 as n −→ ∞, α ∈ I and x ∈ K, we have, for each α ∈ I,
pα(T(xn) − T(x)) −→ 0 as n −→ ∞.

Now, we give an axiomatic definition of measures of noncompactness in locally convex spaces.

Definition 2.6. [1]
Let (X,Γ) be a Hausdorff topological vector space with zero element θ. Let C be a lattice with a least element

denoting by 0C. A function Φ defined onPbd(X) (i.e.,Pbd(X) := {D ⊂ X : D is nonempty and bounded }) with values
in C will be called a measure of noncompactness (MNC, for each) on X if it satisfies the following conditions:

(i) Φ(conv(Ω)) ≤ Φ(Ω) for each Ω ∈ Pbd(X), where the symbol conv(Ω) denotes the closed convex hull of Ω in X.

(ii) Monotonicity: For any bounded subsets Ω1, Ω2 of X we have, Ω1 ⊂ Ω2 =⇒ Φ(Ω1) ≤ Φ(Ω2).

(iii) Nonsingularity: Φ({a} ∪Ω) = Φ(Ω) for any a ∈ X and Ω ∈ Pbd(X).

(iv) Φ(Ω) = 0 if and only if Ω is relatively compact in X.
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In the case when C has additionally the structure of a cone in a linear space over the field of real numbers,
we will say that an measure of noncompactness Φ is positively homogeneous provided Φ(λΩ) = λΦ(Ω) for
all λ > 0 and for Ω ∈ Pbd(X). Moreover, Φ is referred to as subadditive if Φ(Ω1 + Ω2) ≤ Φ(Ω1) + Φ(Ω2) for
all Ω1, Ω2 ∈ Pbd(X).

Remark 2.7. If Γ is the weak topology on X, the measure of noncompactness Φ is called the measure of weak
noncompactness (MWNC, for each) on X.

A handy and useful example of an measure of noncompactness in a complete locally convex space is defined
as follows:

µα(K) = inf{d > 0 : K ⊂ ∪n
i=1Ki, with diampα (Ki) ≤ d, i = 1, ...,n},

for each bounded subset K of X. This measure of noncompactness is called the Kuratowskii measure of
noncompactness of K with respect to the family of seminorms (pα)α∈I.

Definition 2.8. Let K be a nonempty subset of X and Φ be a measure of noncompactness in X. A mapping T : K −→ K
is called

(a) Φ−condensing, if Φ(T(D)) < Φ(D) for any bounded sets D ⊆ K with Φ(D) > 0.

(b) countably Φ−condensing, if Φ(T(D)) < Φ(D) for any countable bounded sets D ⊆ K with Φ(D) > 0.

(c) asymptotically Φ−nonexpansive, if there exists a sequence (kn)n ⊆ [1,∞[ with kn −→ 1 as n −→ ∞ such that
Φ(Tn(D)) ≤ knΦ(D) for all n ≥ 1 and D is a bounded subset of K.

(c) countably asymptotically Φ−nonexpansive, if there exists a sequence (kn)n ⊆ [1,∞[ with kn −→ 1 as n −→ ∞
such that Φ(Tn(D)) ≤ knΦ(D) for all n ≥ 1 and D is a countable bounded subset of K.

Definition 2.9. Let C be a subset of a topological (Hausdorff) space X.

(1) C is countably compact, if every sequence in C has a cluster-point in C (i.e., A point x ∈ X is a cluster point
of a sequence (xn)n if for every neighbourhood V of x, there are infinitely many natural numbers n such that
xn ∈ V).

(2) C is sequentially compact, if every sequence in C has a convergent subsequence with limit in C.

(3) C is relatively countably compact, if every sequence in C has a cluster-point in X.

(4) C is relatively sequentially compact, if every sequence in C has a convergent subsequence with limit in X.

Some facts on the relation of these notions: It is easy to see that

(1) Every (relatively) compact set is (relatively) countably compact.

(2) Every (relatively) sequentially compact set is (relatively) countably compact.

Now, we recall the following definition from the literature [9].

Definition 2.10. A Hausdorff topological space X is said to be angelic if for every relatively countably compact set
C ⊆ X, the following hold:

(i) C is relatively compact,

(ii) for each x ∈ C, there exists a sequence (xn)n ⊆ C such that xn −→ x.

All metrizable locally convex spaces equipped with the weak topology are angelic (see the Eberlein-Šmulian
theorem [8]).

Remark 2.11. If X is angelic, then any sequentially continuous map on a compact set is continuous.
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Lemma 2.12. [11] Let (X, (pα)α∈I) be a Hausdorff locally convex space and S : K −→ X be a pα-contraction with
constant kα. Then for each α ∈ I, and for all bounded subset D of K we have

µα(S(D)) ≤ kαµα(D).

Let ρ > 0, J = [0, ρ] ⊂ R be an interval, and P̃ = (p̃α)α∈I be a family of seminorms defined by p̃α(u) =
max

t∈J
pα(u(t)) for each u ∈ C(J,X). It is easy to check that the space of continuous functions from J to X,

E = C(J,X) endowed with the topology generated by the family P̃ is a complete Hausdorff locally convex
space. Let µα and µ̃α the Kuratowskii’s measure of noncompactness of (X,P) and (E, P̃), respectively. For
later use, we recall the following auxiliary result.

Lemma 2.13. ([7], p.412) Let (X, (pα)α∈I) be a complete Hausdorff locally convex space and let J = [0, ρ] ⊂ R be an
interval

(i) Let H be a bounded set of C(J,X), then sup
t∈J

µα(H(t)) ≤ µα(H(J)) for each α ∈ I. Here, H(t) = {x(t) : x ∈ H}

and H(J) = ∪t∈JH(t).

(ii) Let H be a bounded equicontinuous set of C(J,X), then

(a) µ̃α(H) = sup
t∈J

µα(H(t)) = µα(H(J)) for each α ∈ I,

(b) for each u0 ∈ C(J,X), conv({H, x0}) is a bounded equicontinuous subset in C(J,X),

(c) for all α ∈ I, t 7−→ µα(H(t)) ∈ C(J,R+) and for each 0 ≤ t0 ≤ t ≤ ρ we have µα{
∫ t

t0
u(s)ds : u ∈ H} ≤∫ t

t0
µα({u(s) : s ∈ H})ds.

3. Fixed points of countably asymptoticallyΦ−nonexpansive mappings

Our first result was motivated by ideas in [[2], Lemma 3.1].

Lemma 3.1. Let K be a nonempty closed convex subset of a Hausdorff locally convex space (X, (pα)α∈I) and Φ is a
MNC on X. Assume (X, (pα)α∈I) is angelic and T : K −→ K be a countably Φ−condensing mapping with bounded
range. Suppose T maps compact sets into relatively compact sets, then there is a convex relatively compact subset H
of X such that T(H) ⊆ H.

Proof. Let x0 ∈ X and F := {D ⊆ K : D is convex, x0 ∈ D and T(D) ⊆ D}. Obviously F is non-empty, since
conv(T(K) ∪ {x0}) ∈ F . Let H =

⋂
D∈ F D. Note H is convex and x0 ∈ H. If x ∈ H, then T(x) ∈ D for all D ∈ F

and hence T(H) ⊆ H. Therefore, H ∈ F . We now show H is relatively compact. Let H∗ = conv(T(H) ∪ {x0}),
and we have H∗ ⊆ H, which implies that T(H∗) ⊆ T(H) ⊆ H∗. Therefore, H∗ ∈ F and H ⊆ H∗. Hence,
H = H∗ = conv(T(H) ∪ {x0}). Let a = sup{Φ(C) : C is a countable subset of K}. Now let Cn be a sequence of
countable subsets of H with Φ(Cn) −→ a as n −→ ∞. Let C = ∪k≥1Ck, and since C is a countable subset of
H, we obtain a ≥ Φ(C) ≥ Φ(Ck) −→ a. Then Φ(C) = a.
Let x ∈ C there exist px ∈ N∗ and y1, ..., ypx ∈ {x0} ∪ T(H) such that x = Σ

px

i=1λiyi with λi ≥ 0, ∀ i ∈ 〈1, px〉

and Σ
px

i=1λi = 1. Let Jx = { j ∈ 〈1, px〉 : y j = x0}. For every i ∈ 〈1, px〉\Jx, yi = T(ai) with ai ∈ H. Let
Mx = {ai ∈ K : i ∈ 〈1, px〉\Jx}, and M = ∪x∈ DMx. Since C is a countable subset of H, we have M is a
countable subset of H. Note x = Σi∈Jxλix0 +Σi∈〈1,px〉\JxλiT(ai) ∈ conv({x0}∪T(M)). Then, C ⊆ conv({x0}∪T(M)).
Note since T(K) is bounded, then so also are the sets K,M and C. We have Φ(C) ≤ Φ(T(M)). If Φ(M) > 0,
then Φ(C) < Φ(M) ≤ a, and we obtain Φ(C) < a, a contradiction. Hence Φ(M) = 0. So M is compact.
Then T(M) is relatively compact. Therefore Φ(D) ≤ Φ(T(M)) ≤ Φ(T(M)) = 0. Thus Φ(C) = 0, i.e., a = 0. Let
(xn)n ⊆ H. Since {xn : n ∈ N} is a countable subset of H we have Φ({xn : n ∈ N}) ≤ a = 0. Then H is
sequentially compact. Thus H is countably compact. By the angelicity of H, we have H is compact. �
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Theorem 3.2. Let K be a nonempty closed convex subset of a Hausdorff locally convex space (X, (pα)α∈I) and Φ is a
MNC on X. Assume (X, (pα)α∈I) is angelic and T : K −→ K is a sequentially continuous and countably Φ−condensing
mapping with bounded range. Then, T has a fixed point.

