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Abstract. The principal results in this article deal with the existence of fixed points of a new class of
generalized F-contraction. In our approach, by visualizing some non-trivial examples we will obtain better
geometrical interpretation. Our main results substantially improve the theory of F-contraction mappings
and the related fixed point theorems. In section-4, application to graph theory is entrusted and proved
results are endorsed by an example through graph. The presented new techniques give the possibility to
justify the existence problems of the solutions for some class of integral equations. For the future aspects of
our study, an open problem is suggested regarding discretized population balance model, whose solution
may be derived from the established techniques.
Keywords: Fixed point, parial b-metric space, graphic contraction, F-contraction, Suzuki-Geraghty type
generalized (F, ψ)-contraction, integral equation.

1. Introduction and Preliminaries:

The celebrated Banach contraction principle theorem is one of the keystones in the development of fixed
point theory and has been improved and extended in numerous ways (see eg., [21, 34]). In this connection
the classical results of Geraghty [12] and Suzuki [28] have been the source of motivation for frequent
researchers working in the area of nonlinear analysis. Bakhtin [3] introduced the notion of b-metric spaces,
which was extensively extended by Czerwik [6] in 1993. The notion of partial metric spaces was introduced
by Matthews [18] as a part of the study of denotational semantics of data flow networks. Shukla [26]
generalized both the concepts of partial metric spaces and b-metric spaces and introduced partial b-metric
spaces. This concept was further modified by Mustafa [19] in order to find that each partial b-metric pb
generates a b-metric dpb . Readers interested in aforementioned spaces may switch to [2, 10, 11, 15, 25].
In recent investigations, Wardowski [29] considered a new type of contractions (the so called F-contractions)
and proves some fixed point results in a very general setting. Piri et al. [22] refined the result of Wardowski
[29] by launching some weaker conditions on the self mapping regarding a complete metric space and over
the mapping F (for more details see, eg., [31, 32] and the related references therein). From last few years
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fixed point theory in graph structure has been the center of intensive research for many authors, where the
authors aim to bridge the gap between metric fixed point theory and graph theory. Recent work in this
structure along with some noteworthy applications can be seen in [20, 27, 33–35].
In this paper, we extend and revamp the work done in Altun and Sadarangani [1], Dung and Hang [9],
Karapinar et al. [16], Rosa and Vetro [17], Piri and Kumam [22, 23] and Wardowski and Dung [30]. Using
concrete forms of F-contraction it is possible to obtain other known types of variety of contractions; e.g.
taking F(ξ) = ln(ξ), ξ > 0, we get a Banach contraction (for details, see [29]). Inspired by the ideas given in
([12], [28], [29], ), we propose a new contraction called Suzuki-Geraghty type generalized (F, ψ)-contraction
and graphic contraction in the setting of partial b-metric spaces. The proposed type of contraction is not a
special case of generalized contractions as can be seen in the examples of the subsequent study.
Within the paper, N, R+, R denote the set of natural numbers, the set of all non-negative real numbers
and the set real numbers respectively.

In the subsequent part we enumerate some basic definitions and handy results that are constructive
tools in succeeding analysis and will be deployed in the rest of this paper.
As a generalization and unification of metric spaces, Shukla [26] introduced the concept of partial b-metric
spaces as follows:

Definition 1.1. [26] Let X be a nonempty set and s ≥ 1 be a given real number. A function pb : X × X → [0,∞) is
called a partial b-metric if for all x, y, z ∈ X the following conditions are satisfied:

(pb1) x = y iff pb(x, x) = pb(x, y) = pb(y, y);

(pb2) pb(x, x) ≤ pb(x, y);

(pb3) pb(x, y) = pb(y, x);

(pb4) pb(x, y) ≤ s[pb(x, z) + pb(z, y)] − pb(z, z).
The pair (X, pb) is called a partial b-metric space. The number s ≥ 1 is called the coefficient of (X, pb).

Observe that, if s = 1 in Definition 1.1, the pair (X, pb) is called a partial metric and denoted by (X, p) (
see[18]).
In order to find that each partial b-metric pb generates a b-metric dpb , Mustafa et al. [19] modified the
Definition 1.1 and replaced condition (pb4) by (p′b4) as follows:
(p′b4) pb(x, y) ≤ s(pb(x, z) + pb(z, y) − pb(z, z)) + ( 1−s

2 )(pb(x, x) + pb(y, y)).

Remark 1.2. The class of partial b-metric space (X, pb) is effectively larger than the class of partial metric space and
b-metric space as well.
If pb(x, y) = 0, then from (pb1) and (pb2) it follows that x = y. But, if x = y, then pb(x, y) may not be 0.

Proposition 1.3. [19] Every partial b-metric pb defines a b-metric dpb , where
dpb (x, y) = 2pb(x, y) − pb(x, x) − pb(y, y) for all x, y ∈ X.

For covergence , Cauchy sequence and completeness, in the context of partial b-metric spaces, we refer [19].

Lemma 1.4. [19] Let (X, pb) be a partial b-metric space. Then

1. A sequence {xn} is a pb-Cauchy sequence in (X, pb) if and only if it is a b-Cauchy sequence in the b-metric space
(X, dpb );

2. (X, pb) is pb-complete if and only if the b-metric space (X, dpb ) is complete. Moreover, lim
n→∞

dpb (xn, x) = 0 if and
only if pb(x, x) = lim

n→∞
pb(xn, x) = lim

n,m→∞
pb(xn, xm).

On the other hand, Wardowski [29] described a new type of contraction mapping, called F-contraction
defined by

for all x, y ∈ X
(
d(Tx,Ty) > 0 implies τ + F(d(Tx,Ty)) ≤ F(d(x, y))

)
,
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and obtained a fixed point result as a generalization of Banach contraction principle. Later, Secelean et al.
[24], Piri and Kumam [22] extended and refined above definition of Wardowski [29] by establishing some
equivalent conditions.
Throughout our succeeding discussion, we denote the set of all functions satisfying (F1) of [29] , (F2

′

) of
[24] and (F3

′

) of [22] by ∆F.

