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Abstract. In this work, we study the split common fixed point problem which was first introduced by
Censor and Segal [14]. We introduce an algorithm based on the viscosity approximation method without
prior knowledge of the operator norm by selecting the stepsizes in the same adaptive way as López et al.
[22] for solving the problem for two attracting quasi-nonexpansive operators in real Hilbert spaces. A strong
convergence result of the proposed algorithm is established under some suitable conditions. We also modify
our algorithm to extend to the class of demicontractive operators and the class of hemicontractive operators,
and obtain strong convergence results. Moreover, we apply our main result to other split problems, that is,
the split feasibility problem and the split variational inequality problem. Finally, a numerical result is also
given to illustrate the convergence behavior of our algorithm.

1. Introduction

In 1994, the first instance of the split inverse problem (SIP) was introduced by Censor and Elfving
[11] and was called the split feasibility problem (SFP). This split inverse problem is the problem of finding
a point of a closed convex subset of a Hilbert space such that its image under a given bounded linear
operator belongs to a closed convex subset of another Hilbert space. The SFP was studied by many authors
(see [1, 22, 31, 34, 35]) due to its applications are desirable and can be used in real-world applications,
for example, in signal processing, image recovery, modeling inverse problems, the intensity-modulated
radiation therapy, etc (see [2, 5, 9, 11, 12, 22]). A fixed point of an operator is a point of the operator’s
domain, which is mapped to itself by the operator. In many areas, stability or equilibrium is a fundamental
notions that can be explained in terms of fixed points, and it is well known that the fixed point theory is
very important in nonlinear analysis and can be applied in a variety of problems. In 2009, Censor and Segal
[14] introduced another problem which is a generalization of the SFP, and was called the split common fixed
point problem (SCFP). This split problem was first considered for the class of directed operators in Euclidean
spaces [14] and later has been widely studied in Hilbert spaces by many researchers, see [3, 7, 8, 15, 19–
21, 25, 27, 28, 32, 36, 38], for instance. The SCFP requires to find a common fixed point of a family of
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operators in a Hilbert space whose image under a considered bounded linear operator is a common fixed
point of another family of operators in the image space. Let us recall the SFP and the SCFP, and review
some methods for solving the problems:

LetH1 andH2 be two real Hilbert spaces, and let A : H1 → H2 be a bounded linear operator. The SFP
is formulated as finding a point

x∗ ∈ C such that Ax∗ ∈ Q, (1)

where C ⊂ H1 and Q ⊂ H2 are nonempty closed convex subsets. Byrne [1] was the first who introduced
the so-called CQ algorithm which does not involve matrix inverses in finite-dimensional spaces for solving
the SFP (1) as follows:

xn+1 = PC

(
xn − γA∗(I − PQ)Axn

)
, n ∈N, (2)

where γ ∈
(
0, 2
‖A‖2

)
, A∗ denotes the adjoint operator of A, and PC, PQ are the metric projections onto C and

Q, respectively.
In this work, we focus our attention on the following SCFP for two operators: Find a point

x∗ ∈ F(S) such that Ax∗ ∈ F(T), (3)

where S : H1 → H1 and T : H2 → H2 are two operators with nonempty fixed point sets F(S) and F(T),
respectively. We denote the solution set of the SCFP (3) by

Γ := {x ∈ F(S) : Ax ∈ F(T)} = F(S) ∩ A−1(F(T)).

In order to solve the SCFP (3), Censor and Segal [14] proposed an algorithm for two directed operators S
and T as follows:

xn+1 = S
(
xn − γA∗(I − T)Axn

)
, n ∈N, (4)

where γ ∈
(
0, 2
‖A‖2

)
, and proved a convergence theorem under the demiclosedness principle in finite-

dimensional spaces. After that Moudafi [25] introduced the following relaxed algorithm for solving the
SCFP (3):yn = xn − γA∗(I − T)Axn,

xn+1 = (1 − αn)yn + αnSyn, n ∈N,
(5)

where S is κ1-demicontractive and T is κ2-demicontractive, αn ∈ (0, 1) and γ ∈
(
0, 1−κ2
‖A‖2

)
. He also proved

a weak convergence result of this algorithm under some suitable conditions in (infinite-dimensional) real
Hilbert spaces.

We see that the parameters γ in above mentioned algorithms ((2), (4), (5)) depend on the norm of A. In
order to utilize these algorithms, we first have to calculate or estimate the operator norm ‖A‖; however, the
calculation of ‖A‖ is not an easy work in general practice.

Question: How do we construct an algorithm which is independent of ‖A‖ for solving the SFP or the
SCFP?

López et al. [22] presented one of the ways to select the stepsize γn for replacing the parameter γ in
Algorithm (2) for solving the SFP (1) as follows:

γn :=
λn‖(I − T)Axn‖

2

‖A∗(I − T)Axn‖
2 , (6)

where λn ∈ (0, 2) and T := PQ. It can be seen that the choice of the stepsize γn in (6) does not depend on
‖A‖ (indeed, it depends on xn). For the SCFP, Maingé [28] introduced an algorithm based on the viscosity
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method by choosing the stepsize in the similar way to (6) in the cases of quasi-nonexpansive or directed
operators. Cui and Wang [15], and Boikanyo [3] also introduced algorithms by choosing the stepsizes in
the same way as (6) with λn = 1−κ2

2 for solving the SCFP (3) where S and T are demicontractive operators
with coefficients κ1 and κ2, respectively. Cegielski [8] studied some properties of an extrapolation of the
Landweber-type operator where its stepsize is defined by (6) with λn = 1, and applied to the SCFP.

In this paper, inspired and motivated by these works, we are interested to study the SCFP for two
operators in real Hilbert spaces. Our main objective is to construct some efficient algorithms based on the
viscosity approximation method [24] without prior knowledge of the operator norm for solving the SCFP.
In Section 3, we first propose a viscosity-type algorithm by selecting the stepsize in the same way as (6) for
two attracting quasi-nonexpansive operators, and prove a strong convergence result under some suitable
conditions of the proposed algorithm. In Section 4, we modify our algorithm to extend the class of operators
to the class of demicontractive operators and the class of hemicontractive operators, and also obtain strong
convergence results. Moreover, we apply our main result to other split problems, that is, the split feasibility
problem and the split variational inequality problem as seen in Section 5. Finally, in Section 6, we give a
numerical example to demonstrate the convergence of our algorithm and also compare the convergence
behavior of our algorithm with a viscosity-type algorithm depending on the operator norm.

