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Impulsive Fractional Differential Equations
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Abstract. In this paper, a class of boundary value problems involving impulsive fractional differential
equations is studied. By constructing Green’s function, a natural formula of solutions is derived. By
applying fixed point theorems for mixed monotone operator with perturbation and sum operator, some
new results on the existence and uniqueness of positive solutions are obtained, and an iterative sequence
is constructed to approximate the positive solutions.

1. Introduction

Recently, the nonlinear boundary value problems (BVPs for short) of impulsive differential equations
with integer order have been investigated extensively, see [1, 9–13, 27] and the references therein. BVPs
of impulsive fractional differential equations play a very important role in theory and applications, see
[2, 3, 16, 17, 19, 23–26] for some references along this line. However, as pointed out in [2, 3], the theory of
BVPs for impulsive fractional differential equations is in the initial stages and many aspects are yet to be
explored.

In [2], by means of contraction mapping principle and Krasnoselskii’s fixed point theorem, Ahmad et
al. considered the existence of the solutions for the following boundary value problem:

CDq
0+

u(t) = f (t,u(t)), t ∈ J′ = J\{t1, t2, · · · , tm}, J = [0, 1],

∆u(tk) = Ik(u(tk)),∆u′(tk) = Jk(u(tk)), k = 1, 2, · · · ,m,
u(0) + u′(0) = 0,u(1) + u′(1) = 0,

where CDq
0+

is the Caputo fractional derivative of order q ∈ (1, 2). f : J×R→ R is continuous, Ik, Jk : R→ R,
∆u(tk) = u(t+

k ) − u(t−k ), u(t+
k ) and u(t−k ) represent the right and left limits of u(t) at t = tk(k = 1, 2, · · · ,m)

respectively for 0 = t0 < t1 < t2 < · · · < tm < tm+1 = 1.
Recently, Wang et al. [17] establish a general framework to find a natural formula of solutions for

impulsive fractional boundary value problems, which will provide an effective way to deal with such
problems. Naturally, one wishes to know whether or not the solution of fractional impulsive differential
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equations can be expressed by using Green’s function and if this result holds, can this result be used for the
special case with non-impulse. Thus, it is an interesting problem and it is worthwhile to study. On the other
hand, we observe that in [2, 3, 14, 16, 17, 19, 23–26], the authors demand that the nonlinear term and the
impulse functions are bounded or satisfy Lipschitz conditions and demand the operators to be completely
continuous or compactness conditions, clearly, these conditions are very strong. We observe that recent
advances in the context of analytical and numerical studies of fractional differential equations can be found
in [6, 7].

Inspired by the above literatures, by constructing Green’s function and by applying some new fixed
point theorems for mixed monotone operator with perturbation and sum operator, we mainly study the
existence and uniqueness of positive solutions for the following boundary value problem:

CDq
0+

u(t) = f (t,u(t),u(t)) + 1(t,u(t)),

t ∈ J′ = J\{t1, t2, · · · , tm}, J = [0, 1],
∆u(tk) = Ik(u(tk),u(tk)),∆u′(tk) = Jk(u(tk),u(tk)), k = 1, 2, · · · ,m,
αu(0) + βu′(0) = η1, αu(1) + βu′(1) = η2,

(1)

and its special case with non-impulseCDq
0+

u(t) = f (t,u(t),u(t)) + 1(t,u(t)), t ∈ J = [0, 1],

αu(0) + βu′(0) = η1, αu(1) + βu′(1) = η2,
(2)

where α, β, η1, η2 are real constants with β ≥ α > 0, η1 ≥ η2 ≥ 0. CDq
0+

is the Caputo fractional derivative of
order q ∈ (1, 2). f : J×R+

×R+
→ R+, 1 : J×R+

→ R+ are continuous. Ik, Jk ∈ C(R+
×R+,R+),R+ = [0,+∞).

The impulsive point set {tk}
m
k=1 satisfies 0 = t0 < t1 < t2 < · · · < tm < tm+1 = 1. ∆u(tk) = u(t+

k ) − u(t−k ) with
u(t+

k ) = lim
h→0+

u(tk + h), u(t−k ) = lim
h→0−

u(tk + h), k = 1, 2, · · · ,m.

Our work presented has the following new features. Firstly, we present a natural formula of solutions
for a system associated with the problem (1) by using Green’s function and obtain the properties of Green’s
function. We find that the expression of the solution by using Green’s function is simpler than those of
[16, 17, 23](see Remark 3.2). Secondly, our new results of the problem (1) can be used for the problem (2).
The problem (2) is a special case of the problem (1) with Ik ≡ 0 and Jk ≡ 0 (see Remark 3.4). Thirdly, our new
results do not demand that the nonlinear term and the impulse functions are bounded or satisfy Lipschitz
conditions, clearly, these conditions are very strong. Moreover, our new results can guarantee the existence
of a unique positive solution without assuming operators to be completely continuous or compactness
conditions and an iterative sequence is constructed to approximate it. The results of the above-mentioned
works are generalized and significantly improved (see Remark 3.14). Hence we improve the results of
[2, 3, 16, 17, 19, 23–26] to some degree. So it is worthwhile to investigate the problems (1) and (2).

2. Preliminaries and previous results

Let E = {u(t) : u(t) ∈ C(J)} denote a real Banach space with the supremum norm. Let

PC(J) = {u ∈ E : u : J→ R+,u ∈ C(J′),u(t+
k ),u(t−k )

exist with u(t−k ) = u(tk), k = 1, 2, · · · ,m},

PC1(J) := {u ∈ PC(J) : u′ ∈ PC(J)}
P = {u ∈ PC(J) : u(t) ≥ 0, t ∈ J} ,
Pw = {u ∈ P : u ∼ w,w > θ}.

Obviously, PC(J) ⊂ E is a Banach space with the norm

‖u‖PC = sup
t∈J
|u(t)|,
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PC1(J) is also a Banach space with the norm

‖u‖PC1 = ‖u‖PC + ‖u′‖PC.

P ⊂ PC(J) is a normal cone.
A function u ∈ PC1(J) is said to be a positive solution of the problem (1) if u(t) = uk(t) for t ∈ (tk, tk+1) and

uk ∈ C([0, tk+1],R+) satisfies CDq
0+

uk(t) = f (t,uk(t),uk(t)) + 1(t,uk(t)) a.e. on (0, tk+1) with the restriction of uk(t)
on [0, tk) is just uk−1(t) and the conditions ∆u(tk) = Ik(u(tk),u(tk)),∆u′(tk) = Jk(u(tk),u(tk)), k = 1, 2, · · · ,m with
αu(0) + βu′(0) = η1, αu(1) + βu′(1) = η2.

Definition 2.1. [8, 18] The fractional integral of order q > 0 for a function f : [0,+∞)→ R is defined as

Iq
0+

f (t) =
1

Γ(q)

∫ t

0
(t − s)q−1 f (s)ds,t > 0.

provided the right side is pointwise defined on [0,+∞), where Γ(·) is the gamma function.