Definition 1.5. [4] Let X be a non empty set, T : X → X and α, β : X × X → [0,∞). We say that T is an
α, β-admissible mapping if

x, y ∈ X, α(x, y) ≥ 1 and β(x, y) ≥ 1 implies α(Tx,Ty) ≥ 1, and β(Tx,Ty) ≥ 1.

Definition 1.6. [12] Let Θ denote the family of all functions θ : [0,∞)→ [0, 1) such that for any bounded sequence
{tn} of positive reals, θ(tn)→ 1⇒ tn → 0.

For our further discussion following family of functions will be utilized.
Let Ψ be a family of functions ψ : [0,∞)→ [0,∞) such that ψ is continuous and ψ(p) = 0 if and only if p = 0.

Remark 1.7. Note that in the paper [14], the authors showed that some fixed point generalizations to partial metric
spaces can be obtained from the corresponding results in metric spaces. In this paper we strictly confine for s > 1,
therefore our generalizations are useful and generalizations in real sense. For the role of θ we refer [4], [5] and the
references therein.

2. Main Results:

We begin this section by inaugurating the following definition.

Definition 2.1. Let (X, pb) be a partial b-metric space and T : X → X be a mapping. Then T is said to be a
Suzuki-Geraghty type generalized (F, ψ)-contraction on X, if there exists F ∈ ∆F, θ ∈ Θ and ψ ∈ Ψ such that for all
x, y ∈ X and s > 1,

1
2s

pb(x,Tx) < pb(x, y)⇒ F(sεpb(Tx,Ty)) ≤ θ
(
MT

s (x, y)
)
F
(
MT

s (x, y)
)
− ψ

(
NT

s (x, y)
)
, (1)

where

MT
s (x, y) = max

{
pb(x, y), pb(x,Tx), pb(y,Ty),

pb(x,Ty) + pb(y,Tx)
2s

}
,

NT
s (x, y) = max

{
pb(x, y), pb(x,Tx), pb(y,Ty)

}
and ε > 1 is a constant.

Following example is worked out to illustrate above definition.

Example 2.2. Let X = [0, 2] be equipped with partial b-metric pb : X×X→ [0,∞) defined by pb(x, y) = [max{x, y}]2,
for all x, y ∈ X. It is obvious that, (X, pb) is a complete partial b-metric space with s = 2.
Let the mapping T : X→ X is defined by

Tx =
x√

9 +
√

x
.

Define θ : [0,∞) → [0, 1) by θ(k) = 99
100+log(2k) and let ψ : [0,∞) → [0,∞) be given by ψ(k) = log(2k), F(k) =

k + log(k) for all k ∈ R+. Without loss of generality we take x, y ∈ X with x > y.
One can easily check that, 1

2s pb(x,Tx) < pb(x, y). In order to verify inequality (1), we have

F(sεpb(Tx,Ty)) = F
(
sε max{Tx,Ty}2

)
= 2ε

( x2

9 +
√

x

)
+ log

(
2ε

( x2

9 +
√

x

))
. (2)
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On the other hand, one can easily verify that MT
s (x, y) = x2 and NT

s (x, y) = x2. Further,

θ
(
x2

)
F
(
x2

)
− ψ

(
x2

)
=

99(x2 + lo1x2)
100 + log(2x2 )

− log(2x2
). (3)

for all x, y ∈ X = [0, 2]. For ε = (1, 2.878), one can see that (3) dominates (2) as shown in Figure(1).

Figure 1: Plot of inequality with ε = 1.6, 3D and 2D view.

Now we enunciate a fixed point result concerning generalized F-contractions as follows:

Theorem 2.3. Let (X, pb) be a complete partial b-metric space and T : X→ X be Suzuki-Geraghthy type generalized
(F, ψ)−contraction. If T is continuous, then T has a unique fixed point u ∈ X.

Proof. Let x0 ∈ X be arbitrary point. We construct a sequence {xn} in X such that

x = x0 and xn = Txn−1, for all n ∈N.

Suppose pb(xn−1, xn) = pb(xn−1,Txn−1) = 0 for some n ∈ N, then xn−1 is the required fixed point and we are
done in this case.
Consequently, we assume that pb(xn−1,Txn−1) > 0 for all n ∈N.
Hence, we have

1
2s

pb(xn−1,Txn−1) < pb(xn−1, xn), for all n ∈N.

So by the hypothesis of our theorem, we have

F(pb(xn, xn+1)) ≤ F(sεpb(Txn−1,Txn))

≤ θ
(
MT

s (xn−1, xn)
)
F
(
MT

s (xn−1, xn)
)
− ψ

(
NT

s (xn−1, xn)
)
,

(4)

where

MT
s (xn−1, xn) = max

{
pb(xn−1, xn), pb(xn−1, xn), pb(xn, xn+1),

pb(xn−1, xn+1) + pb(xn, xn)
2s

}
= max

{
pb(xn−1, xn), pb(xn, xn+1)

}
and

NT
s (xn−1, xn) = max

{
pb(xn−1, xn), pb(xn, xn+1)

}
.
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Note that max
{
pb(xn−1, xn), pb(xn, xn+1)

}
= pb(xn, xn+1) is impossible due to the definitions of θ andψ. Indeed,

F(pb(xn, xn+1)) ≤ F(sεpb(Txn−1,Txn))

≤ θ
(
pb(xn, xn+1)

)
F
(
pb(xn, xn+1)

)
− ψ

(
pb(xn, xn+1)

)
< F

(
pb(xn, xn+1)

)
.

It follows that max
{
pb(xn−1, xn), pb(xn, xn+1)

}
= pb(xn−1, xn).

Again from (4) and by the hypothesis of θ and ψ, we have

F(pb(xn, xn+1)) ≤ F(sεpb(Txn−1,Txn))

≤ θ
(
pb(xn−1, xn)

)
F
(
pb(xn−1, xn)

)
− ψ

(
pb(xn−1, xn)

)
< F

(
pb(xn−1, xn)

)
.

(5)

Therefore {pb(xn, xn+1)} is a non negative decreasing sequence of real numbers and is bounded below. This
amounts to say that it is convergent to some point, say α ≥ 0. i.e.

lim
n→∞

pb(xn, xn+1) = α.