Proof. From Lemma 3.1, there is a convex subset and relatively compact H of K with T(H) ⊆ H. Note
T : H −→ K is sequentially continuous, H is compact so T : H −→ K is continuous. Thus T(H) ⊆ T(H) ⊆ H.
In inclusion T

|H : H −→ H is continuous and H is compact. From Theorem 2.4, T has a fixed point in K. �

In the following result, we consider the case of a Banach space X endowed with its weak topology. This
topology is locally convex and it is induced by the family of seminorms p f (x) =| f (x) | for all f ∈ X∗.

Corollary 3.3. Let K be a closed and convex subset of a Banach space X and let ω be a MWNC on X. Then for every
countably ω-condensing and weakly sequentially continuous map T : K −→ K with bounded range has a fixed point.

Theorem 3.4. Let K be a nonempty closed convex subset of a Hausdorff locally convex space (X, (pα)α∈I), U ⊆ K be
an open subset of K with θ ∈ U and Φ is a measure of noncompactness on X. Assume (X, (pα)α∈I) is angelic. Let
T : U −→ K be a sequentially continuous countably Φ−condensing mapping with bounded range. Then, either

T has a f ixed point in U, or (3.1)

there are a u ∈ ∂KU and λ ∈]0, 1[ with u = λT; (3.2)

here ∂KU denotes the boundary of U in K.

Proof. Suppose (3.2) is false and T has no fixed point on ∂KU. Let

D := {x ∈ U : x = λT(x) f or some λ ∈ [0, 1]}.

Then, D is nonempty bounded since θ ∈ D and T(U) is bounded. Note also that C ⊆ conv(T(C) ∪ {θ}) for
any countable subset D of K, and so

Φ(C) ≤ Φ(conv(T(C) ∪ {θ})) ≤ Φ(T(C)),

which implies (since T is countably Φ−condensing) that Φ(D) = 0. Thus, D is relatively sequentially
compact. We next show D is closed. Let x ∈ D. By the angelicity of X, there exists (xn)n ⊆ D with xn −→ x.
Thus for each n ≥ 0, xn = λnT(xn) with (λn)n ⊆ [0, 1]. Without loss of generality assume λn −→ λ ∈ [0, 1]
(since [0,1] is compact). Therefore λnT(xn) −→ λT(x). Hence x = λT(x), so x ∈ D. Thus D is sequentially
compact. By the angelicity of X, we obtain D is compact. Notice that ∂KU ∩ D = ∅. Since (X, (pα)α∈I) is a
Tychonoff space, there exists a continuous mapping µ : U −→ [0, 1] separating D and ∂KU, i.e., µ(D) = 1
and µ(∂KU) = 0. Define N : K −→ K by

N(x) =

{
µ(x)T(x), if x ∈ U;
θ, if x ∈ K\U.

Note N is sequentially continuous. Also note for any countable bounded subset C of K with Φ(C) > 0, we
have from N(C) ⊂ conv(T(C ∩U) ∪ {θ}) that

Φ(N(C)) ≤ Φ(T(C ∩U)),

so if Φ(C∩U) = 0 then C∩U is relatively compact, so T(C∩U) is relatively compact and Φ(T(C∩U)) = 0 <
Φ(C), whereas if Φ(C ∩ U) , 0, then Φ(T(C ∩ U)) < Φ(C ∩ U) ≤ Φ(C); in both cases Φ(N(C)) < Φ(C). Thus,
N is countably Φ−condensing. Theorem 3.2 guarantees that there is an x ∈ K with N(x) = x. Since θ ∈ U
then x ∈ U. Hence, x = µ(x)T(x) and since µ(x) ∈ [0, 1], we have x ∈ D, so µ(x) = 1. Thus x = T(x), i.e., x ∈ U
is a fixed point of T. �
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Corollary 3.5. Let K be a nonempty closed convex subset of a Banach space X, U ⊆ K be a weakly open subset of
K with θ ∈ U and Φ is a MWNC on X. Assume T : U −→ K is a weakly sequentially continuous, countably
Φ−condednsing mapping with bounded range. Then, either
(A1) T has a fixed point in U, or
(A2) there are a points x ∈ ∂w

KU (the weak boundary of U in K) and k > 1 with T(x) = kx.

Remark 3.6. Note Corollary 3.5 strictly contains a result of Ben Amar and Mnif (see [3], Theorem 3.3). Indeed the
maps considered in [3] satisfy all the hypotheses of our Corollary 3.5 since every Φ-condensing maps is countably
Φ-condensing maps but the converse is not always true.

Definition 3.7. Let D be a nonempty closed set of a Hausdorff locally convex space (X, (pα)α∈I) and T : D −→ E
be a mapping. T is said to be sequentially semi-closed operator at θ if the conditions (xn)n ⊆ D, f or each α ∈
I pα(xn − T(xn)) −→ 0 as n −→ ∞ imply that there exists x ∈ D such that T(x) = x.

Theorem 3.8. Let K be a nonempty closed convex subset of a Hausdorff locally convex space (X, (pα)α∈I) and Φ is a
positive homogeneous MNC on X. Assume (X, (pα)α∈I) is angelic. In addition, let T : K −→ K be a mapping with
bounded range satisfying the following conditions

(i) T is sequentially continuous,

(ii) T is countably asymptotically Φ−nonexpansive with a sequence (kn)n ⊆ [1,∞[,

(iii) pα(T(x) − Tn(x)) −→ 0 as n −→ ∞ for each x ∈ K,

(iv) T is semi-closed operator at θ.

Then, T has a fixed point in K.

Proof. For fixed y ∈ K, let Tn be a mapping defined by

Tn(x) = anTn(x) + (1 − an)y, f or all x ∈ K and n ∈N∗,

where an = (1−1/n)/kn. Since K is convex, it follows that Tn maps K into itself. Now, using the homogeneity
of the MNC and the fact that T is countably asymptotically Φ−nonexpansive, it follows that for any
countable bounded D of K with Φ(D) > 0,

Φ(Tn(D)) = Φ(anTn(D) + (1 − an)y)
≤ anknΦ(D)
≤ (1 − 1/n)Φ(D)
< Φ(D).

Thus Tn is countably Φ−condensing. Next note that since T is sequentially continuous, then Tn is sequen-
tially continuous. Theorem 3.2 guarantees that there is an xn ∈ K with

xn = Tn(xn) = anTn(xn) + (1 − an)y

for each n ∈N∗. Note that

xn − Tn(xn) = (1 − an)(y − Tn(xn)) −→ θ as n −→ ∞,

since an −→ 1 as n −→ ∞ and y − Tn(K) is bounded. From assumption (iii), we obtain

xn − Txn −→ θ as n −→ ∞.

Finally, since T is semi-closed operator at θ, we obtain

θ ∈ (I − T)(K).

Hence there is a point x ∈ K such that x = T(x). �

From Theorem 3.8 we can deduce the following result, which extends in a broad sense [[19], Theorem
2.1].
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Corollary 3.9. Let K be a nonempty closed convex subset of a Banach space (X, ‖ . ‖) and Φ is a positive homogeneous
MNC on X. Let T : K −→ K be a mapping with bounded range satisfying the following condition

(i) T is sequentially continuous,

(ii) T is countably asymptotically Φ−nonexpansive with a sequence (kn)n ⊆ [1,∞[,

(iii) ‖ T(x) − Tn(x) ‖−→ 0 as n −→ ∞ for each x ∈ K,

(iv) T is semi-closed operator at θ.

Then, T has a fixed point in K.

Theorem 3.10. Let K be a nonempty closed convex subset of a Hausdorff locally convex space (X, (pα)α∈I), U ⊆ K be
an open subset of K with θ ∈ U and Φ is a positive homogeneous MNC on X. Assume (X, (pα)α∈I) is angelic. Let
T : U −→ U be a mapping with bounded range satisfying the following conditions

(i) T is sequentially continuous,

(ii) T is countably asymptotically Φ−nonexpansive with a sequence (kn)n ⊂ [1,∞[,

(iii) pα(T(x) − Tn(x)) −→n−→∞ 0 for each x ∈ U,

(iv) T is semi-closed operator at θ.