Definition 2.2. (Generalization of classical Caputo derivative) [8, 18] The Caputo fractional derivative of
order q > 0 for a function f : [0,+∞)→ R is defined as

CDq
0+

f (t) =
1

Γ(n − q)
dn

dtn

∫ t

0

f (s) −
∑n−1

k=0
sk

k! f (k)(0)

(t − s)q−n+1 ds, t > 0,n − 1 < q < n.

In the case f (t) ∈ Cn[0,+∞), then we have CDq
0+

f (t) = In−q
0+

f (n)(t), t > 0,n − 1 < q < n. That is to say that
Definition 2.2 is just the classical Caputo fractional derivative. In Definition 2.2, the integrable function f
can be discontinuous. This fact can support us to consider impulsive problems.

Definition 2.3. [4, 5] A : P × P→ P is said to be a mixed monotone operator if A(x, y) is increasing in x and
decreasing in y, i.e., ui, vi(i = 1, 2) ∈ P,u1 ≤ u2, v1 ≥ v2 imply A(u1, v1) ≤ A(u2, v2). The quantity x ∈ P is
called a fixed point of A if A(x, x) = x.

Definition 2.4. [22] An operator A : P→ P is said to be sub-homogeneous if it satisfies

A(tx) ≥ tA(x),∀t ∈ (0, 1), x ∈ P.

Definition 2.5. [22] Let β be a real number with 0 < β < 1. An operator A : P→ P is said to be β-concave if
it satisfies

A(tx) ≥ tβA(x),∀t ∈ (0, 1), x ∈ P.

Lemma 2.6. [17] For q > 0, the general solution of the fractional differential equation CDq
0+ u(t) = 0 is given

by
u(t) = c0 + c1t + c2t2 + · · · + cn−1tn−1,

where ci ∈ R, i = 0, 1, 2, · · · ,n − 1,n = [q] + 1 and [q] denotes the integer part of the real number q.
In view of Lemma 2.6, it follows that

Iq
0+ (CDq

0+ u)(t) = u(t) + c0 + c1t + c2t2 + · · · + cn−1tn−1,

where ci ∈ R, i = 0, 1, 2, · · · ,n − 1,n = [q] + 1.

Lemma 2.7. [21] Let w > θ, β ∈ (0, 1). A : P × P→ P is a mixed monotone operator and satisfies

A(tx, t−1y) ≥ tβA(x, y), ∀t ∈ (0, 1), x, y ∈ P.

B : P→ P is an increasing sub-homogeneous operator. Assume that
(i) there is w0 ∈ Pw such that A(w0,w0) ∈ Pw and Bw0 ∈ Pw;



F. Zheng / Filomat 34:3 (2020), 707–725 710

(ii) there exists a constant δ0 > 0 such that A(x, y) ≥ δ0Bx,∀x, y ∈ P.
Then:
(1) A : Pw × Pw → Pw and B : Pw → Pw;
(2) There exist u0, v0 ∈ Pw and γ ∈ (0, 1) such that

rv0 ≤ u0 < v0,u0 ≤ A(u0, v0) + Bu0 ≤ A(v0,u0) + Bv0 ≤ v0.

(3) The operator equation A(x, x) + Bx = x has a unique solution x∗ in Pw;
(4) For any initial values x0, y0 ∈ Pw, constructing successively sequences

xn = A(xn−1, yn−1) + Bxn−1,
yn = A(yn−1, xn−1) + Byn−1,n = 1, 2, · · ·

we have xn → x∗ and yn → x∗ as n→∞.

Remark 2.8. If we take B = θ in Lemma 2.7, then the corresponding conclusion is still true (see Corollary 2.2 in
[21]).

Lemma 2.9. [20] Let P be a normal cone in a real Banach space E, A : P → P be an increasing γ-concave operator
and B : P→ P be an increasing sub-homogeneous operator. Assume that
(i) there is w > θ such that Aw ∈ Pw and Bw ∈ Pw;
(ii) there exists a constant δ0 > 0 such that Ax ≥ δ0Bx,∀x ∈ P.
Then the operator equation Ax + Bx = x has a unique solution x∗ in Pw. Moreover, constructing successively the
sequence yn = Ayn−1 + Byn−1,n = 1, 2, · · · for any initial value y0 ∈ Pw, we have yn → x∗ as n→∞.

Remark 2.10. If we take B = θ in Lemma 2.9, then the corresponding conclusion is still true (see [15]).

3. Main results

Firstly, we present a natural formula of solutions for a system associated with the problem (1) by
adopting the view of Wang et al. [17] and by using Green’s function and obtain the properties of Green’s
function.

Lemma 3.1. Given h(t) ∈ C(J,R+), 1 < q < 2, the unique solution of
CDq

0+
u(t) = h(t), t ∈ J′ = J\{t1, t2, · · · , tm}, J = [0, 1],

∆u(tk) = Ik(u(tk),u(tk)),∆u′(tk) = Jk(u(tk),u(tk)), k = 1, 2, · · · ,m,
αu(0) + βu′(0) = η1, αu(1) + βu′(1) = η2, β ≥ α > 0, η1 ≥ η2 ≥ 0,

(3)

is formulated by

u(t) =

∫ 1

0
G1(t, s)h(s)ds+

m∑
i=1

G2(t, ti)Ji(u(ti),u(ti))

+

m∑
i=1

G3(t, ti)Ii(u(ti),u(ti)) + G4(t), t ∈ J,

where

G1(t, s) =



(t − s)q−1

Γ(q)
+

(β − αt)(1 − s)q−1

αΓ(q)

+
β(β − αt)(1 − s)q−2

α2Γ(q − 1)
, 0 ≤ s ≤ t ≤ 1,

(β − αt)(1 − s)q−1

αΓ(q)
+
β(β − αt)(1 − s)q−2

α2Γ(q − 1)
, 0 ≤ t ≤ s ≤ 1,

(4)



F. Zheng / Filomat 34:3 (2020), 707–725 711

G2(t, ti) =


β − αti

α
+

(β − αti)(β − αt)
α2 , 0 ≤ ti < t ≤ 1, i = 1, 2, · · · ,m,

β − αt
α

+
(β − αti)(β − αt)

α2 , 0 ≤ t < ti ≤ 1, i = 1, 2, · · · ,m,
(5)

G3(t, ti) =


α + β − αt

α
, 0 ≤ ti < t ≤ 1, i = 1, 2, · · · ,m,

β − αt
α

, 0 ≤ t < ti ≤ 1, i = 1, 2, · · · ,m,
(6)

G4(t) =
αη1 + (β − αt)(η1 − η2)

α2 , 0 ≤ t ≤ 1. (7)

Proof. Applying Lemma 2.6, Eq. (3.1) is reduced to an equivalent integral equation (3.6):

u(t) =
1

Γ(q)

∫ t

0
(t − s)q−1h(s)ds − ck − dkt,∀t ∈ (tk, tk+1], (8)

where t0 = 0, tm+1 = 1. Consequently,

u′(t) =
1

Γ(q − 1)

∫ t

0
(t − s)q−2h(s)ds − dk, t ∈ (tk, tk+1].