Letting n→∞ in (5), we obtain

F(α) ≤ F(α) − ψ(α).

This implies that ψ(α) = 0 and thus α = 0. Consequently, we have

lim
n→∞

pb(xn,Txn) = lim
n→∞

pb(xn, xn+1) = 0. (6)

Further, by property (pb2 ) of partial b−metric space, we have the following equality

lim
n→∞

pb(xn, xn) = 0. (7)

Next, we will maintain that {xn} is a pb-Cauchy sequence in X. From Lemma 1.4 we need to prove that {xn}

is a b-Cauchy sequence in the b-metric space (X, dpb ). Suppose to the contrary that, there exists δ > 0 such
that for an integer k there exist integer m′(k) > m(k) ≥ k such that

dpb (xm(k), xm′(k)) ≥ δ. (8)

For every integer k, let m(k) is the least positive integer satisfying (8) and such that

dpb (xm(k), xm′(k)−1) < δ. (9)

Due to triangle inequality and from (8), we get

δ ≤ dpb (xm(k), xm′(k)) ≤ sdpb (xm(k), xm′(k)−1) + sdpb (xm′(k)−1, xm′(k)). (10)

Which on passing limit k→∞ and using (9) give rise to

δ
s
≤ lim

k→∞
inf dpb (xm(k), xm′(k)−1) ≤ lim

k→∞
sup dpb (xm(k), xm′(k)−1) ≤ δ. (11)

Also from (9), (10) and (11), we have

δ ≤ lim
k→∞

sup dpb (xm(k), xm′(k)) ≤ sδ. (12)
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Furthermore,

dpb (xm(k)+1, xm′(k)−1) ≤ sdpb (xm(k)+1, xm(k)) + sdpb (xm(k), xm′(k)−1).

Which yields

lim
k→∞

sup dpb (xm(k)+1, xm′(k)−1) ≤ sδ. (13)

From triangle inequality, we have

δ ≤ dpb (xm′(k), xm(k))
≤ sdpb (xm′(k), xm(k)+1) + sdpb (xm(k)+1, xm(k))

(14)

and

dpb (xm′(k), xm(k)+1) ≤ sdpb (xm′(k), xm(k)) + sdpb (xm(k), xm(k)+1). (15)

It follows from (6), (12), (14), and (15) that

δ
s
≤ lim

k→∞
sup dpb (xm′(k), xm(k)+1) ≤ s2δ. (16)

Utilizing Proposition (1.3) in (11), (12), (13) and (16), one will get

δ
2s
≤ lim

k→∞
sup pb(xm(k), xm′(k)−1) ≤

δ
2
. (17)

δ
2
≤ lim

k→∞
sup pb(xm(k), xm′(k)) ≤

sδ
2
. (18)

lim
k→∞

sup pb(xm(k)+1, xm′(k)−1) ≤
sδ
2
. (19)

δ
2s
≤ lim

k→∞
sup pb(xm′(k), xm(k)+1) ≤

s2δ
2
. (20)

From (6), we can choose a positive integer k1 ∈N such that

1
2s

pb(xm(k),Txm(k)) < pb(xm(k), xm′(k)−1), for all k ≥ k1.

Therefore by the assumption of the theorem for every k ≥ k1, we have

F(pb(xm(k)+1, xm′(k))) ≤ F
(
sεpb(Txm(k),Txm′(k)−1)

)
≤ θ

(
MT

s (xm(k), xm′(k)−1)
)
F
(
NT

s (xm(k), xm′(k)−1)
)

− ψ
(
NT

s (xm(k), xm′(k)−1)
)
.

(21)

Utilizing the definition of MT
s (x, y) and NT

s (x, y) along with inequalities (17), (18) and (19), give rise

lim
k→∞

sup MT
s (xm(k), xm′(k)−1) ≤

δ
2
. (22)

And

lim
k→∞

sup NT
s (xm(k), xm′(k)−1) ≤

δ
2
. (23)
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Indeed,

MT
s (xm(k), xm′(k)−1) = max

{
pb(xm(k), xm′(k)−1), pb(xm(k), xm(k)+1), pb(xm′(k)−1, xm′(k)),

pb(xm(k), xm′(k)) + pb(xm′(k)−1, xm(k)+1)
2s

}
.

So that

lim
k→∞

sup MT
s (xm(k), xm′(k)−1) ≤ max

{δ
2
, 0, 0,

1
2s

[
sδ
2

+
sδ
2

]
}
≤
δ
2
.

By repeating the above technique, one can easily arrive at

lim
k→∞

sup NT
s (xm(k), xm′(k)−1) ≤ max

{δ
2
, 0, 0

}
≤
δ
2
.

Taking lim sup as n→∞ in (21) and using (20), (22) and (23), we get

F(
δ
2

) = F
(
s
δ
2s

)
≤ lim

k→∞
sup F

(
sεpb(Txm(k),Txm′(k)−1)

)
≤ lim

k→∞
supθ

(
MT

s (xm(k), xm′(k)−1)
)
F
(
MT

s (xm(k), xm′(k)−1)
)

− lim
k→∞

supψ
(
NT

s (xm(k), xm′(k)−1)
)

≤ lim
k→∞

sup F
(
MT

s (xm(k), xm′(k)−1)
)
− lim

k→∞
supψ

(
NT

s (xm(k), xm′(k)−1)
)

≤ F(
δ
2

) − ψ(
δ
2

),

which is absurd, since δ > 0. Thus we have maintained that {xn} is a b-Cauchy sequence in the b-metric
space (X, dpb ), then from Lemma 1.4, {xn} is a pb-Cauchy sequence in the partial b-metric space (X, pb). (X, pb)
being complete, Lemma 1.4 assures that b-metric space (X, dpb ) is b-complete. Therefore, the sequence {xn}

converges to some point u ∈ X, that is, lim
n→∞

dpb (xn,u) = 0. Again, from Lemma 1.4

lim
n→∞

pb(xn,u) = lim
n,m→∞

pb(xn, xm) = pb(u,u) = 0. (24)

