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Abstract. In this paper, some compression matrix inequalities are applied to the Frobenius companion
matrices of monic polynomials in order to obtain new upper bounds for the zeros of such polynomials.

1. Introduction

Locating the zeros of polynomials is a classical problem, which has attracted the attention of many
mathematicians beginning with Cauchy. This problem, which is still a fascinating topic to both complex
and numerical analysts, has many applications in diverse fields of mathematics. The Frobenius companion
matrix plays an important link between matrix analysis and the geometry of polynomials. It has been used
for the location of the zeros of polynomials by matrix methods (see, e.g., [2], [4], [6], [9], [10], [17]-[23], and
references therein). In Section 2, we employ several matrix inequalities involving the spectral norm, the
spectral radius, and the numerical radius to derive new bounds for the zeros of polynomials.

Suppose that p(z) = z" +4,z2" ! + ... + a2z + a1 is a complex monic polynomial with n > 2 and a; # 0. Let

21,22,23, ..., Zn be the zeros of p arranged in such a way that |z1| > |z1| > ... > |z,|. The Frobenius companion
matrix C, of p is defined as

=y —dp-1 —dy —
1 0 0 0
c,=| 0 1 0 0
0 0 1 0

It is well-known that the characteristic polynomial of C, is p itself. Thus, the zeros of p are exactly the
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eigenvalues of C, (see, e.g., [14, p. 316]). Note that
bn bn—l b3 bZ bl
—dp  —0p-1 —az —day —ai
2= 1 0 0 0 0
p a
0 0 1 0 0
whereb; = a,a;—aj forj=1,2,..,n,withay = 0. Let p1(2) = (z—a,)p(z) = 2" —bu2" ' =b,_12" 2 —...—=byz—b;.
Then zy, 2,23, ..., z, and a,, are the zeros of p;. The corresponding Frobenius companion matrix C,, of p; is
given by
[0 b, b, b, b1 ]
1 0 O 0 0
0 1 0 0 0
Con={0 0 1 0 0
| 0 0 O 1 0 |
We have
Cn Cn-1 Cn-2 Cq C3 C2 1
bn bn—l bn—Z b4 b3 b2 bl
—dp  —O0p-1 —O0p-2 —a4 —dA3 —a4y —0
) 1 0 0 0 0 0 0
G=| o0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
where b; = a,a; —aj; and ¢, = —aybj + a,1a; —aj for j = 1,2,..,n, with ag = a1 = 0. Let p,(z) =
(22 — apz + 2% — a,1)p(z) = 2"*% — ¢,2" ! — .. — 0oz — ¢,. The corresponding Frobenius companion matrix Cp,
of p, is given by
[0 0 ¢ cu1 Cu2 2 1
10 0 O 0 0 0
01 0 O 0 0 0
001 O 0 0 0
Co=l00 0 1 0 0 0
00 0 O 1 0 0
|0 0 0 O 0 1 0 |
We have
[ dy du ds dy dz dy dy
Cn Cn-1 Cs Cy4 C3 2 1
by bua bs by bz by b
4 —dp  —0p-1 —as —d4 —az —dy —m
G=1 1 0 0o 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
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where b; = a,a;—aj-1,¢j = —a,bj +a,1a; —aj»,and d; = —a,c; - an_le +ay2aj—aj3 forj=1,2,..,n, with
ag=a-1 =a_p =0.Letps(z) = (23 —a,z> + (a% - an_l)z —a +2a,a,_1 — an_z)p(z) =7 g, 2" —dyz—d;.
The corresponding Frobenius companion matrix C,, of p3 is given by

0 0 0 d, doy d, d
100 0 0 0 0
0100 0 0 0
001 0 0 0 0
Cs=l000 1 0 0 0
000 0 1 0 0
o000 0 .. 1 0]

In fact, for k < n, the entries of the first row of C’; are the negative of the coefficients of the polynomial
obtained by multiplying p by a polynomial of degree k — 1. We leave the details to the interested reader. It
should be mentioned here that the zeros of p are contained in the zeros of p1, p», and p3. So, any upper
bound for the zeros of p1, p», or p3 can be considered as an upper bound for the zeros of p.