In the light of αu(0) + βu′(0) = η1, and αu(1) + βu′(1) = η2, we have

−αc0 − βd0 = η1, (9)

α

∫ 1

0

(1 − s)q−1h(s)
Γ(q)

ds + β

∫ 1

0

(1 − s)q−2h(s)
Γ(q − 1)

ds − αcm − (α + β)dm = η2. (10)

In view of ∆u(tk) = Ik(u(tk),u(tk)), and ∆u′(tk) = Jk(u(tk),u(tk)), we have

cm = c0 −

m∑
k=1

(Ik(u(tk),u(tk)) − Jk(u(tk),u(tk))tk), (11)

dm = d0 −

m∑
k=1

Jk(u(tk),u(tk)). (12)

By (3.7), (3.9) and (3.10), we get

d0 = −
α
β

cm −
α
β

m∑
k=1

(Ik(u(tk),u(tk)) − Jk(u(tk),u(tk))tk) −
η1

β
, (13)

dm = −
α
β

cm −
α
β

m∑
k=1

(Ik(u(tk),u(tk)) − Jk(u(tk),u(tk))tk)

−

m∑
k=1

Jk(u(tk,u(tk))) −
η1

β
.

(14)

By (3.8)-(3.9) and (3.11)-(3.12), we derive

d0 =

∫ 1

0

(1 − s)q−1h(s)
Γ(q)

ds +
β

α

∫ 1

0

(1 − s)q−2h(s)
Γ(q − 1)

ds

+

m∑
i=1

(Ii(u(ti),u(ti)) − Ji(u(ti),u(ti))ti)

+
α + β

α

m∑
i=1

Ji(u(ti),u(ti)) +
η1 − η2

α
.

(15)
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c0 = −
β

α

∫ 1

0

(1 − s)q−1h(s)
Γ(q)

ds −
β2

α2

∫ 1

0

(1 − s)q−2h(s)
Γ(q − 1)

ds

−
β

α

m∑
i=1

(Ii(u(ti),u(ti)) − Ji(u(ti),u(ti))ti)

−
β(α + β)
α2

m∑
i=1

Ji(u(ti),u(ti)) −
βη2 − (α + β)η1

α2 .

(16)

From (3.9)-(3.10) and (3.13)-(3.14), we get

dk = d0 −

k∑
i=1

Ji(u(ti),u(ti))

=

∫ 1

0

(1 − s)q−1h(s)
Γ(q)

ds +
β

α

∫ 1

0

(1 − s)q−2h(s)
Γ(q − 1)

ds

+

m∑
i=1

(Ii(u(ti),u(ti)) − Ji(u(ti),u(ti))ti)

+
α + β

α

m∑
i=1

Ji(u(ti),u(ti)) −
k∑

i=1

Ji(u(ti),u(ti)) +
η1 − η2

α
.

(17)

ck = c0 −

k∑
i=1

(Ii(u(ti),u(ti)) − Ji(u(ti),u(ti))ti)

= −
β

α

∫ 1

0

(1 − s)q−1h(s)
Γ(q)

ds −
β2

α2

∫ 1

0

(1 − s)q−2h(s)
Γ(q − 1)

ds

−
β

α

m∑
i=1

(Ii(u(ti),u(ti)) − Ji(u(ti),u(ti))ti)

−
β(α + β)
α2

m∑
i=1

Ji(u(ti),u(ti)) −
k∑

i=1

(Ii(u(ti),u(ti))

− Ji(u(ti),u(ti))ti) −
βη2 − (α + β)η1

α2 .

(18)

Hence, for k = 1, 2, · · · ,m, (3.15) and (3.16) imply

ck + dkt

= −
β − αt
α

∫ 1

0

(1 − s)q−1h(s)
Γ(q)

ds −
β2
− αβt
α2

∫ 1

0

(1 − s)q−2h(s)
Γ(q − 1)

ds

−
β − αt
α

m∑
i=1

(Ii(u(ti),u(ti)) − Ji(u(ti),u(ti))ti)

−
(α + β)(β − αt)

α2

m∑
i=1

Ji(u(ti),u(ti))

−

k∑
i=1

(Ii(u(ti),u(ti)) − Ji(u(ti),u(ti))ti)

−

k∑
i=1

Ji(u(ti),u(ti))t −
αη1 + (β − αt)(η1 − η2)

α2 ,

(19)
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Now substituting (3.13) and (3.14) into (3.6), for t ∈ [0, t1], we obtain

u(t)

=

∫ t

0

(t − s)q−1h(s)
Γ(q)

ds +
β − αt
α

∫ 1

0

(1 − s)q−1h(s)
Γ(q)

ds

+
β2
− αβt
α2

∫ 1

0

(1 − s)q−2h(s)
Γ(q − 1)

ds

+
β − αt
α

m∑
i=1

(Ii(u(ti),u(ti)) − Ji(u(ti),u(ti))ti)

+
(α + β)(β − αt)

α2

m∑
i=1

Ji(u(ti),u(ti)) +
αη1 + (β − αt)(η1 − η2)

α2

=

∫ t

0

(t − s)q−1h(s)
Γ(q)

ds +
β − αt
α

(∫ t

0
+

∫ 1

t

)
(1 − s)q−1h(s)

Γ(q)
ds

+
β2
− αβt
α2

(∫ t

0
+

∫ 1

t

)
(1 − s)q−2h(s)

Γ(q − 1)
ds

+
β − αt
α

m∑
i=1

(Ii(u(ti),u(ti)) − Ji(u(ti),u(ti))ti)

+
(α + β)(β − αt)

α2

m∑
i=1

Ji(u(ti),u(ti)) +
αη1 + (β − αt)(η1 − η2)

α2

=

∫ t

0

[
(t − s)q−1

Γ(q)
+

(β − αt)(1 − s)q−1

αΓ(q)
+
β(β − αt)(1 − s)q−2

α2Γ(q − 1)

]
h(s)ds

+

∫ 1

t

[
(β − αt)(1 − s)q−1

αΓ(q)
+
β(β − αt)(1 − s)q−2

α2Γ(q − 1)

]
h(s)ds

+

m∑
i=1

[[
β − αt
α

+
(β − αti)(β − αt)

α2

]]
Ji(u(ti),u(ti))

+

m∑
i=1

β − αt
α

Ii(u(ti),u(ti)) +
αη1 + (β − αt)(η1 − η2)

α2

=

∫ 1

0
G1(t, s)h(s)ds+

m∑
i=1

G2(t, ti)Ji(u(ti),u(ti))

