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Abstract. Mixed type is a further step of development in functional equations. In this paper, the authors
made an attempt to introduce such equation of the following form with its general solution

h(py + 2) + h(py — 2) + h(y + pz) + h(y — pz) = (p + Py + 2) + h(y — 2)] + 2h(py) = 2(0* + p = Dh(y)

forall y,z € R,p # 0, +1. Also, without Fatou property authors investigate its various stabilities related to
Ulam problem in modular space by considering with and without A,—condition.

1. Introduction

For the detailed study on Ulam problem and its recent developments called generalized Hyers-Ulam-
Rassias stability, one can refer [1, 8, 11]. In 1950, Nakano [7] established the modular linear spaces and

further developed by many authors, one can refer [5, 6, 9]. The definitions related to our main theorem
related to modular space can be referred in [3, 4].

In 2015, Abasalt Bodaghi et al.[1] investigated the stabilities of following mixed type equation
h(3y + z) = 5h(2y + z) + h(2y — z) + 10h(y + z) — Sh(y — z) = 10h(z) + 4h(2y) — 8h(y)
forally,ze R.

In 2016, Pasupathi Narasimman et al.[8] introduced the equations quintic and sextic, respectively of the
form

plh(py — z) + h(py + 2)] + h(y — pz) + h(y + pz)
= (" + POy — 2) + h(y + 2)] + 2(0° = p* = p* + Dh(y),
h(py — z) + h(py + z) + h(y — pz) + h(y + pz)

= (p* + pP?)[(y — 2) + h(y + 2)] + 2(p° — p* — p* + D[(y) + h(z)]

with p € R — {0, £1} also discussed their various stabilities related to Ulam problem.
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In 2017, authors Hark-Mahn Kim and Young Soon Hong [2] investigated the alternative stability theorem
in a modular space using Az—condition of a modified quadratic equation.

In 2019, authors John Michael Rassias, Hemen Dutta and Narasimman Pasupathi [10] investigated
Ulam stability problem in non-Archimedean intuitionistic fuzzy normed spaces of the generalized quartic
equation

h(py — z) + h(py + z) + W(y — pz) + h(y + pz) = 2p2{h(y -z)+h(y +2)} + Z(p2 - 1)2{h(y) + h(z)}

where p # 0,+£1. Motivation from the above literature, the authors made an attempt to introduce a new
mixed type equation satisfied by h(x) = x + x* of the form

h(py — z) + h(py + z) + h(y — pz) + h(y + pz) 1)
= (p +p)h(y — 2) + h(y + 2)] + 2h(py) — 2(p* + p — Dh(y)

for all v,z € R,p # 0,£1. Mainly, authors investigate various stabilities concerning Ulam problem in
modular spaces and its general solution.

In Section-2 and Section-3, authors obtain the solution of (1) in additive case and cubic case, respectively.
Authors provide the various stabilities of equation (1) in modular space in Sections-4 for additive case and
in Section-5 for cubic case, and we given the conclusion in Section-6.

2. General Solution of (1): Additive Case
Lemma 2.1. Let X and Y are linear spaces, a mapping h : X — Y is additive and odd if h satisfies
h(py = 2) + h(py + 2) + h(y — pz) + h(y + pz) = (p + p?)[(y = 2) + h(y + 2)] = 2(p* = Dh(y) )
forally,z € X.
Proof. Consider h satisfies (2). Replacing (y, z) by (0,0) and (y, 0) in (2), we get h(0) = 0 and

h(py) = ph(y) ©)
respectively, for all y € X. Therefore, & is additive function. Let (y,z) = (0,y) in (2) and by (3), we reached
h(=y) = -h(y);, yeX 4)

Thus h is an odd function. [

Theorem 2.2. A function h : X — Y is a solution of (2) iff A(y) is the diagonal of the additive symmetric map
A1 : X — Y such that h is of the form h(y) = A(y) for all y € X.

