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Abstract. This paper deals with the boundedness of integral operators and their commutators in the
framework of mixed Morrey spaces. Precisely, we study the mixed boundedness of the commutator [b, I,],
where I, denotes the fractional integral operator of order @ and b belongs to a suitable homogeneous
Lipschitz class. Some results related to the higher order commutator [b, IJ* are also shown. Furthermore,
we examine some boundedness properties of the Marcinkiewicz-type integral uo and the commutator
[b, o] when b belongs to the BMO class.

1. Introduction

In the last decades a lot of studies on integral operators and partial differential equations have been
carried out. Many authors studied several areas in harmonic analysis, emphasizing real-variable methods,
and leading to the study of prosperous areas of research including the Calderén-Zygmund theory of singular
integral operators and commutators, the Muckenhoupt theory of A, weight, the Fefferman-Stein theory of
HP spaces. See for instance the classical book [21] where the author, among other useful contents, discusses
about the Calderén-Zygmund decomposition of locally integrable functions, fractional integration, the
John-Nirenberg class of functions having bounded mean oscillation and develops the essentials of the
Calderén-Zygmund theory of singular integral operators. In the above mentioned book, the author also
deals with the Coifman-McIntosh-Meyer real variable approach to Calderén’s commutator theorem. As an
application of several real-variable methods, in [21], it is treated in detail the problem of the solution to the
Dirichlet and Neumann problems on a C! domain by means of the layer potential methods.

For a deeper discussion of Calderén-Zygmund theory and weighted norm inequalities, we refer the
reader to [11].

A deep study of the theory of fractional integration is contained in [23], where the authors studied
the fractional integrations and some topics related to mean oscillation properties of functions, including
the classed of Holder continuous functions and the space of functions having bounded mean oscillation.
It is interesting to point out that the motivation for studying fractional integration is provided by a sub-
representation formula, which in higher dimensions plays a role roughly similar to the one played by the
fundamental theorem of integral calculus in one dimension. The norm estimates for fractional integral
operators derived in [23] are applied to obtain local and global first-order Poincaré-Sobolev inequalities,
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including endpoint cases. In this context it is useful to emphasize that the authors also extended the above
subrepresentation formula for smooth functions to functions with a weak gradient.

Letus fix T > 0 and, for t € [0,T] and 0 < a < n, let us consider the Riesz fractional integral operator of
order « (Riesz potential) defined by

Lfx, ) = %
]Rn

dy, a.e. inR".

For a locally integrable function b, the commutator is defined by

[b,1,] = b(x/ t)Iaf(xr t) - Ia(bf)(xr t)r bel,

loc

(R" x [0, T]), b(x, t) = b(x).

Adams ([1]) proved that the fractional integral operator is bounded from the classical Morrey space
LPA(R™) to L9 (R"). Later, Chiarenza and Frasca ([5]) gave another proof of this boundedness result.

Di Fazio and Ragusa ([9]) showed that if b is in the class BMO(IR") of functions having bounded mean
oscillation, then for suitable p,g, A, the commutator [b,1,] is bounded from the classical Morrey space
LPMR") to L9 (IR™), and conversely, under some restriction on ¢, if the commutator [b, I, ] is bounded from
LPMR") to L7 (IR"), then b € BMO(RR").

Continuing this study of commutators, in this paper we prove some new results dealing with the
boundedness of the Marcinkiewicz integral and the boundedness of the commutator associated to such
integral and a function b having bounded mean oscillation.

Let us define these operators, denoting by $"~! the unit spherein R", n > 2, equipped with the normalized
Lebesgue measure do. Let Q € L1($"™!) with 1 < g < oo be homogeneous of degree zero and satisfy the
cancellation property

f Q')dx' =0
Sn—l

where x” = & for any x # 0.
The Marcinkiewicz integral of higher dimension uq is defined by

1

r ds
pa(f)(x,t) = [ [Fo,s(x, f)|2—3] ,
ot S

where

Q —
Fos(x,t) = f ﬁf(y,t)dy-
[x—yl<s

In the sequel we consider the commutator [b, uq] defined as follows:

( d
ol =| [ F @RS |
0

where ol )
‘e
= [ 2B - by

|x _ yln—l
lx—y|<s

Let $"~! stand for the unit sphere in R”, with n > 2, equipped with the normalized Lebesgue measure
do.