2. Preliminaries

Throughout this paper, we adopt the following notations:
•N : the set of positive integers,
• R : the set of real numbers,
• I : the identity operator on a Hilbert space,
• xn → x : {xn} converges strongly to x,
• xn ⇀ x : {xn} converges weakly to x,

and also assume that H , H1 and H2 are real Hilbert spaces with inner products 〈·, ·〉 and induced norms
‖ · ‖. Let x, y ∈ H , and let µ ∈ R. Then the following identities hold onH :

‖µx + (1 − µ)y‖2 = µ‖x‖2 + (1 − µ)‖y‖2 − µ(1 − µ)‖x − y‖2; (7)

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉. (8)

Let D be a nonempty closed convex subset of H . Recall that the (metric) projection PD from H onto D is
defined, for each x ∈ H , PDx is the unique point in D such that

‖x − PDx‖ = d(x,D) := inf
{
‖x − y‖ : y ∈ D

}
.

It is well known that PDx ∈ D is characterized by the property:〈
x − PDx, y − PDx

〉
≤ 0, ∀y ∈ D.

An operator f : H →H is called a τ-contraction with respect to D, where τ ∈ [0, 1) if ‖ f (x)− f (y)‖ ≤ τ‖x− y‖
for all x ∈ H and y ∈ D. It is easy to check that if f is a τ-contraction with respect to D, then PD f is also a
τ-contraction with respect to D.

Let T : H →H be an operator. Denote by F(T) the set of all fixed points of T, i.e., F(T) := {u ∈ H : u = Tu}.
The operator Tλ : H →H with λ ∈ [0, 2] defined by

Tλ := I + λ(T − I)

is called a λ-relaxation of T. It is clear that F(T) = F (Tλ) for λ , 0.
Now, let us recall the definitions of some operators occurring in our study.

Definition 2.1. An operator T : H →H having a fixed point is said to be
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(i) quasi-nonexpansive if

‖Tx − u‖ ≤ ‖x − u‖, ∀x ∈ H ,∀u ∈ F(T),

(ii) demicontractive [17, 23] if there exists κ ∈ [0, 1) such that

‖Tx − u‖2 ≤ ‖x − u‖2 + κ‖x − Tx‖2, ∀x ∈ H ,∀u ∈ F(T),

(also called κ-demicontractive),

(iii) hemicontractive [30] if

‖Tx − u‖2 ≤ ‖x − u‖2 + ‖x − Tx‖2, ∀x ∈ H ,∀u ∈ F(T).

Remark 2.2. It can be easily observed from Definition 2.1 that

T− quasi-nonexpansive ⇒ T− demicontractive ⇒ T− hemicontractive.

We also need the following classes of operators included in the class of quasi-nonexpansive operators.

Definition 2.3. An operator T : H → H having a fixed point is said to be ρ-attracting quasi-nonexpansive
(ρ-AQNE) [37] where ρ ≥ 0 if

‖Tx − u‖2 ≤ ‖x − u‖2 − ρ‖x − Tx‖2, ∀x ∈ H ,∀u ∈ F(T). (9)

If T satisfies (9) with ρ > 0, then we call T attracting quasi-nonexpansive (AQNE). In particular, if ρ = 1, then
T is called a directed operator [4, 14] (also named a firmly quasi-nonexpansive operator [37], or a cutter [10]).

Remark 2.4. We have the following implications:

T− directed ⇒ T− AQNE ⇒ T− quasi-nonexpansive.

A characterization of ρ-attracting quasi-nonexpansive operator is shown below.

Proposition 2.5. ([6]) An operator T : H →H is ρ-AQNE, where ρ ≥ 0 if and only if

‖x − Tx‖2 ≤
2

ρ + 1
〈x − Tx, x − u〉

for all x ∈ H and u ∈ F(T).

We recall the notion of the so-called demiclosedness principle.

Definition 2.6. Given an operator T : H → H , we say that I − T is demiclosed at 0 if for any sequence
{xn} ⊂ H , it holds that

(xn ⇀ u and xn − Txn → 0) ⇒ u ∈ F(T).

It is well known that a nonexpansive operator T : H →H (i.e., ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ H) can
guarantee the demiclosedness of I − T at 0 (see [29, Lemma 2]).

We next give some significant tools for proving our main result.

Lemma 2.7. ([33]) Suppose that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − µn)an + µnσn + τn, n ∈N,

where {µn}, {σn} and {τn} satisfy the following conditions:
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(i) {µn} ⊂ [0, 1],
∑
∞

n=1 µn = ∞;

(ii) lim sup
n→∞

σn ≤ 0 or
∑
∞

n=1 |µnσn| < ∞;

(iii) τn ≥ 0 for all n ∈N,
∑
∞

n=1 τn < ∞.

Then lim
n→∞

an = 0.

Lemma 2.8. ([26]) Let {an} be a sequence of real numbers such that there exists a subsequence {ni} of {n} which
satisfies ani < ani+1 for all i ∈N. Define a sequence of positive integers {ω(n)} by

ω(n) := max{m ≤ n : am < am+1}

for all n ≥ n0 (for some n0 large enough). Then {ω(n)} is a nondecreasing sequence such that ω(n)→ ∞ as n→ ∞,
and it holds that

aω(n) ≤ aω(n)+1 and an ≤ aω(n)+1.

3. A Viscosity-Type Algorithm for the Split Common Fixed Point Problem

In this section, we present an iterative method whose stepsize does not depend on the operator norms for
solving the SCFP (3), and also prove a strong convergence theorem for two attracting quasi-nonexpansive
operators.

We first give the following useful lemma for proving our main result.