Then, either
T has a f ixed point in U, or (3.3)

for some n ∈N,
there are a u ∈ ∂KU and λ ∈]0, 1[ with u = λTn(u); (3.4)

Proof. Suppose (3.4) is false (i.e., for all n ∈ N, there are no u ∈ ∂KU and λ ∈]0, 1[ with u = λTn(u)). Define
Tn = anTn, n ∈ N∗ where an = (1 − 1/n)/kn. Since θ ∈ U and K is convex, it follows that Tn maps U into K.
Clearly Tn(U) is bounded. Consider any countable subset D of U. Using the homogeneity of the MNC, we
have

Φ(Tn(D)) = anΦ(Tn(D)).

Now since T is countably asymptotically Φ−nonexpansive, so we deduce Tn is countably Φ−condensing.
Since T is sequentially continuous, Tn is sequentially continuous. If there exist a u ∈ ∂KU and L > 1 with
Tn(u) = Lu, then

u =
1
L

anTn(u).

This is impossible since (1/L)an ∈]0, 1[. From Theorem 3.4, there exists xn ∈ U with

xn = Tn(xn) = anTn(xn).

Note that
xn − Tn(xn) = (an − 1)Tn(xn) −→ θ as n −→ ∞

since an −→ 1 and Tn(U) ⊆ T(U) is bounded. The argument in Theorem 3.8 guarantees that T has a fixed
point. �

Theorem 3.11. Let K be a nonempty closed convex subset of a Hausdorff locally convex space (X, (pα)α∈I) and Φ is
a positive homogeneous MNC on X. Assume (X, (pα)α∈I) is angelic. In addition, let T : K −→ K be a mapping with
bounded range satisfying the following conditions

(i) T is sequentially continuous,
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(ii) T is countably asymptotically Φ−nonexpansive with a sequence (kn)n ⊂ [1,∞[,

(iii) if for each α ∈ I, pα(xn − yn) −→ 0, then pα(T(xn) − T(yn)) −→ 0,

(iv) T is an asymptotically regular self mapping of K,

(v) T is semi-closed operator at θ.

Then T has a fixed point in K.

Proof. Define a map Tn from K to K as in the proof of Theorem 3.8. Proceeding as in Theorem 3.8, there is a
point xn ∈ K such that

xn − Tn(xn) −→ θ as n −→ ∞. (3.5)

From assumption (iv), we have
Tn(xn) − Tn−1(xn) −→ θ as n −→ ∞. (3.6)

Next note that, for all n ∈ N∗

xn − Tn−1(xn) = (xn − Tn(xn)) + (Tn(xn) − Tn−1(xn)). (3.7)

Using (3.5) and (3.6) in (3.7), we get

xn − Tn−1(xn) −→ θ as n −→ ∞.

From assumption (iii), we have
T(xn) − Tn(xn) −→ θ. as n −→ ∞.

Next note that, for all α ∈ I

pα(xn − T(xn)) = pα(xn − Tn(xn) − T(xn) + Tn(xn))
≤ pα(xn − Tn(xn)) + pα(T(xn) − Tn(xn))
−→ 0 as n −→ ∞.

Finally, since T is semi-closed operator at θ, we obtain

θ ∈ (I − T)(K).

Thus, there is a point x ∈ K such that x = T(x). �

Corollary 3.12. Let Let K be a nonempty convex closed subset of a Banach space (X, ‖ . ‖) and Φ is a positive
homogeneous MNC on X. Let T : K −→ K be a mapping with bounded range satisfying the following conditions

(i) T is sequentially continuous,

(ii) T is countably asymptotically Φ−nonexpansive with a sequence (kn)n ⊆ [1,∞[,

(iii) if ‖ xn − yn ‖−→ 0 as n −→ ∞, then ‖ T(xn) − T(yn) ‖−→ 0 as n −→ ∞,

(vi) T is an asymptotically regular self mapping of K,

(v) T is semi-closed operator at θ.

Then T has a fixed point in K.

Remark 3.13. Note Corollary 3.12 strictly contains a result of Vijayaraju (see [19], Theorem 2.2)). Since every
asymptotically Φ−nonexpansive is countably asymptotically Φ−nonexpansive maps. Moreover, if T is lipschtitz then
T satisfy condition (iii) of our Corollary 3.12.
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Theorem 3.14. Let K be a nonempty closed convex subset of a Hausdorff locally convex space (X, (pα)α∈I), U ⊆ K be
an open subset of K with θ ∈ U and Φ is a positive homogeneous MNC on X. Assume (X, (pα)α∈I) is angelic. Let
T : U −→ U be a mapping with bounded range satisfying the following conditions

(i) T is sequentially continuous,

(ii) T is countably asymptotically Φ−nonexpansive with a sequence (kn)n ⊆ [1,∞[,

(iii) if for each α ∈ I, pα(xn − yn) −→ 0, then pα(T(xn) − T(yn)) −→ 0,

(vi) T is an asymptotically regular self mapping of U,

(v) T is semi-closed operator at θ.

Then, either
T has a f ixed point in U, (3.8)

or, for some n ∈N,
there are a u ∈ ∂KU and λ ∈]0, 1[ with u = λTn(u); (3.9)

Proof. Suppose (3.9) is false. Define Tn = anTn, n ∈ N∗ where an = (1 − 1/n)/kn. The argument in Theorem
3.10 guarantees that there is a xn ∈ U such that

xn − Tn(xn) −→ θ as n −→ ∞.

The argument in Theorem 3.11 guarantees that there is a x ∈ U such that x = T(x). �

Remark 3.15. Theorem 3.14 improves and generalizes Theorem 2.3 in [19] in the context of a Banach space with Φ
is a Kuratowski measure of noncompactness.

4. Fixed points for a sum of two mappings

Let K be a nonempty subset of a Hausdorff locally convex space X and T : X −→ X and S : K −→ X be
two maps. For any N ⊆ K, we set

F (T,S,N) := {x = T(x) + S(y) : y ∈ N}.

Theorem 4.1. Let K be a nonempty sequentially complete convex subset of a Hausdorff locally convex space
(X, (pα)α∈I) and Φ is a MNC on X. Assume (X, (pα)α∈I) is angelic. In addition, let T : K −→ K, S : K −→ X
be two mappings. Suppose S and T satisfy the following conditions

(i) S is sequentially continuous,

(ii) T is an asymptotically pα−nonexpansive with a sequence (kn)n ⊆ [1,∞[,

(iii) T is an asymptotically regular mapping with respect to S,

(iv) Φ(F (λTn, λS,D)) ≤ λknΦ(D) if D is a countable bounded subset of K and λ ∈]0, 1[,

(v) λTn(x) + λS(y) ∈ K, f or any x, y ∈ K and λ ∈]0, 1[ and T(K) + S(K) is bounded.

Then, T + S has a fixed point in K.
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Proof. Let y be a fixed element of K. Define Fn = anTn + anS(y), n ∈ N∗ where an := (1 − 1/n)/kn. From
assumption (v), we have Fn(K) ⊆ K. Since T is asymptotically pα−nonexpansive, it follows that

pα(Fn(x) − Fn(z)) = anpα(Tn(x) − Tn(z))
≤ anknpα(x − z)
≤ (1 − 1/n)pα(x − z) f or all x, z ∈ K and α ∈ I.

Hence Fn is pα−contraction from K into itself. From Theorem 2.2, Fn has a unique fixed point, say τn(y) in
K. Therefore,

τn(y) = Fn(τn(y)) = an(Tn(τn(y)) + S(y)), f or each n ∈N∗.

We now show τn : K −→ K is sequentially continuous. Let x, y ∈ K be arbitrary. Then we have, for each
n ∈N∗

pα(τn(x) − τn(y)) ≤ anpα(Tn(τn(x)) − Tn(τn(y))) + anpα(S(x) − S(y))
≤ (1 − 1/n)pα(τn(x) − τn(y)) + anpα(S(x) − S(y)) f or each α ∈ I.

Therefore,

pα(τn(x) − τn(y)) ≤
n − 1

kn
pα(S(x) − S(y)), f or each n ∈N∗.

Since S is sequentially continuous, so is τn. It remains to show that τn is countably Φ−condensing. Consider
any countable subset D of K. Then, we have for each n ∈N∗

Φ(τn(D)) = Φ(F (anTn, anS,D))
≤ anknΦ(D)
≤ (1 − 1/n)Φ(D).