Stein ([19]) proved that, if Q € Lip a(S”‘l) (ie., |Qx) = Q)| < |x—yl|*), with 0 < a < 1, then pq is of type
(p,p), for 1 < p < 2 and of weak type (1, 1).
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The weighted boundedness of Marcinkiewicz integral was firstly studied by Torchinsky and Wang in
[22]. They proved that if Q € Lip ,(§""), for0 <a <1,and w € A, for 1 < p < oo, then g is bounded on
LP(w). In the same paper, Torchinsky and Wang also proved the L”—boundedness of the commutator [u¢, b]
for1 <p < oo,if Q € Lip ,(8"™), for 0 < a < 1. Ding, Lu and Yabuta in [10] proved the L’—boundedness of
the above commutator if Q € L1($"!), for 1 < g < oo.

Following the Stein’s point of view, in his book [20] on singular integrals, the Marcinkiewicz integral is
the key to the L7 boundedness of the operators. Nowadays, although there are many other approaches to
singular integral theory, many authors studied boundedness properties of the Marcinkiewicz integral. For
recent developments of this area, we refer the reader, for example, to the papers [2, 3, 6-8].

In line with the contents of the paper [18], we investigate the boundedness of the operator pq, the
commutators [b, uq] and higher order commutators on mixed Morrey spaces.

2. Mathematical background

Let us assume that Q is a bounded open set of R” such that there exists A > 0 such that |Q(x, p) N Q| > Ap"
forevery x € Qand p € [0, diam(Q2)], being Q(x, p) a cube centered in x, with edges parallel to the coordinate
axes and length 2p.

First of all we recall the definition of classical Morrey space ([14]).

Letp €]1, o[, A €]0,n[ and f be a real measurable function defined in Q C R". If |f|V is locally summable
in Q and the set described by the quantity

1
o

: f Fw)P dy,

QNB,(x)

when p varies in ]0, diam Q[ and x varies in €, has an upper bound, then we say that f belongs to the
Morrey Space LP(Q).
If f € LPM(Q)), we define

M= s % [ Py 0

xeQ
0<p<diam Q QﬁB{,(x)

and the vector space naturally associated to the set of functions in L”(€2) such that (1) is finite, endowed
with the norm (1), is a Banach space.
The exponent A can take values that are not belonging only to ]0, n[ but the unique cases of real interest are
those for which A €]0, n[.

Similarly we can define the Morrey space in LP}(IR") as the space of functions such that is finite:

1

p>0 B/,(x)

The above defined space is used in the theory of regularity of solutions to nonlinear partial differential
equations and for the study of local behavior of solutions to nonlinear equations and systems (see, for
instance, [15, 16]).

The following definition appears in the recent paper [18].

Definition 2.1. Let 1 < p,qg < +00, 0 < A <n, 0 < u < 1. We define the set L7(0, T, LP*(Q)) as the class of
functions f: Qx [0, T] = R such that the quantity

9
P
1 1
Wfllcono, iy = | SUp — sup — f If(y, P dy| dt| , )
QNB, (x)

weort P JioTint-ptorp) | <2 P
p>0 p>0

is finite. The same definition holds if QO = R".
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It can be shown that the linear space naturally of functions f such that (2) is finite endowed with the
norm (2), is a Banach space.

For further details and recent results dealing with the Morrey spaces with mixed norm, we refer the
reader to [4].