Lemma 3.1. Let A : H1 → H2 be a bounded linear operator, and let T : H2 → H2 be a ρ-AQNE operator (ρ ≥ 0)
with A−1(F(T)) , ∅. If x ∈ H1 with Ax < F(T) and u ∈ A−1(F(T)), then

‖x − γA∗(I − T)Ax − u‖2 ≤ ‖x − u‖2 − (ρ + 1 − λ)λ
‖(I − T)Ax‖4

‖A∗(I − T)Ax‖2
, (10)

where

γ :=
λ‖(I − T)Ax‖2

‖A∗(I − T)Ax‖2

and λ ∈ (0, ρ + 1).

Proof. Let x ∈ H1 with Ax < F(T) and u ∈ A−1(F(T)). If A∗(I − T)Ax = 0, then by Proposition 2.5, we have

‖(I − T)Ax‖2 ≤
2

ρ + 1
〈(I − T)Ax,Ax − Au〉 =

2
ρ + 1

〈A∗(I − T)Ax, x − u〉 = 0,

which is a contradiction. Thus, A∗(I − T)Ax , 0 and hence γ is well defined. By using Proposition 2.5, we
have

‖x − γA∗(I − T)Ax − u‖2 = ‖x − u‖2 − 2γ〈A∗(I − T)Ax, x − u〉 + γ2
‖A∗(I − T)Ax‖2

= ‖x − u‖2 − 2γ〈(I − T)Ax,Ax − Au〉 + γ2
‖A∗(I − T)Ax‖2

≤ ‖x − u‖2 − (ρ + 1)γ‖(I − T)Ax‖2 + γ2
‖A∗(I − T)Ax‖2

= ‖x − u‖2 − (ρ + 1 − λ)λ
‖(I − T)Ax‖4

‖A∗(I − T)Ax‖2
.

We now prove our main result.
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Theorem 3.2. Let A : H1 → H2 be a bounded linear operator. Let S : H1 → H1 be ρ1-AQNE operator (ρ1 > 0)
and T : H2 → H2 a ρ2-AQNE operator (ρ2 ≥ 0) such that both I − S and I − T are demiclosed at 0. Assume that
Γ , ∅. Let f : H1 → H1 be a τ-contraction with respect to Γ. Let {xn} ⊂ H1 be a sequence generated iteratively by
x1 ∈ H1 and

xn+1 = αn f (xn) + (1 − αn)S
(
xn − γnA∗(I − T)Axn

)
, n ∈N, (11)

where the stepsize γn is selected in such a way:

γn :=

λn‖(I−T)Axn‖
2

‖A∗(I−T)Axn‖
2 , if Axn < F(T),

0, otherwise,
(12)

and the sequences {λn} and {αn} satisfy the following conditions:

(C1) 0 < a ≤ λn ≤ b < ρ2 + 1;

(C2) αn ∈ (0, 1) such that lim
n→∞

αn = 0 and
∑
∞

n=1 αn = ∞.

Then the sequence {xn} converges strongly to a point x∗ ∈ Γ, where x∗ = PΓ f (x∗).

Proof. One can show that PΓ f is a contraction on Γ. By Banach fixed point theorem, there exists x∗ ∈ Γ such
that x∗ = PΓ f (x∗). Thus, by characterization of PΓ, we have

〈 f (x∗) − x∗,u − x∗〉 ≤ 0, ∀u ∈ Γ. (13)

Since x∗ ∈ Γ, x∗ ∈ F(S) and Ax∗ ∈ F(T). We first show that {xn} is bounded. Let yn = xn − γnA∗(I − T)Axn. If
Axn < F(T), then it follows from Lemma 3.1 that

‖yn − x∗‖2 ≤ ‖xn − x∗‖2 − (ρ2 + 1 − λn)λn
‖(I − T)Axn‖

4

‖A∗(I − T)Axn‖
2 (14)

≤ ‖xn − x∗‖2 −
(ρ2 + 1 − λn)λn

‖A‖2
‖(I − T)Axn‖

2. (15)

In the case of Axn ∈ F(T), (15) still holds. Since S is ρ1-AQNE and by using (15), we have

‖Syn − x∗‖2 ≤ ‖yn − x∗‖2 − ρ1‖yn − Syn‖
2

≤ ‖xn − x∗‖2 −
(ρ2 + 1 − λn)λn

‖A‖2
‖(I − T)Axn‖

2
− ρ1‖yn − Syn‖

2. (16)

It follows that ‖Syn − x∗‖ ≤ ‖xn − x∗‖. Thus, we have

‖xn+1 − x∗‖ = ‖αn( f (xn) − x∗) + (1 − αn)(Syn − x∗)‖
≤ αn‖ f (xn) − x∗‖ + (1 − αn)‖Syn − x∗‖
≤ αn(‖ f (xn) − f (x∗)‖ + ‖ f (x∗) − x∗‖) + (1 − αn)‖xn − x∗‖
≤ αn(τ‖xn − x∗‖ + ‖ f (x∗) − x∗‖) + (1 − αn)‖xn − x∗‖

= (1 − αn(1 − τ))‖xn − x∗‖ + αn(1 − τ)
‖ f (x∗) − x∗‖

1 − τ

≤ max
{
‖xn − x∗‖,

‖ f (x∗) − x∗‖
1 − τ

}
.

By mathematical induction, we obtain

‖xn − x∗‖ ≤ max
{
‖x1 − x∗‖,

‖ f (x∗) − x∗‖
1 − τ

}
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for all n ∈N. Therefore, {xn} is bounded. This implies that { f (xn)} is also bounded. Now, from (7) and (16),
we have

‖xn+1 − x∗‖2 = ‖αn( f (xn) − x∗) + (1 − αn)(Syn − x∗)‖2

≤ αn‖ f (xn) − x∗‖2 + (1 − αn)‖Syn − x∗‖2

≤ αn‖ f (xn) − x∗‖2 + ‖xn − x∗‖2 −
(ρ2 + 1 − λn)λn

‖A‖2
‖(I − T)Axn‖

2
− ρ1‖yn − Syn‖

2.