Next, We show that u is a fixed point of T.
We assert that for every n ∈N,

1
2s

pb(xn,Txn) < pb(xn,u) or
1
2s

pb(Txn,T2xn) < pb(Txn,u). (25)

Arguing by contradiction, we assume that there exists m ∈N such that

1
2s

pb(xm,Txm) ≥ pb(xm,u) and
1
2s

pb(Txm,T2xm) ≥ pb(Txm,u). (26)

Which gives

2spb(xm,u) ≤ pb(xm,Txm)
≤ spb(xm,u) + spb(u,Txm) − pb(u,u)

⇒ pb(xm,u) ≤ pb(u,Txm). (27)

Further

pb(Txm,T2xm) < pb(xm,Txm)
≤ spb(xm,u) + spb(u,Txm) − pb(u,u)
≤ 2spb(u,Txm).
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(28)

It follows from (26) and (28) that pb(Txm,T2xm) < pb(Txm,T2xm), a contradiction. Thus (25) holds.
Consider, if part first of (25) is true ,then one has by inequality (1)

F(pb(xn+1,Tu)) ≤ F(sεpb(Txn,Tu))

≤ θ
(
MT

s (xn,u)
)
F
(
MT

s (xn,u)
)
− ψ

(
NT

s (xn,u)
)
.

(29)

In which

MT
s (xn,u) = max

{
pb(xn,u), pb(xn,Txn), pb(u,Tu),

pb(xn,Tu) + pb(u,Txn)
2s

}

and

NT
s (xn,u) = max

{
pb(xn,u), pb(xn,Txn), pb(u,Tu)

}
.

Which further asserts that

lim
n→∞

MT
s (xn,u) = max

{
pb(u,u), pb(u,u), pb(u,Tu),

pb(u,Tu) + pb(u,Tu)
2s

}
= pb(u,Tu).

(30)

Similarly

lim
n→∞

NT
s (xn,u) = pb(u,Tu).

(31)

Taking limit as n −→ ∞ in (29) and employing inequalities (30), (31), hypothesis of function F, θ together
with continuity of T, we get

F(pb(u,Tu)) ≤ lim
n−→∞

θ
(
MT

s (xn,u)
)
F(pb(u,Tu)) − ψ(pb(u,Tu))

≤ F(pb(u,Tu)) − ψ(pb(u,Tu)),

which implies ψ(pb(u,Tu)) = 0. This yields u = Tu, i.e., u is a fixed point of T.
If part second of (25) is true , employing a similar approach as above , we conclude that u = Tu. Hence u is
the fixed point of T.
For the uniqueness of fixed point, suppose u and v are two fixed points of T, such that u , v, then we have
1
2s pb(u,Tu) < pb(u, v), and by assumption of theorem, we obtain

F(pb(u, v)) = F(pb(Tu,Tv))
≤ F(sεpb(pb(Tu,Tv)))

≤ θ
(
MT

s (u, v)
)
F(MT

s (u, v)) − ψ(NT
s (u, v))

≤ F(pb(u, v)) − ψ(pb(u, v)).

Which yields ψ(pb(u, v)) = 0, that is, u = v. Thus fixed point of T is unique.

To show the substantiation of our findings, we expound an example which demonstrates the superiority of
our results.
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Example 2.4. Let X = [0, 10] be equipped with partial metric pb : X × X→ [0,∞) defined by

pb(x, y) = [max{x, y}]2,

for all x, y ∈ X. It is obvious that, (X, pb) is a complete partial b-metric space with s = 2.
Let the mapping T : X→ X is defined by

Tx =
x

√

3 + x2
.

In order to check condition 1, let F(k) = log k. Define θ : [0,∞)→ [0, 1) by θ(k) = 500
k+501 and ψ : [0,∞)→ [0,∞) by

ψ(k) = k
1000 for all k ∈ R+.

Without loss of generality we may take x, y ∈ X such that x > y.
First observe that 1

2s pb(x,Tx) < pb(x, y). In order to verify inequality (1), we have

F(sεpb(Tx,Ty)) = F
(
sε max{Tx,Ty}2

)
= log

(
2ε

( x2

3 + x2

))
. (32)

On the other hand, one can easily verify that MT
s (x, y) = x2 and NT

s (x, y) = x2. Further, for all x, y ∈ X = [0, 10], we
have

θ
(
x2

)
F
(
x2

)
− ψ

(
x2

)
=

500(log x2)
x2 + 501

−
x2

1000
. (33)

For ε = 1.1, one can see that (33) dominates (32) as shown in Figure(2).

Figure 2: Domination of R.H.S. over L.H.S. with ε = 1.1., 3D and 2D view

Thus all the conditions of Theorem 2.3 are fulfilled and 0 ∈ X is the unique fixed point of the involved mapping T.
Note that by taking τ = ψ(t) in Karapinar et al. [16], T does not satisfy the contractive condition of [16] with
d(x, y) = [max{x, y}]2. So the result of [16] can not be applied on T.

Following remarks make our findings worth mentioning.

Remark 2.5. Theorem 2.3 generalizes Theorem 2.2 of Piri and Kumam [23] and Theorem 2.2 of Karapinar et al. [16]
in the context of parial b-metric space along with Geraghty type contraction.

Remark 2.6. Theorem 2.3 generalizes and extend F-contraction version of main result of Altun and Sadarangani [1]
in the setting of complete partial b-metric space along with Suzuki type contraction.

Remark 2.7. Theorem 2.3 generalizes Theorem 2.4 of Wardowski and Dung [30] and Theorem 3 of Dung and Hang
[9] for parial b-metric space along with Suzuki-Geraghty type contraction.

Remark 2.8. Theorem 2.3 generalizes Theorem 2.1 of Piri and Kumum [22] in the setting of parial b-metric space
along with Suzuki-Geraghty type contraction by taking ψ(NT

s (x, y)) = τ and MT
s (x, y) = pb(x, y).
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2.1. Some Consequences:

Corollary 2.9. Theorem 2.3 remains true if the assumption embodied in (1) is replaced by the following (besides
retaining the rest of the hypotheses)

1
2s

pb(x,Tx) < pb(x, y)⇒ F(sεpb(Tx,Ty)) ≤ θ
(
MT

s (x, y)
)
F
(
NT

s (x, y)
)
− ψ

(
NT

s (x, y)
)
.