Let M,,(C) denote the algebra of all n X n complex matrices. The eigenvalues of A are denoted by
A (A),A2(A), ..., Au (A), and are arranged so that [A; (A)| > |1, (A)] > ... > |4, (A)|. The singular values
of A (i.e., the eigenvalues of |A| = (A"A)%) are denoted by s;(A), 52 (A), ..., s, (A), and arranged so that
$1(A) = $(A) = ... = s, (A). Recall that 5]2. (A) = Aj(A*A) = Aj(AAY) for j = 1,2,..,n. For A € M,(C),
let ¥(A), w(A), and ||A|| denote the spectral radius, the numerical radius, and the spectral norm of A,
respectively. Recall that w (A) = maxy=1 [{ Ax, x )|. It is known that

| 4;(A4) < 7 (A) <w(A) < ||A]l = 51 (A) (1)

(see, e.g., [7] or [15]). Let A € IM,,(C), and let A = U | A| be the polar decomposition of A . The generalized
Aluthge transform of A is defined as

A=A UA
for 0 <t <1 (see, e.g., [3]). This transform is well-defined, as it is independent of the choice of the partial
isometry U in the polar decomposition of A.
A compression of a partitioned block matrix A = [A,v]] with respect to a certain real-valued function f is
a matrix obtained from A by replacing each of its blocks by f (A,'j) . Inequalities relating f (A) = f ([Aij]) to

its compression matrix [ f (Aij)] are called compression inequalities.
In this paper, we employ spectral norm, spectral radius, and numerical radius compression inequalities
to obtain new bounds for the zeros of polynomials.

2. Main results

Matrix analysis methods have been successfully utilized to derive several bounds for the zeros of
polynomials. We employ various matrix inequalities to the companion matrices C,, Cp,, C;,, and Cp, to
derive new bounds for the zeros of p. This will be accomplished by applying certain lemmas.

The following lemma can be found in [16].

Lemma 2.1. Let A € M, (C) be partitioned as

A Anp
A= ,
[ An Ax ]
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where Ajj is an n; X nj matrix fori, j = 1,2 withny +ny = n. If

A=| Wanh Tami |
then
rA) <r(4), 2)
w(A) <w(A), 3)
and
AN < ||A]|.

Theorem 2.2. If z is any zero of p1, then

1 2 = 2
el < 5 [max{L, bul) + 1+ | (max{L, bal} ~ 1% + 4, ;W :

Proof. Partition Cp, as

A B |
Cpl:[c D 7
00 .. 00O
. 8 (1) 1 0 0 0
whereAz[(l) b ,B=[b’5l %2 bol],C= . |,andD=|0 1 00 . Using the
00 00 1 0

inequality (2) in Lemma 2.1, we have
Al 1Bl
(Gn) Sr([ il 1ol D

1
=3 (IIAII +|ID]| + \/(IIAII — IDI)* + 411BI IICII)-

Since ||A|| = max{1, |b,|}, ||B]| = Z”_l |b]- 2, and ||C|| = ||D|| = 1, it follows that

=1

n-1
max{L, b} + 1+ | (max(L Ib,l} - )? +4,| Y [,
j=1

from which the result follows by the inequalities (1). O

N —

r(Cpl) <

The following two theorems, however, can be proved similarly as in Theorem 2.2.

Theorem 2.3. If z is any zero of p,, then

n
|zl <1+ (Z |cj|2]
=1

1
7
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Theorem 2.4. If z is any zero of ps, then
1
n 4
2
<1+ Y |
j=1
The following lemma can be found in [11, pp. 8-9].