Thus, above inequality leads to the following two inequalities:

(ρ2 + 1 − λn)λn

‖A‖2
‖(I − T)Axn‖

2
≤ αn‖ f (xn) − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 (17)

and

ρ1‖yn − Syn‖
2
≤ αn‖ f (xn) − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2. (18)

Here we divide the rest of the proof into two cases.

Case 1. Suppose that there exists n0 ∈N such that {‖xn−x∗‖}n≥n0 is either nonincreasing or nondecreasing.
Since {‖xn − x∗‖} is bounded, then it converges, and hence ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 → 0 as n→∞. Taking the
limit as n→∞ into (17) and (18) yields

lim
n→∞
‖(I − T)Axn‖ = 0 (19)

and

lim
n→∞
‖yn − Syn‖ = 0. (20)

We show that ‖yn − xn‖ → 0 as n→ ∞. If Axn ∈ F(T), then ‖yn − xn‖ = 0. Thus, we assume that Axn < F(T).
By the quasi-nonexpansivity of S and using (14), we have

‖Syn − x∗‖2 ≤ ‖yn − x∗‖2 ≤ ‖xn − x∗‖2 − (ρ2 + 1 − λn)λn
‖(I − T)Axn‖

4

‖A∗(I − T)Axn‖
2 ,

which implies that

‖xn+1 − x∗‖2 ≤ αn‖ f (xn) − x∗‖2 + (1 − αn)‖Syn − x∗‖2

≤ αn‖ f (xn) − x∗‖2 + ‖xn − x∗‖2 − (ρ2 + 1 − λn)λn
‖(I − T)Axn‖

4

‖A∗(I − T)Axn‖
2

or

(ρ2 + 1 − λn)λn
‖(I − T)Axn‖

4

‖A∗(I − T)Axn‖
2 ≤ αn‖ f (xn) − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2.

Taking the limit as n → ∞ into above inequality yields ‖(I−T)Axn‖
4

‖A∗(I−T)Axn‖2
→ 0 as n → ∞. Since ‖yn − xn‖

2 =

λ2
n
‖(I−T)Axn‖

4

‖A∗(I−T)Axn‖2
, we have

lim
n→∞
‖yn − xn‖ = 0. (21)

We next show that

lim sup
n→∞

〈 f (x∗) − x∗, xn − x∗〉 ≤ 0.
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To show this, let {xn j } be a subsequence of {xn} such that

lim
j→∞
〈 f (x∗) − x∗, xn j − x∗〉 = lim sup

n→∞
〈 f (x∗) − x∗, xn − x∗〉.

Since {xn j } is bounded, there exists a subsequence {xn jk
} of {xn j } and u ∈ H1 such that xn jk

⇀ u. Without loss of
generality, we assume that xn j ⇀ u. Since A is a bounded linear operator, 〈y,Axn j −Au〉 = 〈A∗y, xn j − u〉 → 0
as j → ∞, for all y ∈ H2, that is, Axn j ⇀ Au. From (19) and by the demiclosedness of I − T at 0, we have
Au ∈ F(T). Since xn j ⇀ u, it follows from (21) that yn j ⇀ u. From (20) and by the demiclosedness of I − S at
0, we get u ∈ F(S). Therefore, u ∈ Γ. Since x∗ solves the variational inequality (13), we have

lim sup
n→∞

〈 f (x∗) − x∗, xn − x∗〉 = lim
j→∞
〈 f (x∗) − x∗, xn j − x∗〉 = 〈 f (x∗) − x∗,u − x∗〉 ≤ 0.

From (8), we have

‖xn+1 − x∗‖2 = ‖(1 − αn)(Syn − x∗) + αn( f (xn) − x∗)‖2

≤ (1 − αn)2
‖Syn − x∗‖2 + 2αn〈 f (xn) − x∗, xn+1 − x∗〉

= (1 − αn)2
‖Syn − x∗‖2 + 2αn〈 f (xn) − f (x∗), xn+1 − x∗〉 + 2αn〈 f (x∗) − x∗, xn+1 − x∗〉

≤ (1 − αn)2
‖xn − x∗‖2 + 2αnτ‖xn − x∗‖‖xn+1 − x∗‖ + 2αn〈 f (x∗) − x∗, xn+1 − x∗〉

≤ (1 − αn)2
‖xn − x∗‖2 + αnτ(‖xn − x∗‖2 + ‖xn+1 − x∗‖2) + 2αn〈 f (x∗) − x∗, xn+1 − x∗〉.

It follows that

‖xn+1 − x∗‖2 ≤
(1 − αn)2 + αnτ

1 − αnτ
‖xn − x∗‖2 +

2αn

1 − αnτ
〈 f (x∗) − x∗, xn+1 − x∗〉

=

(
1 −

(1 − τ)αn

1 − αnτ

)
‖xn − x∗‖2 +

(αn − (1 − τ))αn

1 − αnτ
‖xn − x∗‖2 +

2αn

1 − αnτ
〈 f (x∗) − x∗, xn+1 − x∗〉

≤

(
1 −

(1 − τ)αn

1 − αnτ

)
‖xn − x∗‖2 +

(1 − τ)αn

1 − αnτ

{(
αn

1 − τ
− 1

)
M +

2
1 − τ

〈 f (x∗) − x∗, xn+1 − x∗〉
}

= (1 − µn)‖xn − x∗‖2 + µnσn, (22)

where M = sup{‖xn − x∗‖2 : n ∈ N}, µn =
(1−τ)αn
1−αnτ

, and σn =
(
αn

1−τ − 1
)

M + 2
1−τ 〈 f (x∗) − x∗, xn+1 − x∗〉. Obviously,

{µn} ⊂ [0, 1],
∑
∞

n=1 µn = ∞ and lim sup
n→∞

σn ≤ 0. By applying Lemma 2.7 to (22), we conclude that xn → x∗ as

n→∞.