+

m∑
i=1

G3(t, ti)Ii(u(ti),u(ti)) + G4(t),

where G1(t, s), G2(t, ti), G3(t, ti), G4(t) are defined by (3.2)-(3.5).
Substituting (3.17) into (3.6), for t ∈ (tk, tk+1], k = 1, 2, · · · ,m, we obtain

u(t) =

∫ t

0

(t − s)q−1h(s)
Γ(q)

ds +
β − αt
α

∫ 1

0

(1 − s)q−1h(s)
Γ(q)

ds

+
β2
− αβt
α2

∫ 1

0

(1 − s)q−2h(s)
Γ(q − 1)

ds

+
β − αt
α

m∑
i=1

(Ii(u(ti),u(ti)) − Ji(u(ti),u(ti))ti)
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+
(α + β)(β − αt)

α2

m∑
i=1

Ji(u(ti),u(ti))

+

k∑
i=1

(Ii(u(ti),u(ti)) − Ji(u(ti),u(ti))ti)

+

k∑
i=1

Ji(u(ti),u(ti))t +
αη1 + (β − αt)(η1 − η2)

α2

=

∫ t

0

(t − s)q−1h(s)
Γ(q)

ds +
β − αt
α

(∫ t

0
+

∫ 1

t

)
(1 − s)q−1h(s)

Γ(q)
ds

+
β2
− αβt
α2

(∫ t

0
+

∫ 1

t

)
(1 − s)q−2h(s)

Γ(q − 1)
ds

+
β − αt
α

 k∑
i=1

+

m∑
i=k+1

 (Ii(u(ti),u(ti)) − Ji(u(ti),u(ti))ti)

+
(α + β)(β − αt)

α2

 k∑
i=1

+

m∑
i=k+1

 Ji(u(ti),u(ti))

+

k∑
i=1

(Ii(u(ti),u(ti)) − Ji(u(ti),u(ti))ti)

+

k∑
i=1

Ji(u(ti),u(ti))t +
αη1 + (β − αt)(η1 − η2)

α2

=

∫ t

0

[
(t − s)q−1

Γ(q)
+

(β − αt)(1 − s)q−1

αΓ(q)
+
β(β − αt)(1 − s)q−2

α2Γ(q − 1)

]
h(s)ds

+

∫ 1

t

[
(β − αt)(1 − s)q−1

αΓ(q)
+
β(β − αt)(1 − s)q−2

α2Γ(q − 1)

]
h(s)ds

+

k∑
i=1

[
β − αti

α
+

(β − αti)(β − αt)
α2

]
Ji(u(ti),u(ti))

+

m∑
i=k+1

[
β − αt
α

+
(β − αti)(β − αt)

α2

]
Ji(u(ti),u(ti))

+

k∑
i=1

α + β − αt
α

Ii(u(ti),u(ti)) +

m∑
i=k+1

β − αt
α

Ii(u(ti),u(ti))

+
αη1 + (β − αt)(η1 − η2)

α2

=

∫ 1

0
G1(t, s)h(s)ds+

m∑
i=1

G2(t, ti)Ji(u(ti),u(ti))

+

m∑
i=1

G3(t, ti)Ii(u(ti),u(ti)) + G4(t),

where G1(t, s), G2(t, ti), G3(t, ti), G4(t) are defined by (3.2)-(3.5). The proof is complete.

Remark 3.2. From Lemma 3.1, it is easy to known that the solution of fractional impulsive differential equations can
be expressed by using Green’s function under the view of Wang et al. [17] and this expression of the solution of the
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problem (3) is simpler than those of [16, 17, 23].

When Ik(u(tk),u(tk)) ≡ 0 and Jk(u(tk),u(tk)) ≡ 0, k = 1, 2, · · · ,m, the corresponding special case of the
problem (3) has been investigated. It is easy to obtain the following corollary.

Corollary 3.3. Given h(t) ∈ C(J,R+), 1 < q < 2, the unique solution ofCDq
0+

u(t) = h(t), t ∈ J = [0, 1],

αu(0) + βu′(0) = η1, αu(1) + βu′(1) = η2, β ≥ α > 0, η1 ≥ η2 ≥ 0,

is formulated by

u(t) =

∫ 1

0
G1(t, s)h(s)ds + G4(t), t ∈ J,

where

G1(t, s) =



(t − s)q−1

Γ(q)
+

(β − αt)(1 − s)q−1

αΓ(q)

+
β(β − αt)(1 − s)q−2

α2Γ(q − 1)
, 0 ≤ s ≤ t ≤ 1,

(β − αt)(1 − s)q−1

αΓ(q)
+
β(β − αt)(1 − s)q−2

α2Γ(q − 1)
, 0 ≤ t ≤ s ≤ 1,

G4(t) =
αη1 + (β − αt)(η1 − η2)

α2 , 0 ≤ t ≤ 1.

Remark 3.4. From Corollary 3.3, one can know that when Ik(u(tk),u(tk)) ≡ 0, Jk(u(tk),u(tk)) ≡ 0, k = 1, 2, · · · ,m,
the solution of fractional impulsive differential equations which can be expressed by using Green’s function is that of
the corresponding fractional differential equations. But in [2, 3, 19, 24–26], it is easy to known that this result can’t
hold.

Lemma 3.5. Let β ≥ α > 0, η1 ≥ η2 ≥ 0, then Green’s functions G1(t, s), G2(t, ti), G3(t, ti) and G4(t) defined by
(3.2)-(3.5) satisfy the following:

(i) G1(t, s) ∈ C(J × J,R+), G2(t, ti), G3(t, ti) ∈ C(J × J,R+), G4(t) ∈ C(J,R+), and G1(t, s), G2(t, ti), G3(t, ti),
G4(t) > 0 for all t, ti, s ∈ (0, 1), where J = [0, 1].

(ii) Green’s functions G2(t, ti), G3(t, ti), G4(t) have the following properties:

β(β − α)
α2 ≤ G2(t, ti) ≤

β(α + β)
α2 ,∀t, ti ∈ J,

β − α

α
≤ G3(t, ti) ≤

α + β

α
,∀t, ti ∈ J,

αη2 + β(η1 − η2)
α2 ≤ G4(t) ≤

αη1 + β(η1 − η2)
α2 ,∀t ∈ J.

Proof. From the expressions of G1(t, s), G2(t, ti), G3(t, ti), G4(t), it is obvious that (i) hold. Next,we will prove
(ii). We can know from the definition of G2(t, ti) that, for given ti ∈ (0, 1)(i = 1, 2, · · · ,m), G2(t, ti) is decreasing
with respect to t for t ∈ J. We let

11(t, ti) =
β − αti

α
+

(β − αti)(β − αt)
α2 , 0 ≤ ti < t ≤ 1, i = 1, 2, · · · ,m,
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12(t, ti) =
β − αt
α

+
(β − αti)(β − αt)

α2 , 0 ≤ t < ti ≤ 1, i = 1, 2, · · · ,m.