Proof. Let h satisfies (2) when h is additive. We can rewrite (2) as follows

1 1 1
h(y) + mh(w +2)+ mh(w —2)+ mh(}/ +pz)

2 2

1 N _PTP __ptp oy
t oo 1)h(y pz) 27— 1)h(y +2) 27— 1)h(y z)=0 (5)
for all y,z € X. Theorems 3.5 and 3.6 in [12] implies that / is of the form
h(y) = Al(y) + A°(y) (6)

forall y € X, A%(y) = A® and for i = 1, A/(y) is the diagonal of the i-additive symmetric map A; : X' — Y.
We get A%(y) = A = 0 and h is odd, by h(0) = 0 and h(—y) = —h(y), respectively. It follows that h(y) = Al(y).
Conversely, Al(y) is the diagonal of the additive symmetric map A; : X! — Y such that h(y) = Al(y) for
all y € X. From
Aly+2) = A'(y) + A'(2), A'(ry) =r"'AYy); y,zeXreQ,

we see that & satisfies (2) and this completes the proof of Theorem 2.2. [
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3. General Solution of (1): Cubic Case
Lemma 3.1. Let X and Y are linear spaces, a mapping h : X — Y is cubic and odd if h satisfies
h(py +2) + h(py —2) + h(y + p2) + h(y = p2) = (p + Py +2) + By = 2] + 2¢° = p* = p+ Dh(y) ()
forally,ze X.

Proof. Consider h satisfies (7). Replacing (v, z) by (0,0) and (y, 0) in (7), we get #(0) = 0 and

hipy) = p°hy) 8)
respectively, for all y € X. Therefore, h is cubic function. Let (v, z) by (0, ) in (7) and using (8), we obtain
h(=y) = -h(y); y € X. ©)

Thus h is an odd function. [

Theorem 3.2. A function h : X — Y is a solution of (7) iff C3(y) is the diagonal of the 3-additive symmetric map
Cs : X> — Y such that h is of the form h(y) = C3(y) for all y € X.

Proof. Let h satisfies (7) when h is cubic. We can rewrite (7) as follows

1 1 1
h(y) + mh(i?y +2)+ mh(lﬂy —-2)+ mh(?/ +pz)

L e — L ey — L =
* 2o l)h(y pz) 27— 1)h(y+2) 27— 1)h(y z)=0 (10)
for all y,z € X. Theorems 3.5 and 3.6 in [12] implies that / is of the form
h(y) = C(y) + C'(y) + C'(y) + C°(y) (11)

for all y € X, where C%(y) = C° and i = 1,2,3, Ci(y) is the diagonal of the i-additive symmetric map
Ci: X' > Y. Weget CO(y) = C° = 0 and h is odd, by h(0) = 0 and h(-y) = —h(y), respectively. Therefore
C2(y) = 0. It follows that h(y) = C3(y) + C'(y). By (8) and C"(ry) = r"C"(y) for all y € X and r € Q, we obtain
n'CY(y) = n3Cl(y). Hence, Cl(x) = 0 for all y € X. Therefore h(y) = C3(y).
Conversely, C3(y) is the diagonal of the 3—additive symmetric map Cs : X> — Y such that h(y) = C3(y)

for all y € X. From

Co(y +2) = C(y) +3C*(y,2) + 3C*(y,2) + C(2), Co(ry) = r’C(y),

C¥(y,r2) = r'C*(y,2), C(ry,2) = *C*(y,2), CY(y,12) = *C'2(y,2), C2(ry,2) = 1'C"*(y, 2)

for all y,z € X,r € Q, we see that h satisfies (7) and this completes the proof of Theorem 3.2. [

4. Stability of Functional Equation (1): Additive Case

Assume that the linear space X, u—complete convex modular space X, in the following theorems and
corollaries. Now, we obtain the stability of (1) called generalized Hyers-Ulam-Rassias in modular spaces
without A,—condition and the Fatou property. Here after, we use the following notation