Case 2. Suppose that {‖xn − x∗‖} is not a monotone sequence. Thus, there exists a subsequence {ni} of {n}
such that ‖xni − x∗‖ < ‖xni+1 − x∗‖ for all i ∈N. Define a positive integer sequence {ω(n)} by

ω(n) := max{m ≤ n : ‖xm − x∗‖ < ‖xm+1 − x∗‖}

for all n ≥ n0 (for some n0 large enough). It follows from Lemma 2.8 that {ω(n)} is a nondecreasing sequence
such that ω(n)→∞ as n→∞ and

‖xω(n) − x∗‖2 − ‖xω(n)+1 − x∗‖2 ≤ 0

for all n ≥ n0. From (17), we have

lim
n→∞
‖(I − T)Axω(n)‖ = 0. (23)

From (18), we get

lim
n→∞
‖yω(n) − Syω(n)‖ = 0. (24)
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By (23), (24) and by the same proof as in Case 1, we deduce that

lim sup
n→∞

〈 f (x∗) − x∗, xω(n) − x∗〉 ≤ 0.

By the same computation as in Case 1, we also have

‖xω(n)+1 − x∗‖2 ≤ (1 − µω(n))‖xω(n) − x∗‖2 + µω(n)σω(n), (25)

where µω(n) =
(1−τ)αω(n)

1−αω(n)τ
, σω(n) =

(
αω(n)

1−τ − 1
)

M + 2
1−τ 〈 f (x∗) − x∗, xω(n)+1 − x∗〉 and M = sup{‖xω(n) − x∗‖2 : n ∈ N}.

Clearly, lim sup
n→∞

σω(n) ≤ 0. Since ‖xω(n) − x∗‖2 ≤ ‖xω(n)+1 − x∗‖2, it follows from (25) that ‖xω(n) − x∗‖2 ≤ σω(n).

This implies that ‖xω(n) − x∗‖ → 0 as n→∞. It follows from Lemma 2.8 and (25) that

0 ≤ ‖xn − x∗‖ ≤ ‖xω(n)+1 − x∗‖ → 0

as n→∞. Therefore, {xn} converges strongly to x∗. This completes the proof.

Remark 3.3. In Theorem 3.2, if f is a constant function, i.e., f (x) = u0 for some u0 ∈ H1, then Algorithm
(11) becomes the Halpern-type algorithm [16]. In particular, if u0 = 0, then x∗ is the unique minimum norm
solution in Γ.

Taking ρ1 = 1 = ρ2 in Theorem 3.2, we obtain a convergence result for solving the SCFP (3) for two
directed operators as follows.

Corollary 3.4. Let A : H1 → H2 be a bounded linear operator. Let S : H1 → H1 and T : H2 → H2 be directed
operators such that both I− S and I−T are demiclosed at 0. Assume that Γ , ∅. Let f : H1 →H1 be a τ-contraction
with respect to Γ. Then the sequence {xn} generated by Algorithm (11) converges strongly to a point x∗ ∈ Γ, provided
that 0 < a ≤ λn ≤ b < 2, and αn ∈ (0, 1) such that lim

n→∞
αn = 0 and

∑
∞

n=1 αn = ∞.

Remark 3.5. In the case of a directed operator S, the algorithms in [3, 28] are invented by using a relaxation
of S for solving the SCFP (3); however, in this case, Algorithm (11) is constructed without the relaxation of
operators.

4. Extending Classes of Operators for the Split Common Fixed Point Problem

In this section, we slightly modify Algorithm 11 to extend to the class of demicontractive operators
and the class of hemicontractive operators, respectively, for solving the SCFP (3). Furthermore, strong
convergence results are also obtained.

4.1. An Algorithm for Demicontractive Operators

We first give the following lemma showing a relationship between a demicontractive operator and its
relaxation (see [19, Lemma 3.4]).

Lemma 4.1. ([19]) Let T : H → H be an operator having a fixed point and let κ ∈ [0, 1), λ ∈ (0, 1 − κ). Then T is
κ-demicontractive if and only if Tλ is

(
1−κ−λ
λ

)
-AQNE.

Theorem 4.2. Let A : H1 → H2 be a bounded linear operator. Let S : H1 → H1 be a κ1-demicontractive operator
and T : H2 → H2 a κ2-demicontractive operator such that both I − S and I − T are demiclosed at 0. Assume that
Γ , ∅. Let f : H1 → H1 be a τ-contraction with respect to Γ. Let {xn} ⊂ H1 be a sequence generated iteratively by
x1 ∈ H1 and

xn+1 = αn f (xn) + (1 − αn)Sλ1

(
xn − γnA∗(I − T)Axn

)
, n ∈N, (26)
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where the stepsize γn is selected in such a way:

γn :=

λ2‖(I−T)Axn‖
2

‖A∗(I−T)Axn‖
2 , if Axn < F(T),

0, otherwise,
(27)

and the parameters λ1, λ2 and the sequence {αn} satisfy the following conditions:

(C1) λ1 ∈ (0, 1 − κ1) and λ2 ∈ (0, 1 − κ2);

(C2) αn ∈ (0, 1) such that lim
n→∞

αn = 0 and
∑
∞

n=1 αn = ∞.

Then the sequence {xn} converges strongly to a point x∗ ∈ Γ, where x∗ = PΓ f (x∗).

Proof. Set U := Sλ1 and G := Tλ2 . Thus, F(U) = F(S) and F(G) = F(T). Now Algorithm (26) can be rewritten
in the form:

xn+1 = αn f (xn) + (1 − αn)U
(
xn − γ

′

nA∗(I − G)Axn
)
,

where

γ′n :=

 ‖(I−G)Axn‖
2

‖A∗(I−G)Axn‖
2 , if Axn < F(G),

0, otherwise.

By Lemma 4.1, U is
(

1−κ1−λ1
λ1

)
-AQNE and G is

(
1−κ2−λ2

λ2

)
-AQNE, where 1−κ1−λ1

λ1
, 1−κ2−λ2

λ2
> 0. Clearly, I − U =

λ1(I − S) and I − G = λ2(I − T) are demiclosed at 0. Therefore, it follows directly from Theorem 3.2 that
xn → x∗ ∈ Γ, where x∗ = PΓ f (x∗).