Definition 2.2 ([12]). Let f be a locally integrable function defined on R". We say that f is in the space BMO(IR")
of functions having bounded mean oscillation if

BcR"

1
sup - f () ~ faldy < oo
B

where B runs over the class of all balls in R" and fp = \%I ff(y)dy.
B

Let f € BMO(R") and r > 0. We define the function

p<r

n(r) = sup ”31? f lf(y) — f5,ldy
BP

where B, is a ball with radius p, p <.
BMO is a Banach space with the norm ||f]l. = sup n(r).

r>0

The following theorem holds.
Theorem 2.3. Let b € BMO(IR"). Then, for any 1 < p < oo, we have

1

sup lAflb(x)—bgl”dx < c||bll..
s | IBI J

Definition 2.4 ([17]). We say that a function f € BMO is in the Sarason class VMO(IR") of functions with vanishing
mean oscillation if

lirg n(r) = 0.

r—0+

The function 1 is said to be the VMO modulus of f.

Definition 2.5 (Lipschitz space). We define the homogeneous Lipschitz space of order B, 0 < < 1, by
Ap(R") = {f : |f(x) = fW)I < Clx = yP).

The smallest constant C > 0 is the Lipschitz norm || - || Apr

Let f € L| (R"), we recall the following Hardy-Littlewood maximal function
MFe=sup —— [ Iftldy
p>13 |Bp(x)| By (x) ’

where B, (x) is a ball centered at x and with radius p.
Given f € L] (R") the sharp maximal function is defined by

1
fi) = sup fB ) — foldy,

B>o{x}

for a.e. x € R", where B is a generic ball in IR".



A. Scapellato / Filomat 34:3 (2020), 931-944 935

Sette[0,T], f € Llloc(]R” x [0, T]) and 0 < 17 < 1. Let us consider the fractional maximal function

(M, f)(x) = sup —— f Fw.H — feldy,
o [BI'™1 U

for a.e. x € R", where B is a generic ball in R".
Throughout the paper, we write A < B to mean that there exists a constant C > 0 such that A < CB.
Moreover, we write A ~ B if there exists a constant C > 1 such that % < % <C.

3. Boundedness of the commutator [b, I,]

In order to prove our theorems we need some technical results. A useful tool is a pointwise inequality
that connect the sharp maximal function and the fractional integral operators. The classical L? case is
discussed in [21] where the reader can find a proof due to Stromberg of a result of Coifman, Rochberg and
Weiss.

In [9] Di Fazio and Ragusa obtain a similar result in the framework of classical Morrey spaces.

Lemma 3.1 ([9]). Let0<a<n 1<p<i,0<A<n-—ap 1<rs< min(p,g(l - %%)) and b € BMO(IR").
Then, there exists a constant C > 0, independent of b and f, such that

(Ib, L)) () < Cllbll, [(MIL f1)7 () + (M [ £°) ()
for almost all x € R" and every f € LPM(R").

We can naturally extend the previous result to the case f € L¥(0, T, LP}/(IR")), with0 < u < 1,1 < g < co.
The next results are contained in [18].

Theorem 3.2. Let1 <p < +c0,0 <A <n, 1<q <+00,0< p<land feLI#0,T,LP*(R")). Then, there exists
a positive constant C, independent of f, such that

IM fllprao, i@y < C N fllruo 00 ®ey)-

Theorem 33. Let 0 <a <n 1<p <t 0<A<n-ap ;=;-351<q <+, 0 <y <1land

f € LT (0, T, LPM(R)"). Then, there exists a positive constant C, independent of f, such that

“Iaf“m’/ﬂ’(O,T,LM(]RH)) < C“f”m’ru’ (0,T,LPA(R™))*

Theorem 3.4. Let1 <p,g<o0,0<A<n 0<pu<land feLQ,T, U"A(]R")). Then, there exists a positive
constant C, independent of f, such that

IM fllzosor i@y < C I oo 1m0 @)

Theorem 3.5. Let 1 < p,q,q1 < 00,0 < A <n, 0 <y <1and f € L7(0,T, LPAR™)). Then, for every
n€]o,(1 - %)%[, there exists a positive constant C, independent of f, such that
||M17 f ||LW'1 (0,T,La*(R")) <C ” f ||L'414‘1 (0,T,LPA(IR™))