In particular τn is countably Φ−condensing. Now, Theorem 3.2 gaurantees the existence of xn ∈ K satisfying

xn = τn(xn) = anTn(xn) + anS(xn). (4.1)

We can use this argument for all n ∈N∗. Note that

xn − Tn(xn) − S(xn) = (an − 1)(Tn(xn) + S(xn)) −→ θ as n −→ ∞, (4.2)

since an −→ 1 as n −→ ∞ and Tn(K) + S(K) ⊂ T(K) + S(K) is bounded.
Since T is an asymptotically regular with respect to S, it follows that

Tn(xn) − Tn−1(xn) + S(xn) −→ θ as n −→ ∞. (4.3)

From (4.2) and (4.3), we obtain
xn − Tn−1(xn) −→ θ as n −→ ∞. (4.4)

Now,

pα(xn − (T + S)(xn)) ≤ pα(xn − Tn(xn) − S(xn)) + pα(Tn(xn) − T(xn))
≤ pα(xn − Tn(xn) − S(xn)) + k1pα(Tn−1(xn) − xn) .

Thus
xn − T(xn) − S(xn) −→ θ as n −→ ∞. (4.5)

Now let
M := {xn : n ∈N∗}

Note that M is bounded since xn = anTn(xn)+S(xn) for any n ∈N∗ and note also that Tn(K)+S(K) ⊆ T(K)+S(K)
is bounded. We claim that M is relatively compact. If not then by (4.1), we have

M ⊆ F (anTn, anS,M).
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From assumption (iv), we obtain

Φ(M) ≤ anknΦ(M)
≤ (1 − 1/n)Φ(M)
< Φ(M),

a contradiction. Thus M is relatively compact. By the angelicity of X there is a subsequence (xϕ(n))n of the
sequence (xn)n such that

xϕ(n) −→ x f or some x ∈ K.

From assumption (ii), we have

pα(T(xϕ(n)) − T(x)) ≤ k1 pα(xϕ(n) − x), f or each α ∈ I.

Then
T(xϕ(n)) −→ T(x).

Since S is sequentially continuous, it follows that

(I − T − S)(xϕ(n)) −→ (I − T − S)(x).

From (4.5), we get
(I − T − S)(xϕ(n)) −→ θ.

By the uniqueness of limit (since X is Hausdorff), we obtain

(I − T − S)(x) = θ.

Then, T + S has a fixed point. �

Theorem 4.2. Let K be a nonempty sequentially complete convex subset of a Hausdorff locally convex space
(X, (pα)α∈I) and Φ is a positive homogeneous MNC on X. Assume (X, (pα)α∈I) is angelic. In addition, let T : K −→ K,
S : K −→ X be two mappings with S is sequentially continuous. Suppose S and T satisfy the following conditions

(i) for all n ∈N, Tn is pα−contraction with a constant kn ∈]0, 1[ such that kn −→ 1 as n −→ ∞,

(ii) Φ(F (Tn,S,D)) ≤ 1
kn

Φ(D) if n ∈N and D is a countable bounded subset of K,

(iii) T is asymptotically regular with respect to S,

(iv) λTn(x) + λS(y) ∈ K f or all x, y ∈ K, n ∈N and λ ∈]0, 1] with T(K) and S(K) are bounded.

Then, T + S has a fixed point in K.

Proof. Let y be a fixed element of K. Define Fy
n = Tn + S(y), n ∈ N∗. From assumptions (i) and (iv), we obtain

Fy
n is a contraction mapping from K into itself. From Theorem 2.2 Fy

n has a unique fixed point point, say
Ln(y) in K. Then for all y ∈ K,

Ln(y) = Tn(Ln(y)) + S(y).

Note that for any subset N of K, we have Ln(N) = F (Tn,S,N).
Now let

τn(y) = bnLn(y)

where bn := kn(1 − 1/n) < 1.
From assumption (iv), we obtain τn(K) ⊂ K. We next show τn is countably Φ−condensing. Consider any
countable bounded subset D of K.Then, from assumption (ii), we obtain

Φ(τn(D)) = bnΦ(Ln(D))
≤ (bn/kn)Φ(D)
≤ (1 − 1/n)Φ(D).
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In particular τn is countably Φ−condensing. We now show τn is sequentially continuous. Let x, y ∈ K, for
each α ∈ I we obtain

pα(Ln(x) − Ln(y)) = pα(Tn(Ln(x)) − Tn(Ln(y)) + S(x) − S(y))
≤ knpα(Ln(x) − Ln(y)) + pα(S(x) − S(y)).

Then
pα(Ln(x) − Ln(y)) ≤

1
1 − kn

pα(S(x) − S(y)).

Since S is sequentially continuous, so is Ln. Hence, τn is sequentially continuous. Theorem 3.2 guarantees
the existence of xn ∈ K such that

xn = τn(xn) = bnLn(xn) = bn(Tn(Ln(xn)) + S(xn)) = bnTn((1/bn)xn) + bnS(xn).

Therefore, for each α ∈ I

pα(xn − bnTn(xn) − S(xn)) = pα(bn(Tn(xn/bn) − Tn(xn)) + (bn − 1)S(xn))
≤ bnknpα(xn/bn − xn) + (bn − 1)pα(S(xn))
≤ bnkn((1/bn) − 1)pα(xn) − (1 − bn)pα(S(xn))
≤ (1 − bn)(knpα(xn) − pα(S(xn)))
−→ 0 as n −→ ∞.

since bn −→ 1 as n −→ ∞ and S(K) and (xn)n are bounded (since (xn)n ⊆ conv(T(K)+S(K)∪{θ}) and T(K)+S(K)
is bounded). Hence

xn − bnTn(xn) − S(xn) −→ θ as n −→ ∞.

Next note that

xn − Tn(xn) − S(xn) = xn − bnTn(xn) − S(xn) − (1 − bn)Tn(xn) −→ θ as n −→ ∞

since Tn(K) ⊆ T(K) is bounded and bn −→ 1 as n −→ ∞. The same argument as in Theorem 4.1 guarantees
that

xn − T(xn) − S(xn) −→ θ as n −→ ∞

Now let
M := {xn : n ∈N∗}

Note that M is bounded. We claim that M is relatively compact. If not then by assumptions (i) and (ii), we
have

Φ(M) = Φ({xn : n ∈N})
= bnΦ(Ln(M))
≤ (1 − 1/n)Φ(M)
< Φ(M),

a contradiction. Thus M is relatively compact. The argument in Theorem 4.1 guarantees the existence of
x ∈ K such that

x = T(x) + S(x).

�

In our next result, we examine Theorems 3.1 of [11] for the case when (X, (pα)α∈I) is angelic and n0 = 1.
Also, we show that the condition ”S is T−convex-power condensing about x0 w.r.t. Φ”, i.e.,

Φ(F (T,S,D)) < Φ(D) (a)

for every bounded subset D of K with Φ(D) > 0 where Φ is a measure of noncompactness on X, can be
relaxed by assuming (a) holds only for countable bounded sets D in K such that Φ(D) > 0.
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Theorem 4.3. Let K be a nonempty sequentially complete bounded convex subset of a Hausdorff locally convex space
(X, (pα)α∈I) and Φ is a MNC on X. Assume (X, (pα)α∈I) is angelic. In addition, let T : X −→ X, S : K −→ X be two
mappings. Suppose S and T satisfy the following conditions

(i) S is sequentially continuous,

(ii) T is pα−contraction with a constant kα,

(iii) Φ(F (T,S,D)) < Φ(D) if D is a countable bounded subset of K with Φ(D) > 0,

(iv) T(x) + S(y) ∈ K f or all x, y ∈ K.

Then, T + S has a fixed point in K.

Proof. Let y be a fixed element of K. Define Fy = T + S(y). From assumptions (ii) and (iv), we get Fy(x) is a
pα−contraction mapping from K into itself. Theorem 2.2 guarantees that there is unique fixed point of Fy,
say τ(y). Since for any y ∈ K τ(y) = T(τ(y)) + S(y), we have τ(N) = F (T,S,N), for any bounded subset N of
K. Then, τ is countably Φ−condensing. We now show τ is sequentially continuous. Let x, y ∈ K, for each
α ∈ I we obtain

pα(τ(x) − τ(y)) = pα(T(τ(x)) − T(τ(y)) + S(x) − S(y))
≤ kαpα(τ(x) − τ(y)) + pα(S(x) − S(y)).

Then

pα(τ(x) − τ(y)) ≤
1

1 − kα
pα(S(x) − S(y)).

Since S is sequentially continuous, so is τ. Theorem 3.2 guarantees the existence of x ∈ K such that
x = τ(x) = T(x) + S(x). This completes the proof. �

Remark 4.4. Note that if X is complete then the assumption (iv) of our Theorem 4.3 can be replaced with ”if
x = T(x) + S(y), y ∈ K imply x ∈ K”.

Theorem 4.5. Let K be a nonempty closed convex subset of a Hausdorff locally convex space (X, (pα)α∈I) and Φ is a
positive homogeneous MNC on X. Assume (X, (pα)α∈I) is angelic. In addition, let T : K −→ K, S : K −→ X be two
mappings with S is sequentially continuous. Suppose S and T satisfy the following conditions

(i) for all n ∈N, Tn is pα−expansive with a constant kn ∈]1,∞[ such that kn −→ 1 as n −→ ∞,

(ii) Φ(F (Tn,S,D)) ≤ knΦ(D) if D is a countable bounded subset of K,

(iii) z ∈ S(K) implies K ⊂ z + Tn(K) for any n ∈N and T(K) + S(K) is bounded,

(iv) pα(T(x) − Tn(x)) −→ 0 as n −→ ∞, f or each x ∈ K.