Taking κ1 = 0 = κ2 in Theorem 4.2, we obtain a convergence result for solving the SCFP (3) for two
quasi-nonexpansive operators as follows.

Corollary 4.3. Let A : H1 → H2 be a bounded linear operator. Let S : H1 → H1 and T : H2 → H2 be quasi-
nonexpansive operators such that both I − S and I − T are demiclosed at 0. Assume that Γ , ∅. Let f : H1 →H1 be
a τ-contraction with respect to Γ. Then the sequence {xn} generated by Algorithm (26) converges strongly to a point
x∗ ∈ Γ, provided that λ1, λ2 ∈ (0, 1), and αn ∈ (0, 1) such that lim

n→∞
αn = 0 and

∑
∞

n=1 αn = ∞.

Remark 4.4. The results in [3] are consequences of our results as follows:

(i) Taking f (x) = x0 and λ2 = 1−κ2
2 in Theorem 4.2, we obtain a result in [3, Theorem 4.1].

(ii) Taking f (x) = x0 and λ2 = 1
2 in Corollary 4.3, we obtain a result in [3, Theorem 5.1].

4.2. An Algorithm for Hemicontractive Operators
Recall that an operator T : H →H is said to be Lipschitzian if there exists L > 0 such that

‖Tx − Ty‖ ≤ L‖x − y‖, ∀x, y ∈ H .

We first give some properties of the operator TTδ, where T is Lipschitzian.

Lemma 4.5. ([36, 38]) Let T : H → H be a Lipschitzian operator with a constant L > 1, and let δ ∈
(
0, 1

L

)
. Then

the following hold:

(i) F (TTδ) = F(T);

(ii) If I − T is demiclosed at 0, then I − TTδ is also demiclosed at 0.



P. Jailoka, S. Suantai / Filomat 34:3 (2020), 761–777 771

In [36, 38], they proved that the operator (TTδ)λ is quasi-nonexpansive when T is Lipschitzian hemicon-
tractive. The following lemma gives more desirable result under the same conditions.

Lemma 4.6. Let T : H → H be a Lipschitzian hemicontractive operator with a constant L > 1. Then the operator
(TTδ)λ is

(
δ−λ
λ

)
-AQNE, where 0 < λ < δ < 1

√

1+L2+1
.

Proof. We will prove this result by applying Lemma 4.1, so it is sufficient to show that the operator TTδ is
(1− δ)-demicontractive. By Lemma 4.5 (i), F (TTδ) = F(T). Let x ∈ H and u ∈ F(T). By the hemicontractivity
of T, we get

‖TTδx − u‖2 ≤ ‖Tδx − u‖2 + ‖Tδx − TTδx‖2. (28)

Since the equality (7) holds and T is hemicontractive, we have

‖Tδx − u‖2 = ‖(1 − δ)(x − u) + δ(Tx − u)‖2

= (1 − δ)‖x − u‖2 + δ‖Tx − u‖2 − δ(1 − δ)‖x − Tx‖2

≤ (1 − δ)‖x − u‖2 + δ
(
‖x − u‖2 + ‖x − Tx‖2

)
− δ(1 − δ)‖x − Tx‖2

= ‖x − u‖2 + δ2
‖x − Tx‖2. (29)

Since T is Lipschitzian with the coefficient L,

‖Tx − TTδx‖ ≤ L ‖x − Tδx‖ = δL‖x − Tx‖. (30)

From (7) and (30), we have

‖Tδx − TTδx‖2 = ‖(1 − δ) (x − TTδx) + δ (Tx − TTδx)‖2

= (1 − δ) ‖x − TTδx‖2 + δ ‖Tx − TTδx‖2 − δ(1 − δ)‖x − Tx‖2

≤ (1 − δ) ‖x − TTδx‖2 + δ3L2
‖x − Tx‖2 − δ(1 − δ)‖x − Tx‖2

= (1 − δ) ‖x − TTδx‖2 − δ
(
1 − δ − δ2L2

)
‖x − Tx‖2. (31)

By substituting (29) and (31) into (28) and by simplifying it, we obtain

‖TTδx − u‖2 ≤ ‖x − u‖2 + (1 − δ) ‖x − TTδx‖2 − δ
(
1 − 2δ − δ2L2

)
‖x − Tx‖2.

This together with the condition of δ implies

‖TTδx − u‖2 ≤ ‖x − u‖2 + (1 − δ) ‖x − TTδx‖2, (32)

i.e., TTδ is (1 − δ)-demicontractive. Therefore, it follows directly from Lemma 4.1 that the operator (TTδ)λ
is

(
δ−λ
λ

)
-AQNE.

Theorem 4.7. Let A : H1 →H2 be a bounded linear operator. Let S : H1 →H1 and T : H2 →H2 be Lipschitzian
hemicontractive operators with coefficients L1,L2 > 1, respectively, such that both I − S and I − T are demiclosed at
0. Assume that Γ , ∅. Let f : H1 →H1 be a τ-contraction with respect to Γ. Let {xn} ⊂ H1 be a sequence generated
iteratively by x1 ∈ H1 and

xn+1 = αn f (xn) + (1 − αn)
(
SSδ1

)
λ1

(
xn − γnA∗

(
I − TTδ2

)
Axn

)
, n ∈N, (33)

where the stepsize γn is selected in such a way:

γn :=


λ2‖(I−TTδ2 )Axn‖

2

‖A∗(I−TTδ2 )Axn‖
2 , if Axn < F(T),

0, otherwise,
(34)

and the parameters δ1, δ2, λ1, λ2 and the sequence {αn} satisfy the following conditions:



P. Jailoka, S. Suantai / Filomat 34:3 (2020), 761–777 772

(C1) 0 < λ1 < δ1 < 1√
1+L2

1+1
and 0 < λ2 < δ2 < 1√

1+L2
2+1

;

(C2) αn ∈ (0, 1) such that lim
n→∞

αn = 0 and
∑
∞

n=1 αn = ∞.

Then the sequence {xn} converges strongly to a point x∗ ∈ Γ, where x∗ = PΓ f (x∗).