1 _ 1
[4 n—A*

where % =

The next results deal with the boundedness of commutator in two different cases: while in the first we
assume that the multiplication function b has bounded mean oscillation, in the second one we take b in a
homogeneous Lipschitz space.
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Theorem 3.6. Let 0 < a <n, 1 <p <5 0<A<n-ap ; ———ﬂ,1<q < 400, 0 <y <1,

f € LT+ (0, T, LPA(R")) and b € BMO(R" X [0, T]), b(x, t) = b(x). Then [b, 1] is bounded from L7+ (0, T, LP*(IR™))
to L# (0, T, L (R™)).

Proof. Let us fix
1
1 <r,s<min(p,ﬁ(1—&)—).
a nlp

Using Lemma 3.1, Theorems 3.2-3.5, we obtain:

Wb, L fllrw @ raorgrey < ML DN ae 0,10 ey
< QI LIl 01,00 ey
1 1
< (bl [||(M|Iaf|r)’ o 0,100 @Ry + NMes | fT) 5 ”L””'“'(O,T,Lq"‘(JR"))]
1
< C b *I: MI T Mm ]
Mol (WU T F MU
< b [ I ) ]
el [ e, I o

¥ (0,TLFA(R")

< CHf”Lq A (0,T,LPA(IRM)) 7
and this completes the proof of the theorem. [J

Theorem 3.7. Let0<a<n,1<p<§,0</\<n—ap,%:%—%,1<q’<+oo,0<y’<1,
feLT#(0,T,LPMR"),0<p<1,0<a+B <nandb e Ag(R"). Then, [b,1,] is bounded from L7+ (0, T, LF(R™))

to LT+ (0, T, LY}(R™)).

Proof. We begin by proving a pointwise inequality. Precisely, from the definition of the function space
Ag(R") it follows that:

I[b, L] f (x, 1)l

f (b(x) - _b(y})q)_J;(y,t) dy
Ix — yl

Ib(x) — b(y)l - If(y,f)l
: f lx — yl*=a

[f(y, D)
CHb”Aﬁ(R” f| yln (a+ﬁ)

C||b||Aﬁ(]Rn)Ia+ﬁ(|f|)(x)/

for a.e. (x,t) e R" x [0, T].
Then, using Theorem 3.3, we obtain

IN

IA

b, Ia]f| |er’41’ (0,T, L4 (R")) C| |b||/\ﬁ(]Rn)||Ia+ﬁ(|f|)||m'lp’ (0,T, LA (R™))

IA

ClBI A ey 1 Nz 0,7, vy

and the proof is complete. [

Let T > 0 and for t €]0, T[, we consider a higher order commutator operator defined as follows:

ABF(E, B
b = [ = e,

R"
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where
Atb(x) = Agh(x) = b(x + &) — b(x),  AF'b(x) = Alb(x) — Afb(y), k> 1.

Let 0 < B < k < n, k an integer and 7 be the dimension of the whole space. For > 0, we say that b
belongs to the Lipschitz space Ag(R") if

bl A
A = SUu -
At ST

x#h

< 00, k>1.

Using the same argument as in Theorem 3.7, it is possible to prove the following result.

Theorem 3.8. Under the same assumptions as Theorem 3.7, if b = by + P, where by € Ag(IR") and P is a polynomial
of degree less than k, then [b, 1, ¥ is bounded from L7+ (0, T, LP*(R™)) to L1+ (0, T, L¥*(IR™)).

4. Estimates for the Marcinkiewicz integral and its commutator

The main goal of this section is to prove two boundedness results; the first one concerns pq, the second
one deals with the commutator [b, ug].

Theorem 4.1. Let Q € L9($" 1) with 1 < g < co. Then, for every 1 <p < 00,0 < A <n,0 < p <1, there exists a
positive constant C, independent of f, such that

o llcanor 2 @)y < Cllflliano,r00 )

Proof. The proof is divided in two steps. In the first step we obtain a classical Morrey-type inequality; in
the second step, integrating and taking the supremum, we achieve the mixed Morrey norm.