Hence, we derive

min
t∈[0,1]

G2(t, ti) = min{min
t∈[ti,1]

11(t, ti), min
t∈[0,ti]

12(t, ti)}

= min{11(1, ti), 12(ti, ti)} = 11(1, ti)

=
β(β − αti)

α2 ≥
β(β − α)
α2 ,

max
t∈[0,1]

G2(t, ti) = max{max
t∈[ti,1]

11(t, ti), max
t∈[0,ti]

12(t, ti)}

= max{11(ti, ti), 12(0, ti)} = 12(0, ti)

=
αβ + β(β − αti)

α2 ≤
β(α + β)
α2 .

Thus, we have

β(β − α)
α2 ≤ G2(t, ti) ≤

β(α + β)
α2 ,∀t, ti ∈ J.

Similarly, we have

β − α

α
≤ G3(t, ti) ≤

α + β

α
,∀t, ti ∈ J.

αη2 + β(η1 − η2)
α2 ≤ G4(t) ≤

αη1 + β(η1 − η2)
α2 ,∀t, ti ∈ J.

The proof is completed.

In the following, we need assumptions as follows:

(H1) f (t,u, v) : J × R+
× R+

→ R+ is continuous and increasing in u and v decreasing. f (t, c1, c2) > 0

with c1 = mint∈[0,1] w(t), c2 = maxt∈[0,1] w(t), where w(t) =
∫ 1

0 G1(t, s)ds > 0, t ∈ [0, 1], and there exists a
constant β1 ∈ (0, 1) such that

f (t, γu, γ−1v) ≥ γβ1 f (t,u, v),∀γ ∈ (0, 1), t ∈ [0, 1],u, v ∈ [0,∞).

(H2) 1(t,u) : J × R+
→ R+ is increasing in u. 1(t, c1) > 0 with c1 = mint∈[0,1] w(t), where w(t) =∫ 1

0 G1(t, s)ds > 0, t ∈ [0, 1], and

1(t, µu) ≥ µ1(t,u),∀µ ∈ (0, 1), t ∈ [0, 1],u ∈ [0,∞).

(H3) Ik(u, v), Jk(u, v)(k = 1, 2, · · · ,m) are increasing in u ∈ [0,∞) for fixed v ∈ [0,∞), decreasing in v ∈ [0,∞)
for fixed u ∈ [0,∞). For all γ ∈ (0, 1), t ∈ [0, 1],u, v ∈ [0,∞), there exist β2, β3 ∈ (0, 1) such that

Ik(γu, γ−1v) ≥ γβ2 Ik(u, v), Jk(γu, γ−1v) ≥ γβ3 Jk(u, v).

(H4) There exists a constant δ0 > 0 such that

f (t,u, v) ≥ δ01(t,u),∀t ∈ [0, 1],u, v ∈ [0,∞).
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(H5) f (t,u) : J ×R+
→ R+ is increasing in u. f (t, c1) > 0 with c1 = mint∈[0,1] w(t), w(t) =

∫ 1

0 G1(t, s)ds > 0, t ∈
[0, 1], and there exists a constant β1 ∈ (0, 1) such that

f (t, γu) ≥ γβ1 f (t,u),∀γ ∈ (0, 1), t ∈ [0, 1],u ∈ [0,∞).

(H6) Ik, Jk ∈ C(R+,R+), Ik(u), Jk(u)(k = 1, 2, · · · ,m) are increasing in u ∈ [0,∞). There exist β2, β3 ∈ (0, 1) such
that

Ik(γu) ≥ γβ2 Ik(u), Jk(γu) ≥ γβ3 Jk(u),∀γ ∈ (0, 1), t ∈ [0, 1],u ∈ [0,∞)

(H7) There exists a constant δ0 > 0 such that

f (t,u) ≥ δ01(t,u),∀t ∈ [0, 1],u ∈ [0,∞).

Theorem 3.6. Assume that (H1)-(H4) hold. Then the problem (1) has a unique positive solution u∗ in Pw. Moreover
for any initial values u0, v0 ∈ Pw, constructing successively the sequences

un(t) =

∫ 1

0
G1(t, s)( f (s,un−1(s), vn−1(s)) + 1(s,un−1(s)))ds

+

m∑
i=1

G2(t, ti)Ji(un−1(ti), vn−1(ti))

+

m∑
i=1

G3(t, ti)Ii(un−1(ti), vn−1(ti)) + G4(t),

vn(t) =

∫ 1

0
G1(t, s)( f (s, vn−1(s),un−1(s)) + 1(s, vn−1(s)))ds

+

m∑
i=1

G2(t, ti)Ji(vn−1(ti),un−1(ti))

+

m∑
i=1

G3(t, ti)Ii(vn−1(ti),un−1(ti)) + G4(t),n = 1, 2, · · ·

we have un(t)→ u∗(t), vn(t)→ u∗(t) as n→∞, where G1(t, s), G2(t, ti), G3(t, ti) and G4(t) are given as (3.2)-(3.5).

Proof. To begin with, by Lemma 3.1, the problem (1) has an integral formulation given by

u(t) =

∫ 1

0
G1(t, s)( f (s,u(s),u(s)) + 1(s,u(s)))ds

+

m∑
i=1

G2(t, ti)Ji(u(ti),u(ti))

+

m∑
i=1

G3(t, ti)Ii(u(ti),u(ti)) + G4(t), t ∈ J.

Define two operators A : P × P→ E and B : P→ E by

A(u, v)(t) =

∫ 1

0
G1(t, s) f (s,u(s), v(s))ds +

m∑
i=1

G2(t, ti)Ji(u(ti), v(ti))

+

m∑
i=1

G3(t, ti)Ii(u(ti), v(ti)) + G4(t),
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Bu(t) =

∫ 1

0
G1(t, s)1(s,u(s))ds.

It is obvious that u is the solution of the problem (1) if and only if u = A(u,u) + Bu. We know from (H1),(H2)
and (H3) that A : P × P→ P and B : P→ P. We check that A,B satisfy all assumptions of Lemma 2.7 in the
sequel.

Firstly,we prove that A is a mixed monotone operator and satisfies A(γu, γ−1v) ≥ γβA(u, v),∀γ ∈
(0, 1),u, v ∈ P. For ui, vi(i = 1, 2) ∈ P,u1 ≤ u2, v1 ≥ v2, from (H1) and (H3), we obtain

A(u1, v1)(t) =

∫ 1

0
G1(t, s) f (s,u1(s), v1(s))ds+

m∑
i=1

G2(t, ti)Ji(u1(ti), v1(ti))

+

m∑
i=1

G3(t, ti)Ii(u1(ti), v1(ti)) + G4(t)

≤

∫ 1

0
G1(t, s) f (s,u2(s), v2(s))ds+

m∑
i=1

G2(t, ti)Ji(u2(ti), v2(ti))

+

m∑
i=1

G3(t, ti)Ii(u2(ti), v2(ti)) + G4(t) = A(u2, v2)(t).