Lemma 2.5. Let L, be the n X n matrix given by

00 .. 00
10 .. 00
=01 .. 00
00 10

Then

Tt
w(Ln)=cosn+1.

The following two lemmas are well-known and they can be found in [24] and [5], respectively. The first

lemma gives a useful formulation of the numerical radius, and the second one is an improvement of the
inequality (3) in Lemma 2.1. Here, IM,+;(C) denotes the space of all r X s complex matrices.

Lemma 2.6. Let A € M,,(C). Then

w(A) = max HRe (eieA)" .

o>

Lemma 2.7. Let A € M (C), B € My, (C), C € M, (C) and D € M,,,(C), and let T = [ g ] . Then

w(A) T,
v = “’(|w<To> w (D) ])

A

_ % (w (A) + (D) + yJ(w (A) — w (D)) + 42 (TO)),
whereT,,:[ g lg ]

The following lemma [1] gives a bound for the spectral radii of sums of two matrices involving the
Aluthge transforms of these matrices.

Lemma 2.8. Let A, B € M,,(C). Then

r(A+B)<r([ w(A®) IABJ|Z ||IBA|| T D
“ O\l MBIZIBAIT  w (B (H)

for0<t<1.

Theorem 2.9. If z is any zero of p1, then

1 T T
< — 2
|Z|_2(C05n+1+ cos n+1+4b),

1
2

where b = (27:1 |b]-|2)
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Proof. Write Cp, as Cp, = A + B, where A = L,;41, and

[0 b, b, by b
00 0 0 0
0 0 0 0 0
B=10 0 o 0 0
00 0 .. 0 0]

Note that |A| = I, ® 0 and |B*| = b® 0,, in which b = (Z; |b]f(2)z , where I,,, 0, are, respectively, the identity

and the zero matrices in IM,,(C). Let U = Aand V = %B . Then U and V are partial isometries. Moreover, A
and B can be written, respectively, as A = U|A| and B = V|B| in a polar decomposition. Now, it is easy to
see that A(f) = L, ® 0 and B* () = 0,41 for 0 < t < 1. Consequently, w (B* (t)) = 0, and by considering Lemma

2.5, we obtain w (A (t)) = cos . Furthermore, using the inequality |z| < r (Cpl) and Lemma 2.8, we have

n+l°
L 1t
2l < infr cosgiy 4B [IBAII
— 0<t<1 ||AB||E||BA||T 0
1 n n t 1-t
-2 + 2 +4 inf ||AB||?2 ||BA||Z .
2( +1 \/ a1 A B IBAI )

Since ||AB|| = ||BA|| = b, we haveinf __, ||AB||[ IIBA|I*™ = b, from which our result follows. [J
Now, the following two theorems can be proved in a similar manner to Theorem 2.9.

Theorem 2.10. If z is any zero of p, then

o] < X " 2
< —|COSs COS
2 n+2

T
+4c]|,
2 C)

1
2\2
where ¢ = (27:1 )c]-) ) )
Theorem 2.11. If z is any zero of p3, then

Tt

1
|z] < =|cos

<5 + Coszn 3+4d),

T
n+3
where d = (27:1 (dj|2)E )

The following two lemmas can be found in [15, p. 44] and [25, p. 133], respectively.

Lemma 2.12. Let A = [aij] € M,,(C). Then

w(A) < w(“azju) = %r (Uaij| + )afi”)' (4)

Moreover, if a;; 2 0, then

=[5
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Lemma 2.13. Let T}, be the n X n tridiagonal matrix given by

01 0 0
; 0 3 0
T,=| 0 3 0 0

-
oo g
00 .. 2 0

Then the eigenvalues of T, are

]fl forj=1,2,..,n.

Aj = cos
n

Based on Lemma 2.12 and Lemma 2.13, we have the following bounds for the zeros of polynomials.
Related results can be found in [18].