First step.

Let us fix a ball B = B(xg,r) € R" and let kB = B(xo, kr), for any k > 0. Let f = fi + f», where fi = fx23,
f> = fxesy and x2p denotes the characteristic function of B(xy, 2r). Then, using Minkowski inequality, we
have

1 1 1
Y Iny(x, f)lp dx| < Y Inyl(x, f)lp dx| + Y |ny2(x, t)|}7 dx| = K; (t) + Kz(t).
e B[‘ B[ B]‘

re rr

The classical L” boundedness of Marcinkiewicz integral with rough kernel (see, e.g., [13]) implies that

1
Ki(t) < - ‘f|ﬁlof(xrf)|;7 dx
Bl (5]
< (21;)!7 sup 14 f|#Qf(x't)|pdx
rv  BCR" (2r)r B
1
< Jsup o [ i ordy

‘;755;’ p Bp( )
In order to estimate K,, we observe that, if x € Band y € 2/*'B\ 2/B, j > 1, then

i-1
Ix =yl > |y — xol = |x — x| 2 2/7'r.
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Therefore

2 \3

Qx—-y) ds
f I — yl“f e

2By N{y:lx—yl<s}

1Q(x = y)| (" ds
f Wlﬂyrt)ldy- fs—3

2/*1B\2/B 21y

SR Q6 — )|
_ LB dy.
mem% f Sl dy

2/+1B\2iB

2
A A

Let Q € L*(§"!). Using Holder inequality we obtain the following estimate:

+00

1
Ha(R© D < ClQlheen Y — - f| ld
HQ(fz)( ) L=(S );|2f+13| |21+1B| f(y ) y

< Qs 1)Z|21+1B| f|f (y, 171177 dy

2/+1B
1
(e 4
S 10 Y, | [ woridy| @ nieer
S 1n— i1 K A 7
j=1 |2]+ Bl (2]+1r)p 2/+1B
1
1 1 271
< Qe [ vworiay| @t 22
LS~ )Zl2]+1B| (2]+1r);9 o fy y |2]+1B|p
1
1 L 2B
< 1Ol [ vworiay| @t 22
L>(S )Z [2/+1B] Q17 )p o fy Y |21+11’|V
]+
P w
: A-n
S 10l |sup o [ o dy| YR
R p? B,(x) =i
Now, let Q € L1($"!), 1 < g < 0. From Hoélder inequality we get
o 1 1Q(x — y)l
x,t < _ LD d
ol < Y | ey
] 2/+1B\2/B
1 4
q 7

- |f(y, DI
< Qx-y)7d - d
JZ‘ |2/+1B| f QG =yl dy f lx =yl

2i+1B\2/B 2/+1B\2/B

938



A

Forx € Band y € 2/*1B\ 2/B, a

1

Q% =yl dy

2/+1B\2iB

IN

A

We also note that if x € B, y € (2B)*

/

2/+1B\2/B

So we have

Ia(A)@, B $ 1Qlls Y

Let us now obtain another useful i

. Scapellato / Filomat 34:3 (2020), 931-944 939

direct calculation shows that 2/-!r < |y — x| < 2/*?r. Hence

%
1Q(2)|" dz

2/ 1r<z| <2+ y

20+l
f Q@)™ do(z) dp 3)
2j-1p gn-1
2J+ly %
1€ o571y fpn_l dp
2i-1r

; 1
IQl0(sn-1) /2B
, then |y — x| ~ [y — xo|. Consequently we have

1

7 7

7

f £y, HIT dy

2/+1B

1

.
f (v, D) avl < —
[27+1B

[x =yl

1
7

1 : q
mfwyrt)lq dy| .