Then, T + S has a fixed point in K.

Proof. Let y be a fixed element of K. Define Fy
n = Tn +S(y), n ∈N. From assumption (iii), we have K ⊂ Fn(K).

Note that since Tn is pα−expansive, Fy
n is pα − expansive. Lemma 2.3 guarantees that there is a unique fixed

point of Fy
n, say Ln(y) ∈ K. Note that

Ln(y) = Tn(Ln(y)) + S(y), f or each y ∈ K, n ∈ N.

and Ln(K) ⊂ K. Let z ∈ K and τn(y) = anLn(y) + (1 − an)z where an := (1 − 1/n)/kn. Note that τn(K) ⊆
conv(Ln(K) ∪ {z}) ⊆ K. Now, using the homogeneity of the MNC and the fact that Ln(D) = F (Tn,S,D), it
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follows that for any countable bounded D of K with Φ(D) > 0,

Φ(τn(D)) = anΦ(Ln(D) + (1 − an)z)
= anΦ(F (Tn,S,D))
≤ (an/kn)Φ(D)
≤ (1 − 1/n)Φ(D)
< Φ(D).

Thus, τn is countably Φ−condensing. We next show τn is sequentially continuous. To see this, let x, y ∈ K.
Notice that

Ln(x) − Ln(y) = S(x) − S(y) + Tn(Ln(x)) − Tn(Ln(y)).

Then, for each α ∈ I
pα(Ln(x) − Ln(y) + (S(y) − S(x))) ≥ knpα(Ln(x) − Ln(y)).

Thus
pα(Ln(x) − Ln(y)) ≤

1
kn − 1

pα(S(y) − S(x)).

Since S is sequentially continuous we obtain Ln is sequentially continuous, so is τn. Theorem 3.2 guarantees
that there is an xn ∈ K with

xn = τn(xn) = anLn(xn) + (1 − an)z

for each n ∈N∗. Note that

xn − Ln(xn) = (1 − an)(z − Ln(xn)) −→ θ, as n −→ ∞

since an −→ 1 as n −→ ∞ and Ln(K) ⊂ T(K) + S(K) is bounded. Next note that

Ln(xn) = xn/an − (1 − an)/anz ∈ K.

Therefore
xn − Tn(xn/an − (1 − an)/anz) − S(xn) −→ θ, as n −→ ∞. (4.6)

From assumption (iv), it follows that

T(xn/an − (1 − an)/anz) − Tn(xn/an − (1 − an)/anz) −→ θ, as n −→ ∞. (4.7)

From (4.6) and (4.7), we obtain

xn − T(xn/an − (1 − an)/anz) − S(xn) −→ θ, as n −→ ∞. (4.8)

Now let
M := {xn : n ∈N}.

Note that M is bounded since M ⊂ conv(T(K) + S(K) ∪ {z}) and T(K) + S(K) is bounded. We claim that M is
relatively compact. If not then by assumptions (i) and (ii), we have

Φ(M) = Φ({xn : n ∈N})
= anΦ(Ln(M))
≤ (1 − 1/n)Φ(M)
< Φ(M),

a contradiction. Thus M is relatively compact. By the angelicity of X, there is a subsequence (xϕ(n))n of the
sequence (xn)n such that

xϕ(n) −→ x f or some x ∈ K.
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Since S is sequentially continuous, we have S(xϕ(n)) −→ S(x). Then xϕ(n) − S(xϕ(n)) −→ (I − S)(x) and from
(4.7) we obtain

xϕ(n) − T(xϕ(n)/aϕ(n) − (1 − aϕ(n))/aϕ(n)z) − S(xϕ(n)) −→ θ,

where (aϕ(n))n be a subsequence of the sequence (an)n. Hence

T(xϕ(n)/aϕ(n) − (1 − aϕ(n))/aϕ(n)z) −→ (I − S)(x). (4.9)

We now show (I−S)(K) ⊂ T(K). Let y = (I−S)(a), with a ∈ K. From assumption (iii), we obtain a ∈ S(a)+T(K).
Then there is a u ∈ K such that a = S(a) + T(u). Thus y = T(u) ∈ T(K). Therefore (I − S)(K) ⊂ T(K). Since T is
pα−expansive, we have T−1 : T(K) −→ K is pα−contraction.
From (4.9), we have

xϕ(n)/aϕ(n) − (1 − aϕ(n))/aϕ(n)z −→ T−1((I − S)(x)).

Since aϕ(n) −→ 1, we have
xϕ(n)/aϕ(n) − (1 − aϕ(n))/aϕ(n)z −→ x.

Since X is Hausdorff, it follows that T−1((I−S)(x)) = x. Then (I−S)(x) = T(x). Hence, T + S has a fixed point.
�

In our next result, we examine Theorems 3.15 of [11] for the case when (X, (pα)α∈I) is angelic, n0 = 1
and we show that the condition ”S is T−convex-power condensing about x0 w.r.t. Φ” can be relaxed by
assuming (a) holds only for countable bounded sets D in K such that Φ(D) > 0.

Theorem 4.6. Let K be a nonempty closed convex bounded subset of a sequentially complete Hausdorff locally convex
space (X, (pα)α∈I) and Φ is a positive homogeneous MNC on X. Assume (X, (pα)α∈I) is angelic. In addition, let
T : K −→ K, S : K −→ X be two mappings. Suppose S and T satisfy the following conditions

(i) S is sequentially continuous,

(ii) T is pα−expansive with a constant kα ∈]1,∞[

(iii) Φ(F (T,S,D)) < Φ(D) if D is a countable bounded subset of K with Φ(D) > 0,

(iv) z ∈ S(K) implies K ⊂ z + T(K).

Then, T + S has a fixed point in K.

Proof. Define a map Fy as in the proof of Theorem 4.3. By assumption (iv), we have K ⊂ Fy(K) and by
assumption (ii), we obtain Fy is pα−expansive. From Lemma 2.3, there is a unique fixed point τ(y) ∈ K of
Fy. Note that τ(y) = T(τ(y)) + S(y) and τ(K) ⊂ K. Let N be a subset of K, we have τ(N) = F (T,S,N). Then, τ
is countably Φ−condensing from K into itself. Now, we claim that τ is sequentially continuous. To see this,
let x, y ∈ K. Notice that

τ(x) − τ(y) = S(x) − S(y) + T(τ(x) − T(τ(y)).

Then, for each α ∈ I
pα(τ(x) − τ(y) + (S(y) − S(x))) ≥ kαpα(τ(x) − τ(y)).

Thus
pα(τ(x) − τ(y)) ≤

1
kα − 1

pα(S(y) − S(x)).

Since S is sequentially continuous, so is τ. Theorem 3.2 guarantees the existence of x ∈ K such that
x = τ(x) = T(x) + S(x).

�

Theorem 4.7. Let K be a nonempty closed convex subset of a Hausdorff locally convex space (X, (pα)α∈I) and Φ is a
positive homogeneous and subadditive MNC on X. Assume (X, (pα)α∈I) is angelic. In addition, let T : K −→ K, S :
K −→ X be two sequentially continuous mappings. Suppose S and T satisfy the following conditions
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(i) S(D) is relatively compact if D is a countable bounded subset of K,

(ii) T is a countably asymptotically Φ−nonexpansive mapping with a sequence (kn)n ⊂ [1,∞[,

(iii) T is an asymptotically regular with respect to S,

(iv) if for eachα ∈ I and for each sequences (xn)n and (yn)n such that pα(xn−yn) −→ 0, then pα(T(xn)−T(yn)) −→ 0,

(v) for all n ∈N, λTn(x) + λS(y) ∈ K, for all x, y ∈ K, λ ∈]0, 1[ and T(K) + S(K) is bounded.

Then, T + S has a fixed point in K.

Proof. We define a map Fn from K to K by

Fn(x) = an(Tn(x) + S(x)) f or all n ∈ N and x ∈ K.

where an := (1 − 1/n)/kn.
Now, using the homogeneity and the subadditivity of the measure of noncompactness Φ and the fact that
T is an countably asymptotically Φ−nonexpansive, it follows that for any countable bounded D of K with
Φ(D) > 0,

Φ(Fn(D)) = Φ(an(Tn + S)(D))
≤ Φ(anTn(D) + anS(D))
≤ anknΦ(D) + anΦ(S(D))
≤ (1 − 1/n)Φ(D)
< Φ(D).

Hence Fn is countably Φ−condensing. Next note that since T and S are sequentially continuous, it follows
that Fn is sequentially continuous. Theorem 3.2 guarantees that there is xn ∈ K with

Fn(xn) = anTn(xn) + anS(xn) = xn.