For any u, v ∈ P and γ ∈ (0, 1), let γβ = min{γβ1 , γβ2 , γβ3 }, then γβ ∈ (0, 1). From (H1) and (H3), we know that

A(γu, γ−1v)(t)

=

∫ 1

0
G1(t, s) f (s, γu(s), γ−1v(s))ds+

m∑
i=1

G2(t, ti)Ji(γu(ti), γ−1v(ti))

+

m∑
i=1

G3(t, ti)Ii(γu(ti), γ−1v(ti)) + G4(t)

≥ γβ[
∫ 1

0
G1(t, s) f (s,u(s), v(s))ds+

m∑
i=1

G2(t, ti)Ji(u(ti), v(ti))

+

m∑
i=1

G3(t, ti)Ii(u(ti), v(ti)) + G4(t)] = γβA(u, v)(t).

Further, we show that the operator B is an increasing sub-homogeneous operator. From (H2) that B is
increasing. For any µ ∈ (0, 1) and u ∈ P, from (H2) we have

B(µu)(t) =

∫ 1

0
G1(t, s)1(s, µu(s))ds ≥ µ

∫ 1

0
G1(t, s)1(s,u(s))ds = µBu(t).

Next we verify the conditions (i) and (ii) of Lemma 2.7. Let r1 = mint∈[0,1] f (t, c1, c2), r2 = maxt∈[0,1] f (t, c2, c1).
From (H1),(H3) and lemma 3.5, we get

A(w,w)(t) =

∫ 1

0
G1(t, s) f (s,w(s),w(s))ds +

m∑
i=1

G2(t, ti)Ji(w(ti),w(ti))

+

m∑
i=1

G3(t, ti)Ii(w(ti),w(ti)) + G4(t)

≥

∫ 1

0
G1(t, s) f (s, c1, c2)ds ≥ r1

∫ 1

0
G1(t, s)ds = r1w(t).
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and

A(w,w)(t) =

∫ 1

0
G1(t, s) f (s,w(s),w(s))ds+

m∑
i=1

G2(t, ti)Ji(w(ti),w(ti))

+

m∑
i=1

G3(t, ti)Ii(w(ti),w(ti)) + G4(t)

≤

∫ 1

0
G1(t, s) f (s, c2, c1)ds +

m∑
i=1

β(α + β)
α2 Ji(c2, c1)

+

m∑
i=1

α + β

α
Ii(c2, c1) +

αη1 + β(η1 − η2)
α2

≤ r2

∫ 1

0
G1(t, s)ds +

1
c1

[
m∑

i=1

β(α + β)
α2 Ji(c2, c1)

+

m∑
i=1

α + β

α
Ii(c2, c1) +

αη1 + β(η1 − η2)
α2 ]w(t)

= (r2 +
1
c1

[
m∑

i=1

β(α + β)
α2 Ji(c2, c1) +

m∑
i=1

α + β

α
Ii(c2, c1)

+
αη1 + β(η1 − η2)

α2 ])w(t).

That is

r1w(t) ≤ A(w,w)(t)

≤ (r2 +
1
c1

[
m∑

i=1

β(α + β)
α2 Ji(c2, c1) +

m∑
i=1

α + β

α
Ii(c2, c1)

+
αη1 + β(η1 − η2)

α2 ])w(t).

Similarly, let r3 = mint∈[0,1] 1(t, c1), r4 = maxt∈[0,1] 1(t, c2). From (H2) and lemma 3.5, we get

r3w(t) ≤ Bw(t) ≤ r4w(t).

From (H1) and (H2), we have

r1 = min
t∈[0,1]

f (t, c1, c2) > 0, r3 = min
t∈[0,1]

1(t, c1) > 0,

and in consequence,

r2 +
1
c1

[
m∑

i=1

β(α + β)
α2 Ji(c2, c1) +

m∑
i=1

α + β

α
Ii(c2, c1)

+
αη1 + β(η1 − η2)

α2 ] > r1 > 0,

r4 > r3 > 0.

So we prove that A(w,w) ∈ Pw, Bw ∈ Pw. Hence the condition (i) of Lemma 2.7 is satisfied.
For any u, v ∈ P and t ∈ (0, 1), taking (H4) into consideration, we get

A(u, v)(t) =

∫ 1

0
G1(t, s) f (s,u(s), v(s))ds +

m∑
i=1

G2(t, ti)Ji(u(ti), v(ti))
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+

m∑
i=1

G3(t, ti)Ii(u(ti), v(ti)) + G4(t),

≥

∫ 1

0
G1(t, s) f (s,u(s), v(s))ds

≥ δ0

∫ 1

0
G1(t, s)1(s,u(s))ds = δ0Bu(t).

Then we get A(u, v) ≥ δ0Bu, for all u, v ∈ P. So the condition (ii) of Lemma 2.7 is satisfied.
Finally, by means of Lemma 2.7, the problem (1) has a unique positive solution u∗ in Pw. Moreover for

any initial values u0, v0 ∈ Pw, constructing successively the sequences

un(t) =

∫ 1

0
G1(t, s)( f (s,un−1(s), vn−1(s)) + 1(s,un−1(s)))ds

+

m∑
i=1

G2(t, ti)Ji(un−1(ti), vn−1(ti))

+

m∑
i=1

G3(t, ti)Ii(un−1(ti), vn−1(ti)) + G4(t),

vn(t) =

∫ 1

0
G1(t, s)( f (s, vn−1(s),un−1(s)) + 1(s, vn−1(s)))ds

+

m∑
i=1

G2(t, ti)Ji(vn−1(ti),un−1(ti))

+

m∑
i=1

G3(t, ti)Ii(vn−1(ti),un−1(ti)) + G4(t),n = 1, 2, · · ·

we have un(t)→ u∗(t), vn(t)→ u∗(t) as n→∞, where G1(t, s), G2(t, ti), G3(t, ti), G4(t) are given as (3.2)-(3.5).

Corollary 3.7. Assume that (H1), (H2) and (H4) hold. Then the problem (2) has a unique positive solution u∗ in
Pw. Moreover for any initial values u0, v0 ∈ Pw, constructing successively the sequences

un(t) =

∫ 1

0
G1(t, s)( f (s,un−1(s), vn−1(s)) + 1(s,un−1(s)))ds + G4(t),

vn(t) =

∫ 1

0
G1(t, s)( f (s, vn−1(s),un−1(s)) + 1(s, vn−1(s)))ds

+ G4(t),n = 1, 2, · · ·

we have un(t)→ u∗(t), vn(t)→ u∗(t) as n→∞, where G1(t, s), G4(t) are given as (3.2),(3.5).