=1 2j+1B

j
nequality. If p = q’, we have

1
7

(o] q
1 ,
pa(f)(x,t) < ”Q“Lq(S”*l)Z 2+1B| flf(y,t)l" dy
=1 2j+1B
< QM Y, g | @O dy
]':] 2j+lB
1
1 ' . A-n
< |sup —/\f If(y, I dy Z|2”1r|7.
s P IR =

Thanks to a straightforward ca

1
lua(f2)(x, ) S Qs sup %
p>0

Iculation, similar to that one in the case Q € L®(§""!), we have

Pﬁ(

P

1

P

) If(y, I dy

(o]

: A-n
Z 271

=1

Hence, for 1 < g < 00,1 < p < o0, taking into account the estimations above, we have that

[ isworay

1
K < |sup —
By(

xeR" p
p>0
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Combining the inequalities for K; and K, and taking the supremum over all balls B € R", we get the
[P —estimates.

Second step. From the previous step, we have the classical Morrey inequality

:s ,,
. 1

sup L [ s oray| <|see k[ jpworay]

w07 JB, ) . P* IB,x)

p>0

Elevating to g, integrating over [0, T] N (ty — p, to + p), it follows that

1
1 ' 1
sup 7[ lwaf(y, HF dy| df < f sup _Af
YeRM p BP(X) 0] xeRN P B

[0,TIN(to—p,to+p)\ #>0 N(tg=p,to+p\ >0 P

r

( )If(]/, Hr dy] dt.

Multiplying the inequality above to # and taking the supremum of both sides and, finally, elevating
both sides to %, we obtain

q

N

p
1 1
sup — sup _Af lpaf(y, HF dy| df| <
toelo,T] P sert P JB(x)
p>0 [0,TIN(to —p,to +p) p>0
7 1
1 1 ' q
S| sup — f sup _Af If(y, P dy| dt
toel0,T] P vt P JB(x)
p>0 [0,TIN(to—p,to+p) \ P>0

and the proof is complete. [

Theorem 4.2. Let Q € L1($"!) with 1 < q < oo and b € BMO(R" X [0,T]), b(x,t) = b(x). Then, for every
1<p<oo,0<A<n 0<yu<1,thereexists a positive constant C, independent of f, such that

B, ual(Alliaeo,r.r @) < Cllfllowo,r @)

Proof. Let us fix a ball B = B(xg,*) € IR” and let kB = B(xo, kr) for any k > 0. Let f = fi + f,, where fi = fx25
being x2p the characteristic function of B(x, 2r). Then, we have

1 1

1 f b, ualfeo P dx| < = f b, ol i, HP dx |+~ f b, tal o, HP dx
re B re B B

Ty

= Kj(t)+Kj(t), fortel0,T].

Using the weighted L’ —estimate (for w = 1) stated in [22], we obtain

1

, 1
K{(t) < |Ibll. | sup p_"f If(y,HF dy| , forte]0,T].

xeR" B
p>0 i ( )

Now, we deal with the term K} (t). For any fixed x € B, we have
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2 2
Q(x - ds
palpen < bo-ull [| [ ZBiwna] &+
0 |@B)yN{y:lx—yl<s}
N
r Qx—-y) ds
A [ PSR -y S
0 [@B)rNn{y:lx—yl<s}
= I+IL
In the proof of Theorem 4.1 we have already proved that
1 g hor
L5 b =blfsup = | If(n, 0 dy Y 127 BI
xeR™ Bp(x i
>0
1
1 " . A=n
< b -bsl|sup — | If(y P dy| Y RFAT
xeR" p Bp(x) —
consequently
1 ’% 1 : Iy 1 l
- flpdx < [sup _Af If(y, P dy 72— flb(x) bplPdx
rp 5 xpe;l{(')‘ p By(x) re = (2]+1 r) ¥ 9

1 l

If(y,t)l” dy [% f Ib(x)—bgl”dx]
B

1
P

If(y, B dy| bll..