Hence
xn − Tn(xn) − S(xn) = (an − 1)(Tn(xn) + S(xn) −→ θ as n −→ ∞ (4.10)

since an −→ 1 as n −→ ∞ and Tn(K) + S(K) ⊂ T(K) + S(K) is bounded.
From assumption (iii) and (4.10), we obtain

xn − Tn−1(xn) −→ θ as n −→ ∞.

From assumption (iv), we have

pα(T(xn) − Tn(xn)) −→ 0, f or any α ∈ I.

Next note that for each α ∈ I

pα(xn − (T + S)(xn)) ≤ pα(xn − Tn(xn) − S(xn)) + pα(Tn(xn) − T(xn))
−→ 0 as n −→ ∞.

Now let
M := {xn : n ∈N∗}

Note that M is bounded since M ⊂ conv(T(K) + S(K) ∪ {θ}) and T(K) + S(K) is bounded. We claim that M is
relatively compact. If not then by assumptions (i) and (ii), we have

Φ(M) = Φ({xn : n ∈N})
≤ anΦ(Tn(M)) + anΦ(S(M))
≤ anknΦ(M)
< Φ(M),
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a contradiction. Thus M is relatively compact and the argument in Theorem 4.1 guarantees that there is an
x ∈ K such that

x = T(x) + S(x).

�

Remark 4.8. Theorem 4.7 extends and generalizes Theorem 2.5 in [18] in the case when X is angelic. Indeed, since T
is asymptotically pα−nonexpansive, we obtain T satisfying condition (iv) of our Theorem 4.7 and T is asymptotically
µα−nonexpansive. Then T is countably asymptotically µα−nonexpansive.

As a consequence of Theorem 4.7, we may state the following result.

Corollary 4.9. Let K be a nonempty convex subset of a Banach space X and Φ is a positive homogeneous and
subadditive MWNC on X. Let T : K −→ K, S : K −→ X be two weakly sequentially continuous mappings that
satisfy the following assumptions:

(i) S(D) is weakly relatively compact if D is a countable bounded subset of K,

(ii) T is an countably asymptotically Φ−nonexpansive mapping with a sequence (kn)n ⊂ [1,∞[,

(iii) T is weakly asymptotically regular with respect to S,

(iv) if for each sequences (xn)n and (yn)n such that xn − yn ⇀ θ, we have T(xn) − T(yn) ⇀ θ,

(v) for all n ∈N, λTn(x) + λS(y) ∈ K, for all x, y ∈ K, λ ∈]0, 1[ and T(K) + S(K) is bounded.

Then, T + S has a fixed point in K.

Remark 4.10. Note Corollary 4.9 strictly contains a result of Ben Amar, O’Regan and Touati (see [[4], Theorem 3.3]).
Indeed every asymptotically ω-nonexpansive maps is countably asymptotically ω-nonexpansive but the converse is
not always true.

Theorem 4.11. Let K be a nonempty closed convex subset of a Hausdorff locally convex space (X, (pα)α∈I), U ⊆ K be
an open subset of K with θ ∈ U and Φ is a positive homogeneous and subadditive MNC on X. Assume (X, (pα)α∈I) is
angelic. In addition, let T : U −→ U and S : U −→ X be two mappings that satisfy the following conditions

(i) S(D) is relatively compact if D is a countable bounded subset of U,

(ii) T is a countably asymptotically Φ-nonexpansive mapping with a sequence (kn)n ⊆ [1,∞[,

(iii) T is asymptotically regular with respect to S,

(iv) if for eachα ∈ I and for each sequences (xn)n and (yn)n such that pα(xn−yn) −→ 0, then pα(T(xn)−T(yn)) −→ 0,

(v) for all n ∈N, λTn(x) + λS(y) ∈ K, for all x, y ∈ U, λ ∈]0, 1[ and T(U) + S(U) is bounded.

Then, either
T + S has a f ixed point in U, or (4.11)

for some n ∈N,
there are an u ∈ ∂KU and λ ∈]0, 1[ with u = λ(Tn + S)(u). (4.12)

Proof. Suppose that (4.12) does not hold. Let

an :=
1 − 1/n

kn
∀ n ∈N.
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Fix n ∈ N. We first show the mapping Fn = anTn + anS is countably Φ−condensing. To see that, let D be a
countable bounded subset of U. Using the homogeneity and the subadditivity of the MNC Φ, we obtain

Φ(Fn(D)) ≤ Φ(anTn(D) + anS(D)) ≤ anΦ(Tn(D)) + anΦ(S(D)).

Now S(D) is relatively compact is relatively compact and T is countably asymptotically Φ-nonexpansive,
so we deduce that Fn is countably Φ−condensing. Also θ ∈ U and T(U) + S(U) is bounded guarantee that
Fn maps U into K. If there exist an u ∈ ∂KU and k > 1 with Fn(u) = u, then

u =
1
k

anTn(u) +
1
k

anS(u).

This is impossible since (1/k)an ∈]0, 1[. From Theorem 3.4, there exists xn ∈ U with

xn = Fn(xn) = anS(xn) + anTn(xn).

The argument in Theorem 4.7 guarantees that there exists x ∈ U such that x = T(x) + S(x). �

Remark 4.12. Note Theorem 4.11 improves and generalizes Theorem 3.4 in [4] in the context of a Banach space
equipped with its weak topology and a measure of weak noncompactness.

Let (X, (pα)α∈I) be a Hausdorff locally convex space satisfying the condition

sup
α∈I

pα(x) < ∞ f or each x ∈ X, (C)

where P = (pα)α∈I is the family of seminorms that generates the topology Γ of X. We define the following
function as follows:

q(x) = sup
α∈I

pα(x), x ∈ I.

Remark 4.13. 1. Let (X, (pα)α∈I) be a sequentially complete Hausdorff locally convex space, E. V. Teixeira [15]
has considered the space

Xb = {x ∈ X : sup
α∈I

pα(x) < ∞},

called the set of bounded elements of X. He showed that (Xb, q) is a Banach space. For more details, see [[15],
Proposition 2.5].

2. Let (X, ‖ . ‖) be a Banach space and let P be the family of seminorms {p f : x 7−→| f (x) |: f ∈ X∗, ‖ f ‖X∗≤ 1}.
The topology Γ generated byP is called the weak topology. The space (X,P), is a Hausdorff locally convex space
satisfying the condition (C). Furthermore Xb = X and q(x) =‖ x ‖ .

3. Let (X∗, ‖ . ‖X∗ ) be a dual space, endowed with its weak∗ topology, i.e. generated by the family of seminorms
F = {px : f 7−→| f (x) |: x ∈ X and ‖ x ‖≤ 1}. In this case, Xb = X∗ and q( f ) =‖ f ‖X∗ for each f ∈ X∗.

Definition 4.14. Let K be a nonempty subset of X. A mapping T : K −→ K is called q−asymptotically regular with
respect to S with S : K −→ X be a mapping, if for each x ∈ K,

q(Tn(x) − Tn−1(x) + S(x)) −→ 0 as n −→ ∞.

Let (X, (pα)α∈I) be a Hausdorff locally convex space satisfying the condition (C) such that (X, q) is a Banach
space. Let (xn)n be a sequence in X, we write xn −→ x the convergence in (X, (pα)α∈I) (i.e., for each α ∈ I,
pα(xn − x) −→ 0 as n −→ ∞) and xn

q
−→ x the convergence in (X, q) (i.e., q(xn − x) −→ 0 as n −→ ∞).

Theorem 4.15. Let (X, (pα)α∈I) be a Hausdorff locally convex space satisfying the condition (C) such that (X, q) is
a Banach space. Assume that (X, {pα}α∈I) is angelic. In addition let Φ be a measure of noncompatness on X. Let K
be a nonempty closed convex subset of X, and T : X −→ X, S : K −→ X be two sequentially continuous mappings
satisfying
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(i) T is asymptotically q−nonexpansive (i.e., q(Tn(x)−Tn(y)) ≤ knq(x− y) for all x, y ∈ K with (kn)n be a sequence
of [1,∞[ and kn −→ 1),

(ii) T is q−asymptotically regular with respect to S,

(iii) Φ(F (λTn, λS,D)) ≤ λknΦ(D) if D is a countable bounded subset of K, λ ∈]0, 1[,

(iv) if x = λ(Tn(x) + S(y)), y ∈ K, n ∈ N and λ ∈ (0, 1), then x ∈ K and Tn(K) + S(K) is bounded.

Then, T + S has a fixed point in K.