If 1(t,u(t)) ≡ 0, by means of Remark 2.8, we have the following two corollaries.

Corollary 3.8. Assume that (H1) and (H3) hold. Then the problem (1) has a unique positive solution u∗ in Pw.
Moreover for any initial values u0, v0 ∈ Pw, constructing successively the sequences

un(t) =

∫ 1

0
G1(t, s) f (s,un−1(s), vn−1(s))ds

+

m∑
i=1

G2(t, ti)Ji(un−1(ti), vn−1(ti))
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+

m∑
i=1

G3(t, ti)Ii(un−1(ti), vn−1(ti)) + G4(t),

vn(t) =

∫ 1

0
G1(t, s) f (s, vn−1(s),un−1(s))ds

+

m∑
i=1

G2(t, ti)Ji(vn−1(ti),un−1(ti))

+

m∑
i=1

G3(t, ti)Ii(vn−1(ti),un−1(ti)) + G4(t),n = 1, 2, · · ·

we have un(t)→ u∗(t), vn(t)→ u∗(t) as n→∞, where G1(t, s), G2(t, ti), G3(t, ti), G4(t) are given as (3.2)-(3.5).

Corollary 3.9. Assume that (H1) hold. Then the problem (2) has a unique positive solution u∗ in Pw. Moreover for
any initial values u0, v0 ∈ Pw, constructing successively the sequences

un(t) =

∫ 1

0
G1(t, s) f (s,un−1(s), vn−1(s))ds + G4(t),

vn(t) =

∫ 1

0
G1(t, s) f (s, vn−1(s),un−1(s))ds + G4(t),n = 1, 2, · · ·

we have un(t)→ u∗(t), vn(t)→ u∗(t) as n→∞, where G1(t, s), G4(t) are given as (3.2),(3.5).

If f (t,u(t),u(t)), Ik(u(tk),u(tk)) and Jk(u(tk),u(tk)) are replaced by f (t,u(t)), Ik(u(tk)) and Jk(u(tk)) respectively,
we can obtain the following new results.

Theorem 3.10. Assume that (H2) and (H5)-(H7) hold. Then the problem (1) has a unique positive solution u∗ in
Pw. Moreover for any initial value u0 ∈ Pw, constructing successively the sequence

un(t) =

∫ 1

0
G1(t, s)( f (s,un−1(s)) + 1(s,un−1(s)))ds

+

m∑
i=1

G2(t, ti)Ji(un−1(ti)) +

m∑
i=1

G3(t, ti)Ii(un−1(ti))

+ G4(t),n = 1, 2, · · ·

we have un(t)→ u∗(t) as n→∞, where G1(t, s), G2(t, ti), G3(t, ti), G4(t) are given as (3.2)-(3.5).

Proof. To begin with, by Lemma 3.1, the problem (1) has an integral formulation given by

u(t) =

∫ 1

0
G1(t, s)( f (s,u(s)) + 1(s,u(s)))ds+

m∑
i=1

G2(t, ti)Ji(u(ti))

+

m∑
i=1

G3(t, ti)Ii(u(ti)) + G4(t), t ∈ J,

Define two operators A : P→ E and B : P→ E by

Au(t) =

∫ 1

0
G1(t, s) f (s,u(s))ds +

m∑
i=1

G2(t, ti)Ji(u(ti))

+

m∑
i=1

G3(t, ti)Ii(u(ti)) + G4(t),
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Bu(t) =

∫ 1

0
G1(t, s)1(s,u(s))ds.

It is obvious that u is the solution of the problem (1) if and only if u = Au + Bu. We know from (H2),(H5)
and(H6) that A : P → P and B : P → P. We check that A,B satisfy all assumptions of Lemma 2.9 in the
sequel.

Firstly, we prove that A : P → P be an increasing γ-concave operator and B : P → P be an increasing
sub-homogeneous operator. For any u ∈ P and γ ∈ (0, 1), let γβ = min{γβ1 , γβ2 , γβ3 }, then γβ ∈ (0, 1). From
(H5) and (H6), we know that

A(γu)(t) =

∫ 1

0
G1(t, s) f (s, γu(s))ds+

m∑
i=1

G2(t, ti)Ji(γu(ti))

+

m∑
i=1

G3(t, ti)Ii(γu(ti)) + G4(t)

≥ γβ[
∫ 1

0
G1(t, s) f (s,u(s))ds+

m∑
i=1

G2(t, ti)Ji(u(ti))

+

m∑
i=1

G3(t, ti)Ii(u(ti)) + G4(t)] = γβAu(t).

Hence the operator A is γ-concave operator. From (H5) that A is increasing. So A : P→ P is an increasing
γ-concave operator. We know from the proof of Theorem 3.6 that the operator B is an increasing sub-
homogeneous operator.

Next we verify that conditions (i) and (ii) of Lemma 2.9. Similarly to the proof of Theorem 3.6. We prove
that Aw ∈ Pw, Bw ∈ Pw. Hence the condition (i) of Lemma 2.9 is satisfied. For any u, v ∈ P and t ∈ (0, 1),
taking (H7) into consideration, we get

Au(t) =

∫ 1

0
G1(t, s) f (s,u(s))ds +

m∑
i=1

G2(t, ti)Ji(u(ti))

+

m∑
i=1

G3(t, ti)Ii(u(ti)) + G4(t),

≥

∫ 1

0
G1(t, s) f (s,u(s))ds ≥ δ0

∫ 1

0
G1(t, s)1(s,u(s))ds = δ0Bu(t).

Then we get Au ≥ δ0Bu, for all u ∈ P. So the condition (ii) of Lemma 2.7 is satisfied.
Finally, by means of Lemma 2.9, the problem (1) has a unique positive solution u∗ in Pw. Moreover for

any initial value u0 ∈ Pw, constructing successively the sequence

un(t) =

∫ 1

0
G1(t, s)( f (s,un−1(s)) + 1(s,un−1(s)))ds

+

m∑
i=1

G2(t, ti)Ji(un−1(ti)) +

m∑
i=1

G3(t, ti)Ii(un−1(ti))

+ G4(t),n = 1, 2, · · ·

we have un(t)→ u∗(t) as n→∞, where G1(t, s), G2(t, ti), G3(t, ti), G4(t) are given as (3.2)-(3.5).

Corollary 3.11. Assume that (H2), (H5) and (H7) hold. Then the problem (2) has a unique positive solution u∗ in
Pw. Moreover for any initial value u0 ∈ Pw, constructing successively the sequence

un(t) =

∫ 1

0
G1(t, s)( f (s,un−1(s)) + 1(s,un−1(s)))ds + G4(t),n = 1, 2, · · ·
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we have un(t)→ u∗(t) as n→∞, where G1(t, s), G4(t) are given as (3.2) and (3.5).

If 1(t,u(t)) ≡ 0, by means of Remark 2.10, we have following two corollaries.