Theorem 2.14. If z is any zero of py, then

-1
1 b iy 5 \ 2
<= 2 .
2l < > cosn+1+Jcos —— + 1+ 1)) +§,1 o) |-
-

Proof. By applying the inequality (4) in Lemma 2.12 to C,,, we obtain

[0 by by by b
1 0 0 0 0
01 o0 0 0 0 4
w(C)=w|lo 0 1 0 0 <r([ . T, D (6)
000 0 .. 1 0]

t
where u = [% 1+ b)), % byl ..., % |b1|] ,and T, is the n X n tridiagonal matrix given in Lemma 2.13. Since
T, is Hermitian, we have ||T,|| = 7 (T,) = cos -=. By using the inequality (6) and the inequality (2) in Lemma

n+l*
2.1, we obtain
0 [laall
llull  cos ;25

w(Cm)
= 1Cos T4 Jeos? = + 4 ||ulf?
2 n+1 n+1

1 T T e
_ = 2 2 )
= 2cosn+1+Jcos n+1+(1+|b”|)+z o) |-

j=1

IA
<

Now, the desired result follows from the inequalities (1). O

Similarly, we can prove the following two theorems.

Theorem 2.15. If z is any zero of p, then

1 T i . 2
< Z 2 .
Izl_z[cosn+2+dcos n+2+1+§ |c]|].




F. Kittaneh et al. / Filomat 34:3 (2020), 1035-1051 1042

Theorem 2.16. If z is any zero of p3, then

1 T i . 2
< Z 2 .
Izl_z[cosn+3+dcos n+3+1+§ 4" |-

j=1

Example 2.17. Consider the polynomial p(z) = z°+2%+ 1z+1. Then the upper bounds for the zeros of this polynomial
p(z) estimated by different mathematicians are as shown in the following table

Bound Value
Montel [9] 3.5
Fujii and Kubo [10] 1.9571
Cauchy [14] 2
Kittaneh [18] 2.0574
Linden [21] 1.9492

But if z is a zero of the polynomial p(z) = z° + z* + 1z + 1, then Theorem 2.9 gives |z| < 1.5153, Theorem 2.10 gives
|z| < 1.6333, Theorem 2.14 gives |z| < 1.3536, and Theorem 2.15 gives |z| < 1.3355, which are better than all the
estimates mentioned above.

Now, we are in a position to derive a new bound for the zeros of p;.
Theorem 2.18. If z is any zero of p1, then

\/Zn:l |bf|2 Tt
ol < — -

S 2 COSn+1.

Proof. Letu = [% 1Byl , % byl ..., % Ibll]t . By (5), (6), the triangle inequality for the spectral norm, and the
inequality (3) in Lemma 2.1, we have

w(Cy)

IA

g
—_
—
<= O
S o=,
[

+

3
N —

+1

0 Ml 1) 1 o T
llull O n+1

= ——— +cos .
2 n+1

Now, the desired bound follows from the fact that |z| < w (C,,l) . O

IA Il
~ ~
—
= o
o =,
| S
N —
+
()
o]
»

In a similar manner to Theorem 2.18, we can prove the following two theorems.

Theorem 2.19. If z is any zero of p, then

-1 |5
z| < + cos .
d 2 +2
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Theorem 2.20. If z is any zero of p3, then

n | 2
" laj
lz| < ]21 + cos

The following two lemmas can be found in [10] and [13], respectively. The second lemma is an immediate
consequence of Lemma 2.6.

Lemma 2.21. Let

a dap e Ay
0 0 0
R = .
0 0 0
Then
2\2
(T k) + e
w(R) = .