Dah(y,z) = h(py + z) + h(py — z) + h(y + pz) + h(y —pz) — (p + pz)[h(y +2z)+h(y —2)] + 2(p2 - Dh(y)
forally,z € X.
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Theorem 4.1. Let a mapping h : X — X, satisfies

w(Dah(y, z)) < v(y,z) (12)

and a mapping v : X* — [0, ) such that

= (ply, piz
Uy, 2) = Z% <, yzeX. (13)
=0

Then there exists Ay : X — X, a unique additive mapping defined by A;(y) = lzmnqwli(p,iy )y € X, which satisfies

(2) and
1
u(i(y) - Ar(y)) < EC(‘% 0), YyeX (14)
Proof. Substituting z = 0 in (12), we obtain

p(h(py) = ph(y) < 5v(,0) (15)

and so

(h( - (”y))<— Y(y,0), VyeX. (16)

By induction on n, we arrive

h .0
u(h(y) (pny)) ZZV(M )’ cx 17)

p]+1

Substituting y by p™y in (17), we obtain

hp™y)  hpTy)\ 1 RS v(ply,0)
( e )5y ]_Z,; pl o

by assumption (13) it converges to zero as m — oo. Hence, by inequality (18) the sequence { My )} VyeX

is u—Cauchy and hence it is convergent in X, since X, is y—complete. Thus, a mapping A1 X — X, is
defined by

h n
Ar(y) = p = lim {M}

n—oo p

for all y € X, which implies

lim y( (Z ) (y)) =0, Yye X.

n—oo

Next, we claim the mapping A; satisfies (2). Setting (y,z) = (p"y, p"z) in (12), and dividing the resultant by
p", we arrive

DAy, p"2) _ v(p"y.p"2)
p" p"

, Yy,ze X
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Hence, by property u(au) < au(u),0 <a <1,u € X, we get

1
”(WDA“W))

Dh(p"y, pz Dh(p"y,p"z
A7) - 'y.ps) | "y, p ))

1
<yl———p
=H (4;72 +2p+3 (Ap2 +2p+3)p"  (4p*+2p + 3)p"

1 h(p" (py + 2)) 1 h(p"(py — 2))
S4p2+2p+3‘u(A1(py+Z) P Y aap st |\ ily—2) o
h(p"(y + pz)) 1 h(p"(y — p2))
+ 4p2 + zp + 3” (Al(y + PZ) pn + 4]92 T 2p T 3[.1 Al(y pZ) p”’
p+p’ _hp"(y +2)) p+p 'y -2)
+4p2+2p+3‘u(A1(y+Z) T g v (i ) P
2(p* - 1) h(p"y) 1 Dh(p"y, p'"'z)
> =M Ay) - +
4p2 +2p +3 p" 4p> +2p+3 p"

for all y,z € X and n is positive integers. We obtain u ( yr +2p —DA1(y, z)) 0,if n — oco. Hence DA;(y,z) =0
for all y,z € X. Thus A; satisfies (2) and hence it is additive. Since ).\, # + !1] < 1forall n € N, by the
convexity of modular y and (15), we arrive

h(p" y)) (h(;7 Y)
A\

u(h(y) — A(y)) = (h(y) - Aq( ))

n—

h(p™y)

IA
NI =

1
—

v
+1
w0 P

'y, 0) + u( - Aq( )) 5 Z Pl —v(p'y,0) = C(y, 0)

for all y € X. Now, to prove the uniqueness of A;, we consider that there exists a additive mapping
Dy : X — X, satisfying

1w 1 ,
u(hy) =Diy) < 5 ) VP, 0, Yy eX
=0

But, if A1(yo) # Di1(yo) for some yo € X. Then there exists a constant € > 0 which is positive such that
€ < u(A1(yo) — D1(y0)). By (13), there is a positive integer 19 € IN such that Z}'ino Lv(ply,0) < 5. Since A4

p/’+1
and D; are additive mappings, by A1(p™yo) = p"A1(yo) and D1(p™yo) = p"™D1(yo), we arrive
€ < u(A1(yo) — D1(vo))
_ (Al(p”0 Yo) —h(p™yo)  h(p™yo) — Dl(p”"yo))
- ‘u pl’lo + pl’lo

