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Quantitative Estimates for the Tensor Product (p,q)-Baldzs-Szabados
Operators and Associated Generalized Boolean Sum Operators

Esma Yildiz Ozkan?

*Department of Mathematics, Faculty of Science, Gazi University, Ankara, Turkey

Abstract. In this study, we give some approximation results for the tensor product of (p,q)-Baldzs-
Szabados operators associated generalized Boolean sum (GBS) operators. Firstly, we introduce tensor
product (p,q)-Baldzs-Szabados operators and give an uniform convergence theorem of these operators on
compact rectangular regions with an illustrative example. Then we estimate the approximation for the
tensor product (p,q)-Baldzs-Szabados operators in terms of the complete modulus of continuity, the partial
modulus of continuity, Lipschitz functions and Petree’s K-functional corresponding to the second modulus
of continuity. After that, we introduce the GBS operators associated the tensor product (p,q)-Baldzs-
Szabados operators. Finally, we improve the rate of smoothness by the mixed modulus of smoothness and
Lipschitz class of Bogel continuous functions for the GBS operators.

1. Introduction and some auxiliary results

In approximation theory, q-type generalization of Bernstein polynomials was firstly introduced by
Lupas[19]. Later, Phillips[22] introduced an another modification of Bernstein polynomials. The rapid
development of g-calculus has led to research the new generalization of Bernstein type operators involving
g-integers.The details on g-calculus can be found in [17].

Mursaleen et al.[20] applied (p,q)-calculus in approximation theory and introduced (p,q)-analogue of
Bernstein operators. Hence g-calculus has been extended to (p,q)-calculus in approximation theory. The
references [1, 2, 15, 21, 27] can be given as recent studies on the approximation of some operators by
(p,q)-integers.

We begin by recalling certain notation of (p,q)-calculus. Let 0 < g < p < 1. For each nonnegative integer

n, k, n >k > 0, the (p,q)-integer [n]p/q, the (p,q)- factorial [n], ! and the (p,q)-binomial coefficients [ Z ]

P
are defined by

pn _ qn
[nl,, = g
(], 1= { [y (1 =110 12,4 1], ifn>1
pa: 1’ l:fn - 0 7
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and

[ n ] L [n]pq
kl, T n- Kl gt KLyt

Note that if we take p = 1 in above notations, they reduce to g-analogues. Further, we have

(n=k)(n-k=1) (Yl —k—1) k(k 1) n n— _
(ax + by)pq Zp [ k ] a kbkx” kyk’
pAa

(ax + by);q = (ax + by) (pax + gby) (pzax + qzby) (p”_lax + q"‘lby) .

K.Balazs [8] defined the Bernstein type rational functions. In [9], K.Baldzs and J.Szabados obtained best
possible estimate under more restrictive conditions, in which both the weight and the order of convergence
would be better than [8].

g-form of these operators was given by O. Dogru[14]. Also, some approximation results of q-Baldzs-
Szabados operators on compact disks and polydisks can be found in [16, 24, 25].

(p,q)-analogue of Baldzs-Szabados operators is defined by

d [k] bk D[ n
R (fx) = (1+anx Zf( - qu) 7 [ k ]pq(anX)k’

where f : R, — Risa funct1on x€eR, =[0,),a, = [n]p g [n] are sequences for all n € IN such that
0<g<p<land0<p<326]
We have the following equahties for (p,q)-analogue of Baldzs-Szabados operators:

R (1;x) =1,

X
RV (t;x) = ————r,
n ( ) pl’l*l + q}’l*lanx

] ( 2, ) — x
Rn t ;X b”(pn 1+qn 1a,,x)

p 1 Tlpg o

q Inpg

2 Vi
11 (p” T+qn- Ja,,x)
j=1

+

(1 _ pn—l) x — qn—laan

RYT(t—x;x) =
n ( ) pn—l + qn—lanx

pq )2 ea) = x
R ((t=x);x) = T

[n—1],
P P4 n—=2 4 2n—3 |2
(q Wy P )

2
1_Il(p1!—j+qn—jﬂnx)
j=
I e V) L5
13[ (p"*f+q”*fa,,x)
j=1

n i q2r173aﬁ X4 )
11 (p”*f+q"*1'anx)
=1

Approximation properties of the (p,q)-analogue of Baldzs-Szabados operators were investigated in [26].
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2. Construction of tensor product operators

Now, we define tensor product (p,q)-Baldzs-Szabados operators as follows:

LR (Kl L,
RGP (Fr,y) = )Y vk (3 Plf‘il)snzm(yrp2/‘72)f[ T qj_’T;Z
n 2 n

k=0 j=0

where f : ]R+ x Ry — R is a continuous function, (x,y) € Ry X R, and a,, = [nl]p1 ql, by, = [m]

B1
pP1

781

g1 7

= [n ]p2 P dn, [nz]p2 4, are sequences forall n;,ny € Nsuchthat0 < g1 <p1 <1, 0< g2 <pp <1,

0<ﬁl_ and0<f < % 2. And also,

(=R KD [ gy K
P, q° [ k ] (@, x)

P11
v ,k(x; 1, 1) =
" P1q (1 +anx)p1 "
and (=) ) G-
ny=j)(mp=j=1)  j(j=1) 1y .
P, q," i ] (Cnpy)
P2,42
Spm (Y P2, q2) 1=

(1 +cy y)p2 0

Notice that, the operator Rﬁﬁl,f; P2 Lo (Ry xRy) — C(Ry x Ry) is the tensorial product of xR(p1 7) and

yR(Ig2 ) ,ie. R,f?,f; P22 xR(pl ) yRS,ZZ qz), where
1 - [k] 141
XR,(ﬁl'q) = Zvnl,k @1 q) f| = )
=0 7y bn
and 0l
2,42 - ] 242
YR = 3 s (i, ) f | 1, 222 ]
=0 9y dn

Lemma 2.1. Let e;j (t,s) = t's/ for i, j = 0,1,2 be the test functions. We have the following equalities:

R(Pl A1/P292) (e

ny N2

00X Y) =1,

R(Pl A1P2,42) (6 X

ny,nz

10;X,Y) = 1
1— n1—1
Pq + q, anX

(p1.91,92.92) . _ Y
Rnl 1o (601/ X, y) - -1

Py + gy eny
R(P1 A1P2,92) (e

x
YY) =
11,12 207 4/ n -1
”1(1”11 +7, ”"1Y)
p 171 2

1 Iy

2—/
T+, )

R(Pl A1P242) (

. — Y
ny,ny €02; X, y) - dnz (pﬂz 1+q;2 1 2]/)
pp 2y o

2 2l

2 okl Ny —5 .
51;[1(”22 +4,° C”zy)
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Remark 2.2. By applying Lemma 2.1, we have

(1 pm 1)x_q;ll_lamx2

(P1q1,p2,02) . _
Ry (e — x;x, y) = ,
+ ny— 1 X
P1 q1 m
-1 5
1 1p— 1) _ 1o a
R(pquerZ/qZ . _ ( P> Yy—4, n Y
mn €01 T YY) = /
T 4+g7 a
P, q, Y

(P1.41.02.92) 2, _ x

Rnl My (610 - X) X Y) = b (P”l +anlg x)
m\ri 1 m

(Ll -1l gy —2p)!

n1-2  2n;-3
1 +p'l "1 x2
n [”1]}’1 A1

(7t o, )
/:1
+q1 (2 241 P1+q1))
P g
]li[l( 4y a4 )
2”1-3 2 ¥

Ao

A1 2
szlnqz] P2,q2) ((601 _ ]/) ;X ]/) - 8”2 1y

+

#
[ "2 P +q22 Cny X )
np-1 ny-2 | 2my-3
(Z% [n2]pP2q‘72 ZP 27 +p2 2 )yZ
H(p”Z 7+q 2~ ]C y)

j 1

( 2+P2 PZ"'qZ))any
2 1

H( 27 e y)

=1

2119 — 3
q v
45—

—

(pnz f+qz C,,zy)'

N
L

We consider the tensor product (p,q)-Baldzs-Szabados operators and their GBS operators. In this study,
we give the approximation properties for the tensor product (p,q)-Baldzs-Szabados operators and their GBS
operators.

Let I = I; X I such that I; = [0,7;],#; > 0,i = 1,2 and C(I) be the space of all real valued continuous
functions f on I with the norm

Il = sup {|f )| : (x,y) € 1.
(p1,91,2.92)

In order to obtain to uniform convergence of the tensor product operators R, ;> , we take the

sequences (P1,1,), (G1.m), (Pon,) and (q2,4,) satisfying g1, g2n, € (0,1) and p1n, € Gin, 1], P2, € (Gony, 1]
such that

lim py,, = hm (prn)™ = lim g1, =1, (1)
lim (ql m) =h,0<h <1, )
n—

and
hm p2 ny — hm (}72 712) = lim Q2 = 1, (3)
lim (qzlnz)nz = 12,0 < lz <1. (4)

Hp—00
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For example, the sequences (p1,,) = (1 - #), (Gim) = (1 - nl—]), (pany) = (1 - ﬁ) and (q2,,) = (1 - nlz)
satisfy the conditions (1-4) for all ny, 1, € IN.
Under the conditions (1-4), we have

1
lim a,, = lim — =0,

n1—00 n— bnl
and
. .1
lim ¢, = lim — =0.
1Ny —00 1np—00 dVlz

Throughout the paper, in all theorems, 6,, (x) and 0,, (y) will be denoted by

o, )= (REE " (e = 252))

and
1/2

By (y) = (RIS ((eon = 9)*5y))

which are given as in Remark 2.2.