2

Lemma 2.22. Let A € Mi(C), B € My (C). Then w 0 AN_1 max He"eA + 108"
B 0 2 geR

Theorem 2.23. If z is any zero of p with n > 4, then

1

2\2
(Z?:n—Z |a]| ) + |ﬂn| . 1
2 2

|z| <

L+cos T L—cos I 2+40¢2
V2 n—2 V2 n—2 ’

where

a3 2 w3l 2V n—4|_ |2
11 + X0 |af| + \/(1 +Xia )‘Zi| ) —4Xn |af)

*=2 2
_ [0 0 O —0p-3 —dy —d1
"g” "“5‘1 ‘”(’)"2 8 8 100 0 0 0
0 0 o o o 010 0 0 0
Proof. LetL = and N = 001 0 0 0 . Then C, =
f. 0 0 0 0 .. 0 00 0 1 0 0 p
0 0 0 0 .. 0] 000 O .. 1 0

L + N. So, by the triangle inequality, we have w (C,,) <w(L) + w(N). By using Lemma 2.21, we have

1
2\2
(Zhozlef) +
5 .
By applying Lemma 2.7 to N, partitioned as

Ni1 Np ]

w(L) =

N =
[ No1 Np
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where
0 0 O —0Ap-3 —Ou-4
010 0 0
00 1 00 0
10 0
000 01 0
Ny = . . . |,and Ny =
0 0O 0 0 1
we have
w(Ni1) w(T,) |
N) <
wi) = ”’([ w(T) wNz) |

= % (w (N11) + w (N2) + \/(w (N11) — w (Nap))? + 4w? (To))-

According to Lemma 2.22, we have that

ool 8 ¥ )

1

By using Lemma 2.5, we have w (N11) = —= and w (N2) = cos ;%5, and so

V2

2
111 e 1 iy
< — | — R 2_
w(N)_Z[\/j+COSn—2+\/(\/§ COSn—Z) +4a]

Hence,

1

(Z;l:n—Z |l'l]'|2)E + |an| 1 1

Recalling that |z| < w (C,,) , the result follows. O

Theorem 2.24. If z is any zero of p3, then

1] 1 n 1 n \
< - | — - 2
|Z|_2 \/§+COSn+1+ (\ﬁ cosn+1) +4B2|,

where

1
F=3 2

Proof. Partition Cp, as

C, = [ Cii Ci2 ],

| Cn

n 2 n 2)? w1lg 2
temilaf + (1 z ) -z

1044
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where
0 0O dy dyr .. A
Ch =110 0], Cp=f0 0 .. 0],
010 0o 0 .. 0
00 1 0 0 0 0
10 0 0
000 01 00
C21 = . . . ,andC22:
L0 0 0] 0 0 10
Then by Lemma 2.7, we have
w(Ci)  w(To)
w(Cn) < w([ w(T,) w(Cx)

3 (e e+ e - wEr +ae @)

According to Lemma 2.22, we have that

vm=ef e, 5 -
1

By using simple computations, we have w (Cy1) = o and w (Cy) = cos ;77, and so

2
1(1 i 1 T
<-|— — - 482 |.
w(C,l,s)_2{\/§+cosn_‘_1+\/(\/E cosn+1) + ﬁ}

Recalling that |z| < w (CP3) , the result follows. [

The following lemma can be found in [8].

Lemma 2.25. Let T = [ 0 X

Y 0 ] with X € Myu(C) and Y € M54 (C). Then

1
4(T)< —
w()_16

where P = | X1 + Y.

1 1
IPI” + 7@ (XY) + gw (XYP + PXY),

Theorem 2.26. If z is any zero of ps, then

1 1
lz| < cos - LS 5 (az +|d,f* + (1 +a) |dn|)4

+1

where o = Y7 |dj|2.