Corollary 3.12. Assume that (H5) and (H6) hold. Then the problem (1) has a unique positive solution u∗ in Pw.
Moreover for any initial value u0 ∈ Pw, constructing successively the sequence

un(t) =

∫ 1

0
G1(t, s) f (s,un−1(s))ds +

m∑
i=1

G2(t, ti)Ji(un−1(ti))

+

m∑
i=1

G3(t, ti)Ii(un−1(ti)) + G4(t),n = 1, 2, · · ·

we have un(t)→ u∗(t) as n→∞, where G1(t, s), G2(t, ti), G3(t, ti), G4(t) are given as (3.2)-(3.5).

Corollary 3.13. Assume that (H5) hold. Then the problem (2) has a unique positive solution u∗ in Pw. Moreover for
any initial value u0 ∈ Pw, constructing successively the sequence

un(t) =

∫ 1

0
G1(t, s) f (s,un−1(s))ds + G4(t),n = 1, 2, · · ·

we have un(t)→ u∗(t) as n→∞, where G1(t, s), G4(t) are given as (3.2) and (3.5).

Remark 3.14. Comparing Theorems 3.6 and 3.10 with the main results in [2, 3, 16, 17, 19, 23–26], our new
results do not demand that the nonlinear term and the impulse functions are bounded or satisfy Lipschitz conditions,
clearly, these conditions are very strong. Moreover, our new results can guarantee the existence of a unique positive
solution without assuming operators to be completely continuous or compactness condition and an iterative sequence
is constructed to approximate it. Thus, the results of the above-mentioned works are generalized and significantly
improved.

4. Illustrative examples

Example 4.1. Consider the BVPs of impulsive fractional differential equations:

CD
3
2
0+ u(t) = (u(t))

1
3 + (u(t))−

1
3 + arctan u(t) + t2 + t +

π
2
,

t ∈ [0, 1], t ,
1
2
,

∆u(
1
2

) = (u(
1
2

))
1
4 + (u(

1
2

))−
1
4 ,∆u′(

1
2

) = (u(
1
2

))
1
5 + (u(

1
2

))−
1
5 ,

u(0) + 2u′(0) = 3,u(1) + 2u′(1) = 2.

(20)

In this case,q = 3
2 ,t1 = 1

2 , α = 1, β = 2, η1 = 3, η2 = 2, and

f (t,u(t), v(t)) = (u(t))
1
3 + (v(t))−

1
3 + t +

π
2
,

1(t,u(t)) = arctan u(t) + t2,

I1(u(t1), v(t1)) = (u(
1
2

))
1
4 + (v(

1
2

))−
1
4 ,

J1(u(t1), v(t1)) = (u(
1
2

))
1
5 + (v(

1
2

))−
1
5 .
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Now we verify that conditions (H1)-(H4) of Theorem 3.6 are satisfied. By a simple computation, we have

w(t) =

∫ 1

0
G1(t, s)ds =

1
3Γ( 3

2 )
(2t

3
2 − 8t + 16),

c1 = min
t∈[0,1]

w(t) =
10

3Γ( 3
2 )
, c2 = max

t∈[0,1]
w(t) =

16
3Γ( 3

2 )
.

Then, f (t, c1, c2) > 0, 1(t, c1) > 0. Moreover, for any µ ∈ (0, 1), γ ∈ (0, 1), t ∈ [0, 1], u, v ∈ [0,∞), we get

f (t, γu, γ−1v) = γ
1
3 u

1
3 + γ

1
3 v−

1
3 + t +

π
2

≥ γ
5
12 (u

1
3 + v−

1
3 + t +

π
2

) = γ
5

12 f (t,u, v),

I1(γu, γ−1v) = γ
1
4 u

1
4 + γ

1
4 v−

1
4 ≥ γ

1
3 (u

1
4 + v−

1
4 ) = γ

1
3 I1(u, v),

J1(γu, γ−1v) = γ
1
5 u

1
5 + γ

1
5 v−

1
5 ≥ γ

4
15 (u

1
5 + v−

1
5 ) = γ

4
15 J1(u, v),

1(t, µu) = arctanµu + t2
≥ µ arctan u + t2

≥ µ(arctan u + t2) = µ1(t,u).

From the expressions of f (t,u(t), v(t)), 1(t,u(t)), I1(u(t1), v(t1)) and J1(u(t1), v(t1)), it is obvious that (H1)-
(H3) hold. For t ∈ [0, 1],u, v ∈ [0,∞), there exists a constant δ0 > 0 such that

f (t,u(t), v(t)) = (u(t))
1
3 + (v(t))−

1
3 + t +

π
2
≥ t +

π
2

≥ arctan u(t) + t2
≥ δ0(arctan u(t) + t2) = δ01(t,u(t)).

Thus (H4) is proved. We know from Theorem 3.6 that the problem (20) has a unique positive solution in
Pw.

Example 4.2. Consider the BVPs of impulsive fractional differential equations:
CD

3
2
0+ u(t) = (u(t))

1
3 + arctan u(t) + t2 + t +

π
2
, t ∈ [0, 1], t ,

1
2
,

∆u(
1
2

) = (u(
1
2

))
1
4 ,∆u′(

1
2

) = (u(
1
2

))
1
5 ,

u(0) + 2u′(0) = 3,u(1) + 2u′(1) = 2.

(21)

In this case,q = 3
2 ,t1 = 1

2 , α = 1, β = 2, η1 = 3, η2 = 2, and

f (t,u(t)) = (u(t))
1
3 + t +

π
2
, 1(t,u(t)) = arctan u(t) + t2,

I1(u(t1)) = (u(
1
2

))
1
4 , J1(u(t1)) = (u(

1
2

))
1
5 .

Now we verify that conditions (H2) and (H5)-(H7) of Theorem 3.10 are satisfied. From the proof of Example
4.1, we know that f (t, c1) > 0. Moreover, for any µ ∈ (0, 1), γ ∈ (0, 1), t ∈ [0, 1], u ∈ [0,∞), we get

f (t, γu) = γ
1
3 u

1
3 ≥ γ

5
12 f (t,u), 1(t, µu) = arctanµu + t2

≥ µ1(t,u).

I1(γu) = γ
1
4 u

1
4 ≥ γ

1
3 I1(u), J1(γu) = γ

1
5 u

1
5 ≥ γ

4
15 J1(u).

From the expressions of f (t,u(t)), 1(t,u(t)), I1(u(t1))), J1(u(t1)), it is obvious that (H2) and (H5)-(H6) hold. For
t ∈ [0, 1],u ∈ [0,∞), there exists a constant δ0 > 0 such that

f (t,u(t)) = (u(t))
1
3 + t +

π
2
≥ t +

π
2

≥ arctan u(t) + t2
≥ δ0(arctan u(t) + t2) = δ01(t,u(t)).

Thus (H7) is proved. We know from Theorem 3.10 that the problem (21) has a unique positive solution in
Pw.
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