Another version of Theorem 2.3 is the following

Theorem 2.10. Let (X, pb) be a complete partial metric space with s > 1. Let T be a continuous self mapping on X.
If there exist F ∈ ∆F, θ ∈ Θ, ψ ∈ Ψ such that for all x, y ∈ X,

1
2s

pb(x,Tx) < pb(x, y)⇒ F(sεpb(Tx,Ty)) ≤ F
(
θ
(
MT

s (x, y)
)(

MT
s (x, y)

))
− ψ

(
NT

s (x, y)
)
,

where MT
s (x, y) and NT

s (x, y) are defined as in the Theorem 2.3 and ε > 1. Then T has a unique fixed point in X.

Proof. The proof can be completed on the similar lines as done in Theorem 2.3, hence we skip it.

Taking ψ(t) = τ in Theorem 2.10, we acquire the following

Corollary 2.11. Theorem 2.10 remains true if the assumption embodied in (??) is replaced by the following (besides
retaining the rest of the hypotheses):

1
2s

pb(x,Tx) < pb(x, y)⇒ F(sεpb(Tx,Ty)) ≤ F
(
θ
(
MT

s (x, y)
)(

MT
s (x, y)

))
− τ.

As an independent result, one can obtain following Corollary in the setting of partial metric space by setting
s = 1.

Corollary 2.12. Let (X, p) be a complete partial metric space. Let T be a continuous self mapping on X. If there exist
F ∈ ∆F, θ ∈ Θ and ψ ∈ Ψ such that for all x, y ∈ X,

1
2

p(x,Tx) < p(x, y)⇒ F(p(Tx,Ty)) ≤ θ
(
MT

s (x, y)
)
F
(
MT

s (x, y)
)
− ψ

(
NT

s (x, y)
)
,

where

MT
s (x, y) = max

{
p(x, y), p(x,Tx), p(y,Ty),

p(x,Ty) + p(y,Tx)
2

}
,

NT
s (x, y) = max

{
p(x, y), p(x,Tx), p(y,Ty)

}
.

Then T has a unique fixed point in X.

Proof. Proof follows on the similar lines as done in the Theorem 2.3.

Remark 2.13. By taking MT
s (x, y) = p(x, y) and ψ(NT

s (x, y)) = τ, Corollary 2.12 reduces to Theorem 3.1 of D́ukic et
al.[8] in the sense of F-contraction along with Suzuki type contraction.

Remark 2.14. By taking ψ(NT
s (x, y)) = τ, Corollary 2.12 reduces to Corollary 1 of Dinarvand [7] in the sense of

F-contraction along with Suzuki type contraction.
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3. Fixed point results for (α, β)-Suzuki-Geraghty type generalized (F, ψ)-contractions:

This section is devoted to establish the results based on generalized contraction invoking (α, β)-admissible
mappings.

Definition 3.1. Let (X, pb) be a partial b-metric space and T : X → X be a mapping. Then T is said to be a
(α, β)-Suzuki-Geraghty type generalized (F, ψ)-contraction on X, if there exists F ∈ ∆F, θ ∈ Θ and ψ ∈ Ψ such that
for all x, y ∈ X and s > 1,

1
2s

pb(x,Tx) < pb(x, y)

⇒ α(x, y)β(x, y)F(sεpb(Tx,Ty)) ≤ θ
(
MT

s (x, y)
)
F
(
MT

s (x, y)
)
− ψ

(
MT

s (x, y)
)
,

(34)

where

MT
s (x, y) = max

{
pb(x, y), pb(x,Tx), pb(y,Ty),

pb(x,Ty) + pb(y,Tx)
2s

}
,

and ε > 1 is a constant.

Theorem 3.2. Let (X, pb) be a complete partial b-metric space. Let T be a self mapping on X satisfying the following
conditions:

1. T is (α, β)-admissible;
2. there exists x0 ∈ X such that α(x0,Tx0) ≥ 1 and β(x0,Tx0) ≥ 1;
3. T is continuous;
4. T is an (α, β)-Suzuki-Geraghty type generalized (F, ψ)-contraction on (X, pb).

Then T has a unique fixed point u ∈ X.

Proof. Let x0 be an arbitrary point in X such that α(x0,Tx0) ≥ 1 and β(x0,Tx0) ≥ 1. Set Tx0 = x1 and Tx1 = x2.
Continuing this process, we define a sequence {xn} in X such that

xn+1 = Txn for all n ∈N.

If there exist n0 ∈N such that xn0+1 = xn0 for any n0 ∈N, then xn0 is a fixed point of T and we are done .
Consequently, we suppose that xn+1 , xn for all n ∈N.
Since, T is an (α, β)-admissible mapping, it follows from (2) that α(x0,Tx0) = α(x0, x1) ≥ 1, α(Tx0,Tx1) =
α(x1, x2) ≥ 1. By induction, we get
α(xn, xn+1) ≥ 1 for all n ≥ 0.
Similarly, β(xn, xn+1) ≥ 1 for all n ≥ 0.
Since pb(xn,Txn) > 0 for all n ∈N, we have

1
2s

pb(xn,Txn) < pb(xn,Txn), for all n ∈N.

To avoid the repetition of similar treatment of the Theorem 2.3, for the sake of brevity , we omit the
remaining part of proof.