~

Proof. Let
000 dy  du dq
Ci = 1 0 0f,Cpp=| 0 0 0o 1,
01 0 0 0 0
00 1 0 0 0 0
1 0 0 0
000 0 1 0 0
C21 = . . . , and C22 =
000 0 0 1 0

1045
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Then

| Cu Ci2
G _[ Cn Cx ]

So, by the triangle inequality, we have

ool 5 & el & 5

Since w([ W o D = max {w (C11), w (Cz)} = cos %5, by applying Lemma 2.25, we get

n+l’

4| 0 Cn T R 1
w ([ Cy 0 < 6 |[P||” + i (C12C21) + 8w(C12C21P+PC12C21),

where P = C12Cj, + C;,Ca1. Since ||P|| = ||C12C;2 + C;1C21H = a , and since by Lemma 2.21, we have
w? (C12C21) = % and w (C12C21P + PC12C21) = m, it follows that

1 1
+ > (a H 1l + (1 + ) ldal)*

w(Cp3) Scosnz1 >

Recalling that |z| < w (C,,B) , the result follows. [

The following lemma can be found in [4].

Lemma 2.27. Let A and B € M,,(C). Then

w (A + B) < \Jw? (A) + w? (B) + ||A|| |IB|| + w (B*A).

Theorem 2.28. If z is any zero of p, then

1
2\2
(Z?:l |11] - aj—l) ) + |an - an—1| T n-1 5
2 2 2 .
lz| < > + . |0% + cos n+1+ |a] ,
j=1

[

(Z;‘;lllajf) +au-1]

where 6 = 5
o g 4 00 00
0 Vb—l R 1 0 00

Proof. Let A = . . ) . |land B = 0 1 00 . Then ¢, =B-A. So, by the triangle
0 0 - 0 00 .. 10

inequality, we have w (Cp) <w(A—-AB)+w(B - AB). By using Lemma 2.21, we have

1
2\2
(Z}Ll la; — a4 ) + 1y — Ay

w(A - AB) = 5
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—ldp—1 —Ap-2 — 0 0 0 0 0

0 0 .. 0 0 1 0 .. 0O

LetB—AB =L+ M, whereL = 0 0 0 0landm=|01 .. 00
0 0 0 0 0 0 1 0

Lemma 2.27, we get

w(B—AB) = w(L+M) < Vu? (L) + w? (M) + |IL|| ]M]| + w (M°L),

where w (L) = 6, w (M) = cos 75, IILI| = \/27:_11 aj 2, [IM]| = 1, and w (M*L) = 0. Consequently,

1
2\2
(Z;‘l:l |ﬂ] - aj—l| ) + Ian - an—ll

n—1
4 2
w(C)s + |62 + cos? + E a;
P 2 n+1 ],_1|]

4

which yields the desired inequality. O
Proposition 2.29. Let A, B € M,,(C). Then

~

1
A < =
r( +B)_2

0
w(A) +w(B) + \/(w (A) = w (B)) + 4u? ([ BA 0 D]

Proof. We have

wen - %50 1)
2]
3 i)
4]
{4 4]

[w (A) +w (B) + \/(w (A) - w (B))? + 4 ([ o (I) ])] (by Lemma 2.7),

N~

as required. [

Theorem 2.30. If z is any zero of p, then

1 m i 2 0 I
IZISE[Cosn+1+E+\/(cosn+1—£) +4w2([5 0])],

—Ay-1 —Ap-2 ... —d1 0
(Z” | |2)%+| | 0 0 . 0 0
i=1|4j An
where & = S0 0 /2 ,and S = 0 0 -~ 00

1047

. Now, using
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00 .. 00 —a, —0y-1 .. —0y) —M
10 00 0 0 . 0 0

Proof. Let M = 01 0 0landn=| 0 0 0 0 | Then C, = M + N. By using
0 0 10 0 0 0 0

Proposition 2.29, we have

o)< oo ewon oo -wonr ey ]

By using Lemma 2.5, we have w (M) = cos -5, and applying Lemma 2.21, we have
w(N) =¢,

and so

r(CP)S%[COSn21 +&+ \/(Cosn:fl _g)2+4w2([ N?VI (I) ])],

where NM = S. Consequently,

2
IZIS%[cosnzl+5+ \/(cosnzl—é) +4w2([ g (I)])]

Recalling that |z| < 7 (Cp) , the result follows. [

Remark 2.31. It is well-known that if T € M,,(C) is nilpotent of index 2, i.e., if T?> = 0, then

w () =3 IITI.