Theorem 2.3. Let be the sequences (p1,n,), (G1,n,) » (P2,n,) and (G2,n, ) satisfying the conditions (1-4). Then the tensor

(P17 91,07 P2,y 2,

product operators Ry, . ) (f; x, y) converge uniformly to f on I, for all f € C(I).

Proof. From Lemma 2.1, taking into account Volkov’s theorem in [28] (also see in [4], p.245), the theorem
can be easily proved, so we will omit the proof. [

In the following illustrative example, it can be seen clearly the convergence of the operators Rfﬁlg A Py ) (f;x,y)
to a certain function f (x,y) on the unit square:

Example 2.4. Let I = [0,1] x [0,1]. For ny,ny = 15 and different values of p1,q1,p2,q2, the convergence of

Rg;;,lq;,pz,qz) (f;x,y) to f(x,y) = xy* — x*y — sin(xy) on I is illustrated in Figure 1, Figure 2, Figure 3 and Figure 4.

The list of figure captions is given in Table 1.

3. Rate of Convergence

For f € C(I), the complete modulus of continuity for the bivariate case is defined as

w(f;61,02) = sup{|f(t,s)—f(x,y)| Dt—x| <61,

forall (t,s),(x,y) € I, 61 > 0, 6, > 0. Further, w (f; 01, 02) satisfies the following properties

S—y| S(Sz},

w(f;51,62) -0 1f61 - 0,62 i 0,

1 )

Also, the partial modulus of continuity with respect to x and y are given by

wW (f;06) = sup {|f (x1,y) = f (x2, y)| cyehand |x; — x| < 6}

£ (t,5) - F () Sa)(f;él,éz)(l+ 't(;x')(1 " |S_y|). 5)

and
o®? (f;0) = sup{|f(x,y1) —f(x,yz)) 1x €I and |y1 - y2| < (S}.

It is clear that they satisfy the properties of the usual modulus of continuity. The details of the modulus
of continuity for the bivariate case can be found in [5]. Now, we can give the following estimates for the
bivariate operator in terms of the complete modulus of continuity and the partial modulus of continuity.
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Theorem 3.1. Let f € C(I). Then for all (x, y) € I, it holds the following inequality

REA (F1,) = £ G 9)] < 400 (F, 00 (1), 000 ().

Proof. Using the linearity of the operators and considering (5), we have

Rff;;?; P2,q2) (f/ X, y) _ f(x, ]/)| < npllr?zl P2,92) ( .x, ]/)
< @ (f,0n (), 6 (1)) {Riﬁt;?;"“"”) (Lx,y)

+—
( nl ))1/2
{R(Pl A1/P292) (1, X, y)

1
Ry <|t—x|;x,y>}

ny,ny

1 141,P2,42 /
o R - ;w))”}

Applying the Cauchy-Schwarz inequality, and considering Remark 2.2, we get the desired result. [

Theorem 3.2. Let f € C(I). Then for all (x, y) € I, it holds the following inequality

RO (3, ) = £ (x,y)| < 2 {0 (60, () + 0 (500, (1))

Proof. Using the linearity of the operators and considering the definition of partial modulus of continuity
and using the Cauchy-Schwarz inequality, we can write

Rgﬁlnqzl P2.92) (fr X, y) _ f (x, y)| < Rnliljzl P2.42) (lf (t,s) - .x, y)
< R,f?,?; P22) (|f(t s) — ;X, y)
+R£zlr721 P2,2) ( .x, y)

< RO (w2 (fils = o) 2 v)
+RESIPE) (w0 (f; |t = x1) 5%, )
1
< w(f; 62)(1+ R,(le,f;pzqz <|s—y , ))
v (Fr00) 1+ 61 RYAP (1= 2133,
< wf; 62)(1 + 1 Rff;j; P2,12) ((s - y)z;x,y))