Proof. Set U :=
(
SSδ1

)
λ1

and G :=
(
TTδ2

)
λ2

. By Lemma 4.5 (i), F(U) = F
(
SSδ1

)
= F(S) and F(G) = F

(
TTδ2

)
=

F(T). We can rewrite Algorithm (33) in the form:

xn+1 = αn f (xn) + (1 − αn)U
(
xn − γ

′

nA∗(I − G)Axn
)
,

where

γ′n :=

 ‖(I−G)Axn‖
2

‖A∗(I−G)Axn‖
2 , if Axn < F(G),

0, otherwise.

By Lemma 4.6, U is
(
δ1−λ1
λ1

)
-AQNE and G is

(
δ2−λ2
λ2

)
-AQNE, where δ1−λ1

λ1
, δ2−λ2

λ2
> 0.We also have from Lemma

4.5 (ii) that I−U = λ1(I− SSδ1 ) and I−G = λ2(I−TTδ2 ) are demiclosed at 0. Therefore, the result is obtained
directly by Theorem 3.2.

5. Applications

In this section, we apply our main result to the split feasibility problem and the split variational inequality
problem, respectively.

5.1. Split Feasibility Problems
Let C and Q be nonempty closed convex subsets ofH1 andH2, respectively, and let A : H1 → H2 be a

bounded linear operator. Recall the split feasibility problem (SFP) [11] is the problem of finding a point

x∗ ∈ C such that Ax∗ ∈ Q.

Applying Theorem 3.2, we obtain a strongly convergent algorithm which is independent of the operator
norms for solving the SFP as shown below.

Theorem 5.1. Let A : H1 → H2 be a bounded linear operator. Let C and Q be nonempty closed convex subsets of
H1 andH2, respectively. Assume that Ω := {x ∈ C : Ax ∈ Q} , ∅. Let f : H1 → H1 be a contraction with respect
to Ω. Let {xn} ⊂ H1 be a sequence generated iteratively by x1 ∈ H1 and

xn+1 = αn f (xn) + (1 − αn)PC

(
xn − γnA∗(I − PQ)Axn

)
, n ∈N, (35)

where the stepsize γn is selected in such a way:

γn :=


λn‖(I−PQ)Axn‖

2

‖A∗(I−PQ)Axn‖
2 , if Axn < Q,

0, otherwise,
(36)

and the sequences {λn} and {αn} satisfy the following conditions:

(C1) 0 < a ≤ λn ≤ b < 2;

(C2) αn ∈ (0, 1) such that lim
n→∞

αn = 0 and
∑
∞

n=1 αn = ∞.

Then the sequence {xn} converges strongly to a point x∗ ∈ Ω, where x∗ = PΩ f (x∗).

Proof. Take S := PC and T := PQ. Thus, F(S) = C and F(T) = Q. By the firm nonexpansivity of the metric
projenction, we have S and T are 1-AQNE, and I − S, I − T are demiclosed at 0. So, the result is obtained
directly by Theorem 3.2.
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5.2. Split Variational Inequality Problems
Let C be a nonempty closed convex subset of H , and let 1 : H → H be a operator. The variational

inequality problem is to find a point x ∈ C such that〈
1(x), y − x

〉
≥ 0, ∀y ∈ C. (37)

The solution set of (37) is denoted by VIP(C, 1). It is known that VIP(C, 1) = Fix(PC(I − µ1)) for µ > 0. We
also know that if 1 is δ-inverse strongly monotone, where δ > 0, i.e.,

〈x − y, 1(x) − 1(y)〉 ≥ δ‖1(x) − 1(y)‖2, ∀x, y ∈ H ,

then PC(I − µ1) is nonexpansive, where µ ∈ (0, 2δ), see [18].
Let A : H1 → H2 be a bounded linear operator. Let C ⊂ H1 and Q ⊂ H2 be nonempty closed convex

subsets, and let 1 : H1 → H1 and h : H2 → H2 be operators. Then, the split variational inequality problem
(SVIP) [13] is to find a point

x∗ ∈ VIP(C, 1) such that Ax∗ ∈ VIP(Q, h). (38)

Applying Theorem 3.2, we get a strongly convergent algorithm which is independent of the operator
norms for solving the SVIP as follows.

Theorem 5.2. Let A : H1 → H2 a bounded linear operator. Let C and Q be nonempty closed convex subsets ofH1
andH2, respectively. Let 1 : H1 → H1 and h : H2 → H2 be inverse strongly monotone operators with coefficients
δ1 and δ2, respectively. Assume that Ω :=

{
x ∈ VIP(C, 1) : Ax ∈ VIP(Q, h)

}
, ∅. Let f : H1 →H1 be a contraction

with respect to Ω. Let {xn} ⊂ H1 be a sequence generated iteratively by x1 ∈ H1 andyn = xn − γnA∗(I − PQ(I − µ2h))Axn,

xn+1 = αn f (xn) + (1 − αn)PC(I − µ11)yn, n ∈N,
(39)

where the stepsize γn is selected in such a way:

γn :=


λn‖(I−PQ(I−µ2h))Axn‖

2

‖A∗(I−PQ(I−µ2h))Axn‖
2 , if Axn < VIP(Q, h),

0, otherwise,
(40)

the parameters µ1, µ2 and the sequences {λn}, {αn} satisfy the following conditions:

(C1) µ1 ∈ (0, 2δ1) and µ2 ∈ (0, 2δ2);

(C2) 0 < a ≤ λn ≤ b < 1;

(C3) αn ∈ (0, 1) such that lim
n→∞

αn = 0 and
∑
∞

n=1 αn = ∞.

Then the sequence {xn} converges strongly to a point x∗ ∈ Ω, where x∗ = PΩ f (x∗).

Proof. Take S := PC(I − µ11) and T := PQ(I − µ2h). Then, F(S) = VIP(C, 1) and F(T) = VIP(Q, h). Since S and
T are nonexpansive, we have S and T are 0-AQNE, and I−S, I−T are demiclosed at 0. Therefore, the result
is obtained directly by Theorem 3.2.