Example 3.3. Let X = [0, 1.2] be equipped with partial metric pb : X × X→ [0,∞) defined by

pb(x, y) = [max{x, y}]2,

for all x, y ∈ X. It is obvious that, (X, pb) is a complete partial b-metric space with s = 2.
Let the mapping T : X→ X is defined by

Tx = log
(√

2 + x
)x2

.
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Also define α, β : X × X→ [0,∞)as :

α(x, y) = β(x, y) =

{
1, x, y ∈ [0, 1],
0, otherwise,

Let α(x, y) ≥ 1 and β(x, y) ≥ 1 for all x, y ∈ X, then x, y ∈ [0, 1]. On the other side, Tx ≤ 1 for all x ∈ [0, 1]. It
follows that α(Tx,Ty) ≥ 1 and β(Tx,Ty) ≥ 1. Also, there exists x0 = 0 ∈ X such that α(0,T0) = α(0, 0) ≥ 1 and
β(0,T0) = β(0, 0) ≥ 1. Define θ : [0,∞) → [0, 1) by θ(k) = 76

76.243+log(10k)
. Also let ψ : [0,∞) → [0,∞) be given by

ψ(k) = log(1 + k), F(k) = k + log(k) for all p ∈ R+.
Without loss of generality we take x, y ∈ X with x > y. It is evident that 1

2s pb(x,Tx) < pb(x, y) for all x, y ∈ X with
x > y.
Case(i): If x, y ∈ [0, 1], then α(x, y) = β(x, y) = 1.
Now consider the L.H.S. of (34)

α(x, y)β(x, y)F(sεpb(Tx,Ty)) = F
(
sε max{Tx,Ty}2

)
.

= sε
(

log
(√

2 + x
)x2)2

+ log
{
sε
(

log
(√

2 + x
)x2)2}

.
(35)

For R.H.S. of 34, utilizing the definition of MT
s (x, y) and NT

s (x, y), we deduce MT
s (x, y) = x2 and NT

s (x, y) = x2.
Further,

θ
(
x2

)
F
(
x2

)
− ψ

(
x2

)
=

76(x2 + log x2)
76.243 + log(10x2 )

− log(1 + x2). (36)

Now, validity of condition 34 for ε = 3.02 is shown by Figure(3).

Figure 3: Plot of inequality with ε = 3.02, 3D view and 2D view.

Case(ii): If x, y ∈ (1, 1.2], then α(x, y) = β(x, y) = 0, we have

α(x, y)β(x, y)F(sεpb(Tx,Ty)) = 0.

For R.H.S. of (34), one can verify that MT
s (x, y) = NT

s (x, y) = x2. Subsequently

76(x2 + log x2)
76.243 + log(10x2 )

− log(1 + x2).

Domination of R.H.S. over L.H.S. of 34 is authenticated by Figure(4).
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Figure 4: Plot of inequality 2D view.

Case(iii): If x ∈ (1, 1.2] and y ∈ [0, 1] then, α(x, y)β(x, y) = 0 and MT
s (x, y) = NT

s (x, y) = x2. By repeating the
same technique as mentioned in Case(ii), one can conclude that the condition 34 is satisfied for all x ∈ (1, 1.3] and
y ∈ [0, 1]. Thus all the conditions of Theorem 3.2 are fulfilled. Hence T is (α, β)-Suzuki-Geraghty type generalized
(F, ψ)-contraction and has a unique fixed point 0 ∈ X.

Remark 3.4. If we take ε ∈ (1, 3.04165], the inequality 34 is still valid.

Remark 3.5. By introducing Theorem 3.2 we generalized Theorem 3.5 of Rosa and Vetro [17] and obtained the
F-contraction version of the said theorem in the setting of partial b-metric spaces.

For s = 1, one can prove the following theorem as an independent result in the setting of partial metric
space.

Theorem 3.6. Let (X, p) be a complete partial metric space. Let T be a self mapping on X satisfying the following
conditions:

1. T is (α, β)-admissible;
2. T is continuous;
3. there exists x0 ∈ X such that α(x0,Tx0) ≥ 1 and β(x0,Tx0) ≥ 1;
4. if there exists F ∈ ∆F, θ ∈ Θ and ψ ∈ Ψ such that for all x, y ∈ X,

1
2

p(x,Tx) < p(x, y)⇒ α(x, y)β(x, y)F(pb(Tx,Ty)) ≤ θ
(
MT(x, y)

)
F
(
MT(x, y)

)
− ψ

(
MT(x, y)

)
, (37)

where

MT(x, y) = max
{
p(x, y), p(x,Tx), p(y,Ty),

p(x,Ty) + p(y,Tx)
2

}
.

Then T has a unique fixed point u ∈ X.

4. Applications

4.1. Application to graph theory
Jachymski [13], introduced a different approach in metric fixed point theory by replacing the order

structure with a graph structure on a metric space. Let (X, p) be a partial metric space with diagonal of the
cartesian product X × X denoted by ∆ = {(z, z) : z ∈ X}. Consider, a directed graph G =

(
V(G),E(G)

)
with

the set V(G) of its vertices coinciding with X and the set E(G) of its edges as a superset of ∆. Assume that
G has no parallel edges, i.e.; (x, y), (y, x) ∈ E(G) =⇒ x = y. Also, G is directed if the edges have a direction
associated with them. If x and y are vertices in a graph G, then a path in G from x to y of length m is a
sequence {xn}

m
n=0 of (m + 1) vertices such that x0 = x, xm = y and (xn−1, xn) ∈ E(G) for n = 1, . . .m. Moreover,

a graph is called connected if there is a path between any two vertices.
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Definition 4.1. [13] A mapping T : X×X is called G-continuous, if we have a given x ∈ X and a sequence {xn} such
that xn → x , as n→∞, (xn, xn+1) ∈ E(G) for all n ∈N =⇒ Txn → Tx.

Definition 4.2. [13] A mapping T : X→ X is a Banach G-contraction or simply G-contraction if T preserves edges
of G, that is
for all x, y ∈ X, (x, y) ∈ E(G) =⇒ (Tx,Ty) ∈ E(G)
and T decreases weights of edges of G in the following way:
there exists k ∈ (0, 1) such that for all x, y ∈ X, (x, y) ∈ E(G) =⇒ d(Tx,Ty) ≤ kd(x, y).

Above definitions motivate us to form the following.

Definition 4.3. Let (X, p) be a partial metric space endowed with a graph G and T : X → X be a mapping. Then
T is said to be Suzuki-Geraghthy type generalized graphic (F, ψ)-contraction on a partial metric space (X, p), if there
exists F ∈ ∆F, θ ∈ Θ and ψ ∈ Ψ such that for all x, y ∈ X and s > 1,

1
2

p(x,Tx) < p(x, y)⇒ F(p(Tx,Ty)) ≤ θ
(
MT(x, y)

)
F
(
MT(x, y)

)
− ψ

(
MT(x, y)

)
, (38)

where ε and MT(x, y) are as in the Theorem 3.6.