An estimate for the numerical radius of a nilpotent matrix has been given by Haagerup and de. la Harpe
[12]. This says that if T € IM,,(C) such that T* = 0 for some k > 1, then

T
< —_—.
w(T) < |ITllcos ;——

Using this result of Haagerup and de. la Harpe, we have the following estimates for the numerical radii of
2 % 2 off diagonal block matrices with certain conditions.

Proposition 2.32. Let A € My, (C), B € My (C) such that AB=0.IfT = [ ](;); 161 ], then

w(T) < max{||A||,||B||}'
V2
Proof. Since T® = [ BgB A](E);A ] = 0, it follows that
w(T) < ||:r||cosg
_ max {||All, ||B|l}
\/i ’

as required. [
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Proposition 2.33. Let A € My, (C), B € M,y(C) such that AB=BA =0.IfT = [ g 13 ], then

w(T) = 5 max (IAIL Il

AB 0

2 _
Proof. We have T —[ 0 BA

]:O.Thenw(T) 2||T|| 2max{llAlI IBll}, as required. O

Theorem 2.34. If z is any zero of ps, then

|z] < — [max 'y | + cos —— \/(L ~ cos )2 +|d,[*
= n+1 V2 n+1

00 0 0 dyoq dyio dy dq 00 0 d, 0 0 01
00 0O0 O 0 0 0

1 00 0 O 0 0
00 0O0 O 0 0 0

010 0 O 0 0
0010 O 0 0 0
00 0O0 O 0 0 0 00000 00

Proof. Let L = andN=|0 00 1 0 0 0 |- Then

00 0O0 O 0 0 0 000 0 1 0 0
00 0O0 O 0 0 0
0 0 00 o0 0 0 0| |0 00 0 0 .. 1 0]

Cp, =L+ N. So, by the triangle inequality, we have w (Cp3) <w(L) +w(N). By applying Proposition 2.33 to
L, partitioned as

L:[ Lu L ],

Ly Ly
where
0 0 0 0 dya dy
L1 = 0 0 0,Lp=l0 0 0 |,
0 0 0 0 0 .. 0
00 1 00 00
00 00
000 00 00
Ly = . . . |,and Ly = ,
000 00 .. 00O
we have
0 Lp
L =
o = o g F)

1
= EmaX{||L12||/||L21||}-

1 L R
= Emax Z|d]- ,1
=1

Also, by applying Lemma 2.7 to N, partitioned as

N=[ Ni1 Np ],

Nyt N
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where
0 0 0] d, 0 0
N1 = 1 0 0f,Np=| 0 O 0|,
010 0 0 0
00 0 0 0 0 0
1 0 .. 00
0 0O
Ny = . . . ,anszZ: o1 .. 00 ,
000 0 0 10
we have
w(N11) w(Ty,) ]
wil) < w([ w(T) wNz) |

= % (w (N11) + w(N2) + \/(w (N11) — w (N2p))? + 4w? (To)) ‘

By using Lemma 2.5, we have w(Ny;) = % and w (Ny) = cos ;5. Since w?(T,) = w? ([ 0 N ]) =

LIINpal? = L1d, P, it follows that

1 L L—cos I 2+|03|2
V2 n+1 \2 n+1 e

1
w(N) < > — + cos

Consequently,

Now, the desired bound follows from the fact |z| < w (Cp3). O

Finally, we remark that lower bound counterparts of the upper bounds obtained in this paper can be
derived by considering the polynomial fz—'llp (%) whose zeros are the reciprocals of those of p. This enables

us to describe annuli in the complex plane containing all the zeros of p. Moreover, for k < 1, compression
matrix inequalities may be applied to C’; in order to obtain further bounds for the zeros of p. Thus, by the

1 1
spectral mapping theorem and the inequalities (1), if z is any zero of p, then |z| < (w (C’;))k < HC’;” L.