6. A Numerical Example

In this section, we provide a numerical result to illustrate the convergence of Algorithm 11 in Theorem
3.2 and also compare the convergence behavior of our algorithm with a viscosity-type algorithm depending
on the operator norm.
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Example 6.1. LetH1 = R3 = H2 with the usual norm. Define two operators S,T : R3
→ R3 by

S

abc
 :=

1
2

 a
b
2c

 and T

abc
 :=

(1
3

B>B + I
)−1

abc
,

where B =

[
1 2 −3
−5 0 1

]
. It is easy to verify that S and T are 1-AQNE (i.e., directed), and I − S, I − T are also

demiclosed at 0. Given a bounded linear operator

A :=

 1 2 −3
2 7 0
−1 −3 0

,
then we see that 0 ∈ Γ := {x ∈ F(S) : Ax ∈ F(T)}. Put αn = 1

n+3 , and let a contraction f : R3
→ R3 be such that

f (x) = 1
2 x. Then the viscosity iterative method for the SCFP (3) can be written in the form:

Initialization: Let x1 ∈ R3 be arbitrary.
Iterative step: For n ∈N, let

xn+1 =
1

2n + 6
xn +

(
1 −

1
n + 3

)
S
(
xn − γnA>(I − T)Axn

)
. (41)

We now consider two algorithms defined by (41) with different stepsizes γn as follows:

Algorithm 1. (Algorithm 11, Theorem 3.2). Take

γn :=

 λ‖(I−T)Axn‖
2

‖A>(I−T)Axn‖
2 , if Axn < F(T),

0, otherwise,

where λ ∈ (0, 2).

Algorithm 2. Take γn := γ ∈
(
0, 2
‖A‖2

)
.

We start with the initial point x1 = (3, 6,−5) and the stopping criterion for our testing process is set as:
‖xn − xn−1‖ < 10−6 where xn = (an, bn, cn). Now, we show the convergence behaviour of Algorithms 1 and 2
by Table 1, and plot the number of iterations n against ‖xn−xn−1‖ as seen in Figure 1. In Table 2, the iteration
numbers of Algorithms 1 and 2 are shown while their stepsizes are chosen differently.

n an bn cn ‖xn − xn−1‖

2 0.7155288 0.7009828 -3.1105405 6.0719395
3 0.0942971 -0.3336636 -1.9846520 1.6504687
4 -0.0320429 -0.1128823 -0.4231261 1.5821091

Algorithm 1 5 -0.0024916 0.0331737 -0.1931336 0.2740478

(λ = 1)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

23 -0.0000007 0.0000003 -0.0000006 0.0000012
24 -0.0000004 0.0000000 -0.0000004 0.0000005
2 0.9738642 1.4580758 -3.5269417 5.1869261
3 0.3096212 0.2439270 -2.7353280 1.5943739
4 0.0862869 -0.0393379 -2.2216787 0.6276566

Algorithm 2 5 0.0076107 -0.0875128 -1.8447723 0.3880325

(γ = 1/‖A‖2)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

24 -0.0040449 -0.0059952 -0.1162249 0.0165296
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

101 -0.0000003 -0.0000004 -0.0000086 0.0000011
102 -0.0000003 -0.0000004 -0.0000076 0.00000097

Table 1: Numerical experiment of Algorithms 1 and 2
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Figure 1: A gragh of error of Algorithms 1 and 2

Algorithm 1 Algorithm 2
Choices of λ No. of iterations Choices of γ No. of iterations

0.01 1259 0.01/‖A‖2 4488
0.1 164 0.1/‖A‖2 729
0.5 32 0.5/‖A‖2 187
1 24 1/‖A‖2 102

1.5 27 1.5/‖A‖2 71
1.9 31 1.9/‖A‖2 58

1.99 31 1.99/‖A‖2 55
1.9999 31 1.9999/‖A‖2 55

Table 2: The number of iterations of Algorithms 1 and 2 by choosing different stepsizes

Remark 6.2. By testing the convergence behavior of Algorithms 1 and 2 in Example 6.1, we observe that

(i) Both algorithms converge to 0 ∈ Γ;

(ii) The number of iterations of Algorithm 1 is smaller than that of Algorithm 2.

7. Concluding Remarks

In this work, we study the split common fixed point problem (SCFP) for two operatos in real Hilbert
spaces. This split problem is the problem of finding a fixed point of an operator in a real Hilbert space
such that its image under a given bounded linear operator is a fixed point of another operator in the
image space. Various algorithms were introduced for solving the problem and most of them depend on
the norm of the bounded linear operators; however, the calculation of the operator norms is not an easy
work in general practice. We first present a viscosity-type algorithm whose stepsize does not depend on
the operator norms for solving the SCFP for two attracting quasi-nonexpansive operators, and also obtain
some sufficient conditions for the strong convergence of the proposed algorithm. After that we modify our
algorithm to extend to the class of demicontractive operators and the class of hemicontractive operators,
and also obtain strong convergence results. Moreover, strong convergence theorems for solving the split
feasibility problem and the split variational inequality problem are consequences of our main result. We
finally give the numerical example to illustrate the convergence behavior of our algorithm and it is observed
that our algorithm requires the smaller number of iterations than a viscosity-type algorithm depending on
the operator norm.

Our algorithms improve the many algorithms such as in [19, 21, 32, 36, 38] for solving the SCFP (3) in
the sense that our algorithms do not depend on the norms of the operators as follows:
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• In [21, Theorem 3.2], they introduced an algorithm in the similar way to Algorithm 11 (in the case of
a constant function f ) with the stepsize γn := γ ∈

(
0, 1
‖A‖2

)
.

• In [19, Theorem 4.4] and [32, Corollary 3.5], they introduced an algorithm in the similar way to
Algorithm 26 with the stepsize γn := γ ∈

(
0, 1−κ2
‖A‖2

)
, where S is κ1-demicontractive and T is κ2-

demicontractive.

• The algorithms in [36, 38] were introduced for hemicontractive operators; however, their algorithms
still depend on the operator norms.
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