Theorem 4.4. Let (X, p) be a complete partial metric space endowed with a graph G. T : X→ X is self mapping on
X satisfying the following conditions:

1. T is Suzuki-Geraghthy type generalized graphic (F, ψ)-contraction on partial metric space (X, p);
2. T is G-continuous on (X, p);
3. T preserves edges of G;
4. there exists x0 ∈ X such that (x0,Tx0) ∈ E(G).

Then T has a fixed point u ∈ X.

Proof. Define α, β : X × X→ [0,∞) by

α(x, y) = β(x, y) =

{
1, i f (x, y) ∈ E(G);
0, otherwise

Firstly, we prove that T is an (α, β)-admissible mapping. If α(x, y) ≥ 1 for any x, y ∈ X, then by the definition
of α, we obtain that (x, y) ∈ E(G). Owing to (iii), we have2 (Tx,Ty) ∈ E(G). Again, from the definition of α,
we have α(Tx,Ty) ≥ 1.
Similarly as above, we can prove that β(x, y) ≥ 1 ⇒ β(Tx,Ty) ≥ 1 so that T is an (α, β)-admissible mapping.
Now, choose x0 ∈ X such that (x0,Tx0) ∈ E(G), i.e., α(x0,Tx0) ≥ 1 and β(x0,Tx0) ≥ 1.
From (i) and α(x, y) ≥ 1, β(x, y) ≥ 1, implies

α(x, y)β(x, y)F(p(Tx,Ty)) ≤ θ
(
MT(x, y)

)
F
(
MT(x, y)

)
− ψ

(
MT(x, y)

)
.

Hence, all the conditions of Theorem 3.6 are satisfied. Therefore, T has a fixed point.

Next, an example is presented which substantiates the hypothesis of Theorem 4.4 involving a directed
graph.

Example 4.5. Let X = {1, 2, 3, 4, 5} be endowed with with the partial metric p : X × X→ [0,∞) defined by

p(x, y) = max{x, y}.
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Then (X, p) is a complete partial metric space.
We define T : X→ X as follows

Tx =

2 if x ∈ {3, 4},
1 if x ∈ {1, 2, 5}.

Define θ : [0,∞)→ [0, 1) by θ(k) = 19
19.135+k . And let ψ : [0,∞)→ [0,∞) be given by ψ(k) = k

1000 . Let F(k) = log k
for all k ∈ R+.
Consider the directed graph G =

(
V(G),E(G)

)
defined by V(G) = X and E(G) = {(x, y) : x, y ∈ {1, 2, 3, 4, 5}} ∪ ∆.

It is easy to deduce that T preserves edges in G and T is G-continuous. Also, there exists x0 = 1 ∈ X such that
(1,T1) = (1, 1) ∈ E(G). Without loss of generality we take x, y ∈ X such that x , y. To prove that the contractive
condition (38) of Theorem 4.4 holds with x, y ∈ E(G), we distinguish the following cases:
Case I: x ∈ {1, 2, 5} and y ∈ {3, 4}.
Case II: x , y and x, y ∈ {1, 2, 5}.
Case III: x, y ∈ {3, 4}.
Evidently, for each of the aforementioned cases, inequality 1

2 p(x,Tx) < p(x, y) holds. Following Table demonstrates
that the condition (38) is satisfied for each of the above cases.

Cases x y F(p(Tx,Ty)) θ
(
MT(x, y)

)
F
(
MT(x, y)

)
− ψ

(
MT(x, y)

)

Case I

1 3 0.30103 0.406546
1 4 0.30103 0.490452
2 3 0.30103 0.406546
2 4 0.30103 0.490452
5 3 0.30103 0.594974
5 4 0.30103 0.594974

Case II
1 2 0 0.268621
1 5 0 0.545256
2 5 0 0.545256

Case III 3 4 0.30103 0.490452

Thus all the hypothesis of Theorem 4.5 are fulfilled and consequently T has a fixed point, which is x = 1. Figure(5)
represents the graph with all the discussed cases.

Figure 5: Directed graph G defined in Example 4.5
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4.2. Application to solution of some integral equations

In this section we will focus on the applicability of the acquired results.
We present the application of the existence of fixed point for Suzuki-Geraghty type generalized (F, ψ)-
contraction to the following equation of integral equation for an unknown function u:

u(t) = 1(t) +

∫ b

a
K(t, z) f (z,u(z))dz, t ∈ [a, b], (39)

where f : [a, b] ×R→ R, K : [a, b] × [a, b]→ [0,∞), 1 : [a, b]→ R are given continuous functions.
Let X be the set C[a, b] of real continuous functions defined on [a, b] and let pb : X×X→ [0,∞) be equipped
with the metric defined by

pb(u, v) = max
a≤t≤b
|u(t) − v(t)|2. (40)

One can easily verify that (X, pb) is a complete partial b-metric space. Let the self map T : X→ X is defined
by

Tu(t) = 1(t) +

∫ b

a
K(t, z) f (z,u(z))dz, t ∈ [a, b], (41)

then u is a fixed point of T if and only it is a solution of (39. Now, we formulate the following subsequent
theorem to show the existence of solution of integral equation.

Theorem 4.6. Assume that the following assumptions hold:

(1)

max
a≤t≤b

∫ b

a
|K(t, z)|2dz ≤

1
b − a

;

(2) Suppose that for all x, y ∈ R,

1
2s

pb(x,Tx) < pb(x, y) =⇒ | f (z, x) − f (z, y)|2 ≤
1

2sε
|x(t) − y(t)|2e−τ.

Then the integral equation (39) has a solution.

Proof. Employing the conditions (1) − (2) along with inequality (39), we have

pb(Tu1,Tu2) = max
a≤t≤b
|Tu1(t) − Tu2(t)|2

= max
a≤t≤b

∣∣∣∣1(t) +

∫ b

a
K(t, z) f (z,u1(z))dz −

(
1(t) +

∫ b

a
K(t, z) f (z,u2(z))dz

)∣∣∣∣2
= max

a≤t≤b

{∣∣∣∣ ∫ b

a

(
K(t, z) f (z,u1(z)) − K(t, z) f (z,u2(z))

)
dz

∣∣∣∣2}
≤ max

a≤t≤b

{ ∫ b

a
|K(t, z)|2dz.