Proof. For each fixed y ∈ K, we define a map Fy
n by

Fy
n(x) = anTn(x) + anS(y) f or all x ∈ K,

where an := (1 − 1/n)/kn.
From assumption (i), we have Fy

n is q−contraction from X into itself and so it has a unique fixed point in X
by the Banach contraction principle. Let us denote by τn : K −→ X the map which assigns to each y ∈ K the
unique τn(y) in X such that τn(y) = an(Tn(τn(y)) + S(y)). From assumption (iv), we have τn(K) ⊂ K. Note that
τn(N) = F (anTn, anS,N) for any subset N of K, then τn is countably Φ−condensing. It remains to show that
τn : K −→ K is sequentially continuous in (X, (pα)α∈I). Let (xm)m be a sequence of K converging to some x.
Since for each n ∈N,

{τn(xm) : m ∈N} ⊆ F (anTn, anS, {xm : m ∈N}),

we have
Φ({τn(xm) : m ∈N}) ≤ anknΦ({xm : m ∈N}).

Since (xm)m is a sequence of K converging, we have Φ({xm : m ∈N}) = 0.
Therefore Φ({τn(xm) : m ∈ N}) = 0. So there is a subsequence (xϕ(m))m of (xm)m such that τn(xϕ(m)) −→
zn as m −→ ∞. Since T is sequentially continuous, we have Tn(τn(xϕ(m))) −→ Tn(zn) as m −→ ∞ and
since S is sequentially continuous, we obtain S(xϕ(m)) −→ S(x). Taking into account that τn(xϕ(m)) =
anTn(τn(xϕ(m))) + anS(xϕ(m)), for each m, n ∈ N. So for each n ∈ N, we have zn = anTn(zn) + anS(x). Hence
zn = Fx

n(zn) and by uniqueness of τn, we conclude that zn = τn(x). Therefore τn(xϕ(m)) −→ τn(x) as m −→ ∞.
Now, we show that τn(xm) −→ τn(x) as m −→ ∞. Suppose the contrary. Then there exists a neighborhood
Vn of τn(x) and a subsequence (xϕ(m))m of (xm)m such that τn(xϕ(m)) < Vn, for all n ∈ N. Then, arguing as
before, we may extract a subsequence (xϕ(ψ(m))) of (xϕ(m)) such that τn(xϕ(ψ(m))) −→ τn(x), which is absurd
since τn(xϕ(m)) < Vn for all β ∈ L. Hence τn is sequentially continuous. Now, Theorem 3.2 guarantees the
existence of xn ∈ K such that xn = τn(xn) = anTn(xn) + anS(xn), for all n ∈N. We can use this argument for all
n ∈N∗. Note that

q(xn − Tn(xn) − S(xn)) = (an − 1)q(Tn(xn) + S(xn)) −→ 0 as n −→ ∞, (4.13)

since an −→ 1 as n −→ ∞ and Tn(K) + S(K) ⊂ T(K) + S(K) is bounded.
Since T is an q−asymptotically regular with respect to S, it follows that

q(Tn(xn) − Tn−1(xn) + S(xn)) −→ 0 as n −→ ∞. (4.14)

From (4.13) and (4.14), we obtain

q(xn − Tn−1(xn)) −→ 0 as n −→ ∞. (4.15)

Now,

q(xn − (T + S)(xn)) ≤ q(xn − Tn(xn) − S(xn)) + q(Tn(xn) − T(xn))
≤ q(xn − Tn(xn) − S(xn)) + k1q(Tn−1(xn) − xn) .

Thus
q(xn − T(xn) − S(xn)) −→ 0 as n −→ ∞. (4.16)
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Now let
M := {xn : n ∈N∗}

The same reasoning in the proof of Theorem 4.1, we can conclude M is relatively compact. By the angelicity
of X there is a subsequence (xϕ(n))n of the sequence (xn)n such that

xϕ(n) −→ x f or some x ∈ K.

Since T and S are sequentially continuous, it follows that

(I − T − S)(xϕ(n)) −→ (I − T − S)(x).

From (4.16), we get
(I − T − S)(xϕ(n)) −→ θ.

By the uniqueness of limit (since X is Hausdorff), we obtain (I − T − S)(x) = θ. Then, T + S has a fixed point.
�

Now, we apply Theorem 4.15 to the special case when X is a Banach space endowed with its weak
topology.

Corollary 4.16. Let K be a nonempty closed convex bounded subset of a Banach space (X, ‖ . ‖), ω is a measure of
weak noncompactness on X. Let T : K −→ K, S : X −→ X be two weakly sequentially continuous mappings. Assume
T and S satisfy the following conditions

(i) ‖ Tn(x) − Tn(y) ‖≤ kn ‖ x − y ‖, for each x, y ∈ K and n ∈ N with (kn)n is a sequence in [1,∞[ and kn −→ 1
as n −→ ∞,

(ii) for each x ∈ K, ‖ Tn(x) − Tn−1(x) + S(x) ‖−→ 0 as n −→ ∞,

(iii) ω(F (λTn, λS,D)) ≤ λknω(D) if D is a countable bounded subset of K, λ ∈]0, 1[,

(iv) if x = λ(Tn(x) + S(y)), y ∈ K and λ ∈ (0, 1) where λ ∈]0, 1[, then x ∈ K and Tn(K) + S(K) is bounded.

Then, T + S has a fixed point in K.

Theorem 4.17. Let (X, (pα)α∈I) be a Hausdorff locally convex space satisfying the condition (C) such that (X, q) is a
Banach space. Assume that (X, {pα}α∈I) is angelic. In addition let Φ be a positive homogeneous MNC on X. Let K
be a nonempty closed convex subset of X, and T : X −→ X, S : K −→ X be two sequentially continuous mappings
satisfying the following conditions

(i) for each n ∈ N, Tn is q−contraction with a constant kn ∈]0, 1[ such that kn −→ 1 as n −→ ∞ (i.e.,
q(Tn(x) − Tn(y)) ≤ knq(x − y) for all x, y ∈ K),

(ii) Φ(F (Tn,S,D)) ≤ 1
kn

Φ(D) if D is a countable bounded subset of K,

(iii) T is q−asymptotically regular with respect to S,

(iv) λTn(x) + λS(y) ∈ K, for all x, y ∈ K and λ ∈]0, 1]. Moreover T(K) and S(K) are bounded.

Then, T + S has a fixed point in K.

Proof. The reasoning of Theorem 4.15 yields the desired results. �

In the case of Banach spaces endowed with their weak topologies, Theorem 4.17 states as follows.

Corollary 4.18. Let K be a nonempty closed convex subset of a Banach space (X, ‖ . ‖) and ω be a measure of weak
noncompactness on X. Assume that T : K −→ K and S : K −→ X be to two weakly sequentially continuous mappings
satisfying:
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(i) ‖ Tn(x) − Tn(y) ‖≤ kn ‖ x − y ‖ with kn ⊂]0, 1[ and kn −→ 1 as n −→ ∞,

(ii) ω(F (Tn,S,D)) ≤ 1
kn
ω(D) if D is a countable bounded subset of K,

(iii) ‖ Tn(x) − Tn−1(x) + S(x) ‖−→ 0 as n −→ ∞,

(iv) λ(Tn(x) + S(y)) ∈ K, for all x, y ∈ K and λ ∈]0, 1]. Moreover T(K) and S(K) are bounded,

Then, T + S has a fixed point in K.

Lemma 4.19. [11] Let (X, (pα)α∈I) be a Hausdorff locally convex space satisfying the condition (C) such that (X, q) is
a Banach space and K be a sequentially closed subset of X. Let S : K −→ X be a q−expansive and continuous mapping
such that K ⊂ S(K). Then, there exists a unique point x∗ in K such that S(x∗) = x∗.

Theorem 4.20. Let (X, (pα)α∈I) be a Hausdorff locally convex space satisfying the condition (C) such that (X, q) is a
Banach space. Assume that (X, (pα)α∈I) is angelic. Let Φ be a measure of noncompatness in X. Let K be a nonempty
closed convex subset of X and T : K −→ K, S : K −→ X be two mappings with T is continuous and S is sequentially
continuous. Suppose that

(i) for each n ∈ N Tn is q−expansive with a contant kn ∈]1,∞[ such that kn −→ 1 as n −→ ∞ (i.e., q(Tn(x) −
Tn(y)) ≥ knq(x − y), f or all x, y ∈ K),

(ii) Φ(F (Tn,S,D)) ≤ knΦ(D) if D is a countable bounded subset of K,

(iii) z ∈ S(K) implies K ⊂ z + Tn(K) for any n ∈N and T(K) + S(K) is bounded,

(iv) for each x ∈ K and α ∈ I, pα(T(x) − Tn(x)) −→ 0 as n −→ ∞,

Then T + S has a fixed point in K.

Proof. The reasoning of Theorem 4.15 yields the desired results. �

In the case of Banach spaces endowed with their weak topologies, Theorem 4.20 states as follows.