= v(p/ Ty, 0) V(pfyo, 0)
< - < - <€,
p”o Z Z

j+1 j+1
p =y

which implies a contradiction. Therefore the mapping A; is a unique additive mapping near h satisfying
(14)in X,,. O

Letting v(y,z) = € and v(y,z) = e (llyll" + |lz[I") in Theorem 4.1, we obtain Hyers-Ulam and generalized
Hyers-Ulam stabilities, respectively in the following corollaries.
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Corollary 4.2. Let a mapping h : X — X, satisfying
u(Dah(y,z)) <e, Yy,zeX

for some € > 0. Then there exists Ay : X — X, a unique additive mapping satisfies (2) and

puh(y) — Av(y)) < (19)

€
2(p-1)
forally e Xandp # 1.
Corollary 4.3. Ifh : X — X, a mapping satisfies
u(Dah(y,2)) < e(lyll" +1lzI"), Yy,ze X, m<1

a real numbers € > 0, then there exists Ay : X — X, a unique additive mapping satisfying
ph(y) — Ai(y)) < mllyll’” YyeX (20)

where y # 0 and p™ < p.
Assuming u satisfies the A,—condition and if there exists § > 0 defined by u(py) < pu(y) for all y € X,.

Theorem 4.4. Letting h: X — X, and v : X* — [0, c0) be the mappings satisfies

w(Dah(y, z)) < v(y, z) (21)
and
2]
\y(y,z)_zﬁp] (p] ;])<oo Vy,ze X 22)

Then there exists Ay : X — X, a unique additive mapping such that As(y) = lim,,.p"h (l) which satisfies(2) and

u(h(y) — As(y) < %wy, 0), VyeX (23)

Proof. The equation (15), implies that

p(h(y) - ph(%)) < %v(%,o), yex (24)

Hence, by the convexity u, we have

foo-(2)
1

v\ 1 y y B (v B (v
o= (3)) s Suln(2) (%)) < gy (5.0) « Gpe(0) v x

Then by induction on 7 > 1, we have

w (h(y) —p'h (—)) % ;

2(n—1)
( ) ;ﬁpnl v(l,o) (25)
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for all y € X. Considering (25) holds true for n and we deduce the following by using the convexity of ,

p (h(y) iy (p =/ )) 6
:l _Z(K)) E(Z(E)_ n+2(y))
p#(Ph(]/) p*h b)) ok p°h o h it

oo 3] S
= () + S )l

=t

2 1=l pojq 2 2(n—1)
Sﬁv( O)+ﬁ Z‘B v( .y1,0)+ﬁ—ﬁ = v( yH,O)
2 \p ) pg P \pi L RV

noop2j-1 21
=1Zﬁ—.v(l,0)+1ﬁ—v y ,0].
2 p] p] 2 pn pn+1

j=1

The above inequality proves (25) for n + 1. Substituting y by r% in (25), we arrive
m y n+m y
) ()

AR
o))

n=1 i1 2(n—1)
w1l B y mlpP y
<B EZ_’ v( : ,0)+/3 e bl

Pm n+m-1 ‘32]'_11/( y

pm ﬁZ(n+m—1) y 0
- Z‘Bm

T I
ferrd p] P] 257&1 pn+m—1 pn+m

by (22) it converges to zero as m — oo. Hence, {p”h(;%)} is y—Cauchy for all y € X and hence it is
p—convergent in X, since X, is u—complete. Hence, we have

Ax(y) = u— lim p"h (pl) (27)
for all y € X, which implies

n—o0

lim p (p”h (%) - Az(y)) =0, YyeX
Hence by the A,—condition, we arrive the following by taking n — co.