∫ b

a

∣∣∣∣ f (z,u1(z)) − f (z,u2(z))
∣∣∣∣2dz

}
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=
{

max
a≤t≤b

∫ b

a
|K(t, z)|2dz

}
.
{ ∫ b

a

∣∣∣∣ f (z,u1(z)) − f (z,u2(z))
∣∣∣∣2dz

}
=

{
max
a≤t≤b

∫ b

a
|K(t, z)|2dz

}
.
{ ∫ b

a

∣∣∣∣ f (z,u1(z)) − f (z,u2(z))
∣∣∣∣2dz

}
≤

{ 1
b − a

}
.
{ 1
2sε

∫ b

a
|u1(z) − u2(z)|2e−τdz

}
≤

1
2sε(b − a)

∫ b

a
max
a≤t≤b
|u1(t) − u2(t)|2e−τdz

=

(
1

2sε

)
max
a≤t≤b
|u1(t) − u2(t)|2e−τ

i.e., pb(Tu1,Tu2) =

(
1

2sε

)(
pb(u1,u2)

)
e−τ

≤

(
1
sε

)
MT

s (u1,u2)
2

e−τ

Which amounts to say that

sεpb(Tu1,Tu2) ≤
MT

s (u1,u2)
2

e−τ,

where

MT
s (u1,u2) = max

{
pb(u1,u2), pb(u1,Tu1), pb(u2,Tu2),

pb(u1,Tu2) + pb(u2,Tu1)
2s

}
.

Taking θ(MT
s (u1,u2)) = 1

2 , above inequality turns into

sεpb(Tu1,Tu2) ≤ θ
(
MT

s (u1,u2)
)
MT

s (u1,u2)e−τ

Consequently, by applying to logarithms, we obtain

ln
(
sεpb(Tu1,Tu2)

)
≤ ln

(
θ
(
MT

s (u1,u2)
)
MT

s (u1,u2)
)
− τ.

For ln(p) = p, p > 0, above inequality turns into

F
(
sεpb(Tu1,Tu2)

)
≤ F

(
θ
(
MT

s (u1,u2)
)
MT

s (u1,u2)
)
− τ.

Hence 1
2s pb(u1,Tu1) < pb(u1,u2)⇒

F
(
sεpb(Tu1,Tu2)

)
≤ F

(
θ
(
MT

s (u1,u2)
)
MT

s (u1,u2)
)
− τ.

Thus, all the hypothesis of Corollary 2.11 are satisfied, we conclude that T has a unique fixed point x∗ in X.
Which amounts to say that the integral equation (39) has a unique solution which belongs to X = C[a, b].

Following example furnishes the validity of Theorem 4.6.
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Example 4.7. Consider the following integral equation in X = C([0, 1],R).

u(t) =
t2

2 + t
+

1
3

∫ 1

0

s2

(2 + t)
1

(2 + u(s))
ds; t ∈ [0, 1]. (42)

In order to find the solution of (42), we will prove that u(t) is a fixed point of the mapping Tu(t), that is , u(t) = Tu(t),
where

Tu(t) =
t2

2 + t
+

1
3

∫ 1

0

s2

(2 + t)
1

(2 + u(s))
ds; t ∈ [0, 1]. (43)

One can observe that integral equation (42) is a special case of (39), in which
f (s, t) = 1

3(2+u(s)) ;

K(t, s) = s2

(2+t) ;

1(t) = t2

2+t .
Indeed, functions f (s, t), 1(t) and K(t, s) are continuous. Thus the assumptions with respect to aforesaid functions are
satisfied.
Further, for all u, v ∈ R, we have

0 ≤ | f (s,u) − f (s, v)|2 ≤
∣∣∣∣ 1
3(2 + u)

−
1

3(2 + v)

∣∣∣∣2
≤

1
9
|v − u|2

≤
1

2(21.2)
|v − u|2e−0.1

i.e.,

| f (s,u) − f (s, v)|2 ≤
1

2sε
|v − u|2e−τ

for τ = 0.1, ε = 1.2 and s = 2. Hence, condition (2) of Theorem 4.6 is verified. For condition (1), we have

max
a≤t≤b

∫ 1

0
|K(t, z)|2ds = max

a≤t≤b

∫ 1

0

( s2

2 + t

)2
= max

a≤t≤b

1
5(2 + t)2 ≤

1
(b − a)

.

Hence condition (1) is also proved for all, t ∈ [0, 1]. Consequently, all the conditions of Theorem 4.6 are fulfilled and
hence the integral equation (42) has a solution in X = C([0, 1],R). Furthermore, the approximate solution of the
integral equation (42) is

u(t) =
0.15878 + 3t2

3(2 + t)
, (44)

which is demonstrated geometrically by Figure(6).
Making use of the obtained approximate solution and (43), we acquire

Tu(t) =
t2

2 + t
+

1
3(2 + t)

∫ 1

0

3s2(2 + s)
2s2 + 6s + 12.15878

ds; t ∈ [0, 1]. (45)

Figure(7) represents the plot of the integral equation 45.
From Figure(6) and Figure(7), it is evident that the plot of approximate solution of intrgral equation (42) almost
coincide with the plot of integral equation (45). This authenticates that the approximate solution mentioned in
equation (44) is a fixed point of (42) and hence is a solution of integral equation (42).
Moreover, the error between the value of u(t) and the approximate solution is visualized in Figure(8).
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Figure 6: Geometrical representation of approximate solution of (42), 3D view.

Figure 7: Geometrical representation of integral equation (45), 3D view.

Figure 8: Error between approximate solution and integral equation.

Open Problem: For future reading, as an application an open open problem is suggested as follows:
A discretized population balance for continuous systems at steady state can be modeled by the following
integral equation

f (t) =
a

2(1 + 2a)

∫ t

0
f (t − x) f (x)dx + e−t.

Whether the existence of solution of the above integral equation can be derived from results established in
this note?
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