Corollary 4.21. Let K be a nonempty closed convex subset of a Banach space (X, ‖ . ‖) and ω be a measure of weak
noncompactness on X. Assume that T : K −→ K and S : K −→ X be two mappings with S is weakly sequentially
continuous and T is weakly continuous. Suppose that

(i) ‖ Tn(x) − Tn(y) ‖≥ kn ‖ x − y ‖ with kn ⊂]1,∞[ and kn −→ 1 as n −→ ∞,

(ii) ω(F (Tn,S,D)) ≤ knω(D) if D is a countable bounded subset of K,

(iii) z ∈ S(K) implies K ⊂ z + Tn(K) for any n ∈N and T(K) + S(K) is bounded,

(iv) for each x ∈ K, T(x) − Tn(x) ⇀ θ as n −→ ∞.

Then T + S has a fixed point in K.

5. Application

5.1. Volterra integral equations
Let (X, (pα)α∈I) be a complete Hausdorff locally convex and angelic space and J = [0, ρ] ⊂ R be an interval

(ρ > 0). In this section, we investigate the existence of solutions to the following Volterra integral equation

x(t) = 1(x(t)) + h(t) +

∫ t

0
f (s, x(s))ds, t ∈ J, (5.1)

where f ∈ C(J ×X,X), h ∈ C(J,X) and 1 ∈ C(X,X) are given mappings. The integral in (5.1) is understood to
be the Riemann integral and solution to (5.1) will be sought in E = C(J,X). Our application is motivated by
earlier works; we quote for instance Chao-dong [7], Hussain and Taoudi [10], Khchine, Maniar and Taoudi
[11] and Yuasa [20]. Equation (5.1) will be studied under the following conditions:
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(H1) 1 is pα−contraction with a constant kα ∈]0, 1[,

(H2) there exist a : J −→ [0,∞[ a continuous function and a real number b > 0 such that pα( f (s,u)) ≤
a(s)pα(u) + b for a.e. s ∈ J, α ∈ I, and all u ∈ X, with

∫ ρ
0 a(s)ds < 1; and 1 − kα − ρA > 0. Here

A = max
s∈J

a(s),

(H3) there is a constant L ≥ 0 such that for any bounded subset D of C(J,X) and for each 0 ≤ c ≤ d ≤ ρ, we
have

µpα ( f ([c, d] ×D)) ≤ Lµpα (D([c, d])). (b)

Khchine, Maniar and Taoudi showed in [11] the integral equation (5.1) has a solution in a complete Hausdorff
locally convex space (X, (pα)α∈I) whenever assumptions (H1)-(H3) are satisfied.
In our next result, we add the condition of angelicity and we show that in the case where ρL < 1 − kα for
any α ∈ I, the condition (H3) can be relaxed by assuming that (b) holds only for countable bounded subsets
D of C(J,X).

Theorem 5.1. Assume that (H1), (H2) and

(H4) there is a constant L ≥ 0 with ρL < 1 − kα for any α ∈ I such that for any countable bounded subset D
of C(J,X) and for each 0 ≤ c ≤ d ≤ ρ, we have

µpα ( f ([c, d] ×D)) ≤ Lµpα (D([c, d])).

hold. Then, the integral equation (5.1) has a least one continuous solution.

Proof. From assumption (H1), there exists x0 ∈ X such that x0 = 1(x0). We consider

K = ∩α∈I{x ∈ Kα : pα(x(t) − x(s)) ≤| t − s | Rα +
pα(h(t) − h(s))

1 − kα
, t, s ∈ [0, ρ]},

where Kα = {x ∈ E : p̃α(x − x0) ≤ rα}, rα ≥
ρb+Aρpα(x0)+p̃α(h)

1−kα−ρA and Rα =
Arα+Apα(x0)+b

1−kα
, for each α ∈ I. Notice that

K is bounded equicontinuous convex closed subset of E containing x0. We define the following operators
S, T : E −→ E by

T(x)(t) = 1(x(t)) + h(t) − x0

and

S(x)(t) = x0 +

∫ t

0
f (s, x(s))ds.

We shall use same ideas from [11] to show that Step1-Step3.
Step 1: We show that T is a p̃α−contraction from E into itself.
Let u, v ∈ E and t ∈ [0, ρ], we have

pα(T(u)(t) − T(v)(t)) = pα(1(u(t)) − 1(v(t)))
≤ kαpα(u(t) − v(t)).

This implies
p̃α(T(u) − T(v)) ≤ kαp̃α(u − v).

Step 2: We prove that S is sequentially continuous.
Let (xn)n be a sequence in K which converges to some z ∈ E. For α ∈ I and t ∈ [0, ρ], we get

pα((S(xn)S(z))(t)) = pα(
∫ t

0
( f (s, xn(s)) − f (s, z(s))ds)

≤

∫ ρ

0
f (s, xn(s)) − f (s, z(s))ds.
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Thus,

p̃α(S(xn) − S(z)) ≤
∫ ρ

0
f (s, xn(s)) − f (s, z(s))ds.

The dominated convergence theorem yields p̃α(S(xn) − S(z)) −→ 0 and therefore S(xn) −→ S(z).
Step 3: Next, we show that if x = T(x) + S(y), y ∈ K, then x ∈ K.
Note that for each x ∈ K, α ∈ I and 0 ≤ t ≤ t′ ≤ ρ, we have

pα(S(x)(t
′

) − S(x)(t)) ≤

∫ t′

t
pα( f (s, x(s)))ds

≤

∫ t′

t
(a(s)pα(x(s)) + b)ds

≤ (t
′

− t)(Arα + Apα(x0) + b).

Furthermore, for each α ∈ I

pα(S(x)(t) − x0) ≤

∫ t

0
pα( f (s, x(s)))ds

≤

∫ t

0
(a(s) + pα(x(s)) + b)ds

≤ ρ(Arα + Apα(x0) + b)
≤ rα.

Now, let y ∈ K and x ∈ E such that x = T(x) + S(y). For α ∈ I and t ∈ [0, ρ], we have

pα(x(t) − x0) = pα(T(x)(t) + S(y)(t) − x0)
≤ pα(1(x(t)) + h(t) − x0) + pα(S(y)(t) − x0)
≤ pα(1(x(t)) − x0) + pα(h(t)) + pα(S(y)(t) − x0)
≤ kαpα(x(t) − x0) + pα(h(t)) + pα(S(y)(t) − x0)
≤ kαpα(x(t) − x0) + p̃α(h) + ρ(Arα + Apα(x0) + b).

Then,

pα(x(t) − x0) ≤
1

(1 − kα)
[p̃α(h) + ρ(Arα + Apα(x0) + b)] ≤ rα.

Hence, p̃α(x − x0) ≤ rα. Furthermore, for each 0 ≤ t ≤ s ≤ ρ, we have

pα(x(t) − x(s)) ≤ pα(T(x)(t) − T(x)(s)) + pα(S(y)(t) − S(y)(s))
≤ (s − t)(Arα + Apα(x0) + b) + kαpα(x(t) − x(s)) + pα(h(t) − h(s)).

This implies

pα(x(t) − x(s)) ≤ Rα | t − s | +
pα(h(t) − h(s))

1 − kα
.

Therefore, x ∈ K.
Step 4: Now, we claim that µ̃α(F (T,S,D)) < µ̃α(D) if D is a countable bounded subset of K with µ̃α(D) > 0.
For all x ∈ F (T,S,D), there is a y ∈ D such that x = T(x) + S(y). Thus, for t ∈ [0, ρ], we have

F (T,S,D)(t) ⊂ T(F (T,S,D))(t) + S(D)(t).

Using Lemma 2.12 and the properties of µα, we get

µα(F (T,S,D)(t)) ≤ µα(T(F (T,S,D))(t) + S(D)(t))
≤ kαµα(F (T,S,D)(t)) + µα(S(D)(t)).
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Then,

µα(F (T,S,D)(t)) ≤
1

1 − kα
µα(S(D)(t)). (5.2)

Using the properties of µα and the mean value theorem for the Reimann integral, we have

µα(S(D)(t)) = µα({x0 +

∫ t

0
f (s, x(s))ds, x ∈ D})

≤ µα({
∫ t

0
f (s, x(s))ds, x ∈ D})

≤ µα(tconv({ f (s, x(s)) : x ∈ D}))
≤ tµα(conv({ f ([0, t] ×D)})
= tµα({ f ([0, t] ×D)})
≤ tLµα(D([0, t]))

Since K is a bounded and equicontinuous set, so is D. Applying Lemma 2.13, we obtain

µα(S(D)(t)) ≤ tLµ̃α(D). (5.3)

Then, for each t ∈ [0, ρ] and for all α ∈ I, we get

µα(F (T,S,D)(t)) ≤
tL

1 − kα
µ̃α(D).

Using again Lemma 2.13, we obtain

µα(F (T,S,D)) ≤
ρL

1 − kα
µ̃α(D).

Then,

µ̃α(F (T,S,D)) ≤
ρL

1 − kα
µ̃α(D).

Hence µ̃α(F (T,S,D)) < µ̃α(D) if D is a countable bounded subset of K with µ̃α(D) > 0.
Applying Theorem 4.3, we get a fixed point for T + S and hence a solution to (5.1) in E. �
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