 (h(y) = Azx())

-2 )
p A A
H(h(y) (P”)) p (p h(P) AZ(y))

B

525 (o) 55 () o))
<Y E _o[Lo)+ L o)+ Eulpn(L)-a
<2P; VT AT N P AP G P el
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Next, we prove A, satisfies (2). Assuming (y,z) = ( s ) in (21), and multiplying the resultant by p", we
obtain

pronl ) =r (3 5) < 5o 5)

as n — oo, which tends to zero. Hence, the property u(yu) < yu(u),0 <y <1,u € X, implies that

1
U(WDAA2(%Z))
1 DA DAh( n/Z) " DAh(pn/pZn)
gy 7 aPadelv 2 =7 (4p2+2p+3)+p @2 12p+3)
1 vtz 1 N
S4P2+2P+3#(A2(py+z) ph( P ))+4P2+2P+3“(A2(py ? ph( p" ))
; o y+pz 1 3
el AR o Rt RSN |

4p2+2p+3 4p2 +2p +3

2(p~-1) e 1 . y oz
+4p2+2p+3y(A2(y) p h(P”))+4p2+2p+3IJ(p DAh(pn’pn , Yy,ze X

As the limit 1 — oo, we obtain

2
PP (Az(y+2>—r)”h(yp:z))+ Prp H(Az(}/—z)—P”h( )

U DaA>(y, Z)) =0

1
4p2 +2p+3

for all y,z € X. Hence, DsA>(y, z) = 0 and A; satisfies (2). Hence, it is additive. To prove the uniqueness of
Ay, assume that D, : X — X, a additive mapping satisfies

(i) = Daly szlzﬁ—] (£.0), wex
=1

Since A, and D, are additive mappings and p" A, (}%) = As(x), p"D> (’%) = D,(x) implies that

w(D2(y) — Aa(y))

{5 () ) 5

for all y € X and as n — oo it tends to zero. Therefore, A, satisfying (23) and is a unique additive
mapping. O
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Considering v(y,z) = e and v(y,z) = € (|lyll" + ||z||"") in Theorem 4.4, we obtain the following Hyers-Ulam
and Hyers-Ulam-Rassias stabilities, respectively.

Corollary 4.5. Let a mapping h : X — X, satisfying
u(Dah(y,2)) < e

forall y,z € X, € > 0. Hence there exists a unique additive mapping A, : X — X, which satisfies (2) and

(1) - Aalw) < =L )

H T 2o - )
for all y € X and for some ? < p.
Corollary 4.6. If h: X — X, a mapping satisfies

1(Dah(y, 2)) < e (Ilyll" +1IzI")
forall y,z € X. Then there exists Ay : X — X, a unique additive mapping such that

6182 m
pu(h(y) = Aa(y)) < Iyl (29)

2p(pm*t = )

forall y € X,y # 0, for given real numbers > < p™** and € > 0.

5. Stability of Functional Equation (1): Cubic Case

We obtain generalized Hyers-Ulam-Rassias stability of (1) in modular spaces without A,—condition and
the Fatou property. Here after, we use the following notation

Dch(y,z) = h(py + z) + h(py — 2) + h(y + pz) + h(y — pz) — (p + pP)[W(y + 2) + h(y — 2)] = 2(p°> — p* — p + Dh(y)
forally,z € X.

Theorem 5.1. Considering h : X — X, a mapping satisfies

t(Dch(y, z)) < v(y,z) (30)

and a mapping v : X* — [0, o) satisfies

= y(ply, piz
(=Y % <o, Vy,zEX. @31)
=0

Then there exists Cy : X — X, a unique cubic mapping defined by C1(y) = limn_mh(lf;ly), y € X which satisfies the
equation (7) and

uh(y) - Ci(y)) < zipsay, 0), VyeX (32)

Proof. Assuming y = 0 in (30), we obtain

H(ipy) - pPh(Y) < (5,0 33)
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and hence
hpy)\ _ 1
u (h(y) - 7 < 2—P3v(y, 0), Yye X. (34)
Generalizing, we arrive
') - 1§ ve'y,0)
(”( )= | <2 L 0 YEX (35)
j=0