1
P

;

§\>| —
—_—
%
=
o
\L/
|
N
25
|

N
2}
=
o
|

p

On the other hand, we have

y QG = y)l

hs ——1Ib(y) - bell f(y, )ld
; 21 f |X—y|n71| () - bsllf (v, Hidy

2/+1B\2/B
y Q — )l
s Z‘ |21+1B| f lx y|ny1| (v) = bygllf (v, HIdy
= 2/*1B\2/B
i : W | |n 1 |f( t)ld]/
= 2/*1B\2/B

= II+1V, forte[0,T].
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If Q € L*(§"!), using Holder inequality and Theorem 2.3, we attain

1T 5 Qe 1>Z|2]+1B| [ 100 = bosslrt iy

/+1B
1 1
v P
ST 1>Z|2]+1B| [ 1w -tasr Ry | [ i or-1ay
27+1B 2/+1B
1 1
1 - . A , P
< Qs @y | sup — If(y, O dy Z s @) flb(y)—b2;+13|p 1" 7dy
werr P JB,(x) = [27+1B| ,
p>0 2j+1B
1
1 g
S QI |sup — f F, O dy i} @y
(Gl *;2‘3 p/\ B, ;‘|2]+1B|
1
L)
S Q| sup 7 | If 0P dy Z|2]+1B|(2]”f> Py
xe]R” ]:1
1
1 ' & . A=n
< 1l bl | sup — f fw.ordy| Y @n'
xe]R” o (x

By p

If Q € L9($"1), using Holder’s inequality and (3), we gain

ms Qe Z [ f 16(y) = byl FCy, DI dy]

S
+1
=1 B|ﬁ 2j+1B
1
1 - . A=n
o R T e f I pPdy| Y @05
R P VB =1

Hence, for 1 < g < oo, we achieve

» 14
lA fIH”dx < bl | sup %f If(y, O dy
re J ;ﬂzg P” JB,(x)

p

In the proof of Theorem 4.1 we reached

1
1 f 1Q(x = )l 1 i
| EX =9 ey, iy < | sup f .o dy| @*1n%
1 % - n-1 xeRM? A X
125l 2/+1B\2/B b=l pt P By

Hence, by an easy calculation, it can be shown that if b € BMO(IR"), then |by15 — bg| < Cjl|bll.. Then,

1 i
IV 5 |bll. | su —f
xe][{? pA B x)

1

£, b dy] Y i
o j=1
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From the last inequality it follows that

1 1
14 P n=7A

1 1 >
L [vear| < wnfsup = [ vworar| Y-t
rv ;ﬂzg P IB,x) ;

B P

1 [o¢] .
1bll | sup — f If(y, )l dy Z .]@
R P JB,(x) =1 ()

A

A

<=

A

1
16l | sup —f If(y, P dy
Pt JB,x

xeR"
p>0 P

Combining the above estimates and taking the supremum over all balls B C IR" we obtain the classical
Morrey estimate:

p P

1 1
sup —7 f b, ual f(y, HF dy | < |sup s f If(y, b dy| , forte[0,TI. 4)
By(x) x)

xeRM p xeR" (
p>0 p>0 P

Finally, we derive the desired mixed-Morrey estimate. Elevating (4) to g, integrating over [0, T] N (tp —
p, to + p), it follows that

sup L f
XeR" P/\ B,(

[0,TIN(to—p,to+p)\ #>0 f

q

If(y, )P dy| dt.
x)

P

1
b, walf(y, HP dy | dt < f sup — f
x)

xeRM B P(
[0,TIN(to—p,to+p)\ P>0

Multiplying the inequality above to F%, taking the supremum of both sides and elevating both sides to %
we get

Y
1 1
sup — f sup _Af I[b, palf(y, P dy| dt| <

u
toel0,T] P wrt P JB,(x)
0,)[>o ] [0,TIN(to—p, ko +p)\ #>0 ol

q
4
1

1
sup — f sup _Af If(y, P dy| dt

u
toel0,T] P serr P JB
0 p[>0 ] [0, TIN(to—p,to+p)\ P>0 o)

and the theorem is completed. [
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