References

[1] A. Abu-Omar, A Spectral radius inequalities for sums of operators with an application to the problem of bounding the zeros of
polynomials, Linear Algebra Appl. 550 (2018), 28-36.

[2] A. Abu-Omar, Notes on some bounds for the zeros of polynomials, Math. Inequal. Appl. 21 (2018), 481-487.

[3] A. Abu-Omar and E. Kittaneh, A numerical radius inequality involving the generalized Aluthge transform, Studia Math. 216
(2013), 69-75.

[4] A. Abu-Omar and F. Kittaneh, Estimates for the numerical radius and the spectral radius of the Frobenius companion matrix
and bounds for the zeros of polynomials, Ann. Funct. Anal 5 (2014), 56-62.

[5] A.Abu-Omar and F. Kittaneh, Numerical radius inequalities for n X n operator matrices, Linear Algebra Appl. 468 (2015), 18-26.



(6]

[7]
(8]

[9]
[10]
[11]
[12]

[13]

[14]
[15]
[16]
[17]

[18]
[19]

[20]
[21]
[22]
[23]

[24]
[25]

F. Kittaneh et al. / Filomat 34:3 (2020), 1035-1051 1051

Y. A. Alpin, M. Chien, and L. Yeh, The numerical radius and bounds for zeros of a polynomials, Proc. Amer. Math. Soc. 131
(2002), 725-730.

R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.

P. Bhunia, S. Bag, and K. Paul, Numerical radius inequalities of operator matrices with applications, Linear Multilinear Algebra,
in press.

M.pFujii and F. Kubo, Operator norms as bounds for roots of algebraic equations, Proc. Japan Acad. Sci. 49 (1973), 805-808.

M. Fujii and F. Kubo, Buzano's inequality and bounds for roots of algebraic equations, Proc. Amer. Math. Soc. 117 (1993), 359-361.
K. E. Gustafson and D. K. M. Rao, Numerical Range, Springer, New York, 1997.

U. Haagerup and P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space, Proc. Amer. Math. Soc. 115
(1992), 37-379.

O. Hirzallah, E. Kittaneh, and K. Shebrawi, Numerical radius inequalities for certain 2 x 2 operator matrices, Integral Equations
Operator Theory 71 (2011), 129-149.

R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge, 1985.

R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge, 1991.

J. C. Hou and H. K. Du., Norm inequalities of positive operator matrices, Integral Equations Operator Theory 22 (1995), 281-294.
E. Kittaneh, Singular values of companion matrices and bounds on zeros of polynomials, SIAM J. Matrix Anal. Appl. 16 (1995),
333-340.

E. Kittaneh, Bounds for the zeros of polynomials from matrix inequalities, Arch. Math. 81 (2003), 601-608.

E. Kittaneh and K. Shebrawi, Bounds for the zeros of polynomials from matrix inequalities — II, Linear Multilinear Algebra 55
(2007), 147-158.

E. Kittaneh and K. Shebrawi, Bounds and majorization relations for the zeros of polynomials, Numer. Funct. Anal. Optim. 30
(2009), 98-110.

H. Linden, Bounds for zeros of polynomials using traces and determinants, Seminarberichte Fachb. Math. FeU Hagen. 69 (2000),
127-146.

M. Marden, Geometry of Polynomials, 2"ed. Amer., Math. Soc. Surverys, Providence, 1966.

K. Shebrawi, Bounds for the zeros of polynomials from numerical radius inequalities. Math. Inequal. Appl. 20 (2017), 557-563.
T. Yamazaki, On upper and lower bounds of the numerical radius and an equality Condition, Studia Math. 178 (2007), 83-89.

T. Yoshino, Introduction to Operator Theory, Essex, 1993.