Substituting y by p™'y in (35), we obtain

(h(P'”y) _ h(p“*mw) L1 Z’”:l v(p'y,0)

p3m P3(n+m) - % p3]

(36)

=

by the assumption (31) it converges to zero as m — oo. Hence (36) implies that the sequence {h(;’;y ) } is

p—Cauchy and therefore it is convergent in X, since the X, is u—complete. Hence we define C; : X — X,
as

h n
Cl(]/) =u- lim {%}, Vy € X,

which implies
hp"y)
p3n

Here after we complete this proof by similar way of Theorem 4.1. [

lim y( - Cl(y)) =0, Yye X

n—oo

Assuming v(y,z) = € and v(y,z) = € (|lyll" + [|z||"") in Theorem 5.1, we obtain the following stabilities
called Hyers-Ulam and Hyers-Ulam-Rassias respectively.

Corollary 5.2. Let a mapping h : X — X, satisfying

#(Dch(y,2)) < e
forall y,z € X. Then there exists C1 : X — X, a unique cubic mapping which satisfies (7) and

ph(y) - Ci(y) < 5 (37)

€
2°-1)
forall y € X, for some € > 0 and p* > 1.
Corollary 5.3. If h : X — X, a mapping satisfies
u(Dch(y, 2) < e(Iyll" +II2I™), Yy,zeX,
then there exists a unique cubic mapping Cy : X — X, such that

€
ph(y) = C1(y) < Wllyllm (38)
forall y € X,y # 0, for given real numbers m < 3 and € > 0.

Assuming a nontrivial convex modular u satisfies the A,—condition if there exists § > 0 such that
u(py) < Bu(y) for all y € X, where g > p and hence u(p®y) < Mu(y)
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Theorem 5.4. If a mapping h : X — X, satisfies

w(Dch(y, 2)) < v(y, 2) (39)
and v : X* — [0, c0) is a mapping such that

= MY [y z
\JV(y,z)=Z"W (p] pf)<°° Vy,z € X. (40)
j=1

Then a unique cubic mapping Cy : X — X, exists and defined by Ca(y) = limy—cop™h (p,,), y € X, which satisfies
(7) and

u(h(y) - Q@w«l<%>WeX (41)

Proof. Equation (33) implies that
Y 1 (y
h(y) — 3h(—))§—v(—,0), Yy e X (42)
#( y)-p p 2"\p Yy

Hence by the convexity u, we arrive

u@@—@%%%ﬁ
v lern)-on()
SP ( ) - @) ) +p3#(P) , ®’) 2

2
< MV(X,0)+ &v(pl 0) Vyex.

2% \p" ) 2p°
Generalizing, we obtain
n-1
] 1 1M (o
v <2 LS (o) e ) @

for all y € X. The rest of proof is similar to that of Theorem 4.4. [J

Assuming v(y,z) = € and v(y,z) = e (|lyll" + [|z||"") in Theorem 5.4, we obtain the following stabilities
called Hyers-Ulam and Hyers-Ulam-Rassias respectively.

Corollary 5.5. If a mapping h : X — X, satisfying
u(Dch(y,z)) <€, Yy,zeX,
then there exists Cy : X — X, a unique cubic mapping which satisfies (7) and

eM?

ph(y) — Ca(y)) < (P — M)’ YyeX, (44)

for some € > 0 and M? < p®.
Corollary 5.6. If h : X — X, a mapping satisfies
u(Dch(y,2)) < e(llyll” +1121"), Yy, z€X,

then a unique cubic mapping C : X — X, exists such that

eM?
ph(y) — Ca(y)) < 2p(p" — M2)

where y # 0, for given real numbers M* < p™*3 and € > 0.

lyl™, YyeX, (45)
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6. Conclusion

We introduced a generalized mixed type of additive and cubic functional equation with its general

solution and various stabilities concerning Ulam problem in modular spaces by considering with and
without A,—condition.
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