1
+w1 (f;061) (1 + Rff?,f; P (- )% x, y)) :
Taking 61 = 6y, (x) and 0, = d,, (y), we get the desired result. [
The Lipschitz class Lipp (@01, at2) for the bivariate case is defined by:

f € Lipm (e, a2) iff |f(t,s) —f(x,y)) <Mt —xM |s - y|a2 for f € C(I),

where 0 < a3, a2 <1, (t,5),(x, y) € I are arbitrary.
Now, we give the following estimate for the tensor product operators in terms of the Lipschitz functions.
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Theorem 3.3. Let f € Lipy (a1, ) . Then for all (x, y) € 1, it holds the following inequality

RO (£,y) = f (2, 9)| < MO, ) Gy (1)

where M > 0,0 < ay, a0 < 1.

Proof. Let f € Lipp (a1, @2) . From definition of the Lipschitz functions, we can write

RO (Fx,y) = (e y)| < REAPP(|F 69) = f (6, y)] 5%, y)
< MREP (1= [s - y|™ 5%, y)
< MRS (= i 3, )

(P1.91.02.92) @
XRin, s (|s - y| ;X% Y).

2
—a;

Applying the Holder’s inequality with u; = 0%1, 1= 5

RO (£, ) - f (1, y)|

Uy = 0%2 and v, = ﬁ, respectively, we get

IA

M (Ri(ﬁl,;lzllpzm) ((t _ x)z - y))a1/2

(2-a1)/2
% (R(PLQLFJZMJZ) (1}X, y)) o

ny Ny

X (joll,;jzl'pz’%) ((S _ y)z X, y))az/Z
X (R(PL%/PZ/QZ) 1;x, y))(Z—az)/Z

ny Ny

M (S, ()™ (O, (1)),

IA

which completes the proof. O

dIf
oxt

1

Let C® (I) be the space of all functions f € C(I) such that 2f 2f fori =1,2 belong to C(I). The norm on
Ji
5
coy 119y

ox’ Ay
the space C? (I) is defined by
C(l)) ‘
The Petree’s K-functional for the functions f € C(I) is defined by

K(f;0)= 9eicrtlz§<1> {”f B 9”(:(1) o ”g”C‘”(I)}

oo =M+ 2

for all 6 > 0. It holds the following inequality
K(f;6) < My (@, (f; Vo) + min (1,6) |} 6)

for all 6 > 0, where the constant M is independent of 6 and f, and w, ( 1 \/5) is the second order complete
modulus of continuity.(see [13] p.192).

We can give an estimate for the tensor product operators in terms of the Petree’s K-functional for the
functions f € C(I).

Theorem 3.4. If f € C(I), then we have
R (3, ) - f (o y)| < M{az (f; T (x, y))

+ min {1, Mﬁlpl],},q;'mm) (x, y)} ”f“C(I)}

(P1,91,12,92)
o (f; NE T y)),



E. Y. Ozkan / Filomat 34:3 (2020), 779-793 786

where

T (e y) 2= REET (10 = xix,y) + REEP (010 - 07, )

2
R (e = i) + R (@ = 0 3,0),

2
it () = RIGETP (00 = 0%, 9) + REDT™ (eor = )53, ).

Proof. We define the following auxiliary operator

RE’lpllijzl P2/02) (f;x,9) = Ri(fll,?/jzl/pZ,qZ) (F;x,9) - f (9](1?11/!71) ), 0 Pz 2) (]/)) +f(xy).

By Lemma 2.1, we obtain

R(Pl A1P2.42) (e

ny,ny

10, X, y) =X,

RPvAP2) (g0 x, ) =

which imply
RGP (10 = x%,y) = 0,
RUSAP) (601 — 32, y) = 0

Lethe C® () and t€Iy,s € I,. Using the Taylor theorem, we can write

h(t,s) —h(x,y)

h(t,y)—h(x,y)+h(ts)—h(ty)

h(x, t Ph(E,
- g;y)(t—x)+f(t— a(;y)dé

d 2%
'“""”( —y)+f<s g 22 h(’”” dn

Taking
0P (x) := RYIP) (010:x, 1)),

and

95,’722’[72) (y):= Riﬁl,?zl P2s52) (eo1; %, v),
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and also applying the operator Rf,’?,f; P2%) 46 the last equality,we get
t
141 141 2 (E’y)
RO (t5x,y) ~h(xy) = REP [f T y]
L Ph (x )
FRY) f(s 0 o Dty
t
?*h (&,
= Ry [ f (=) —8(52 g, y]
Qfﬁl M ()
(s,
. f (07 () - &) o e
82h (x )
( ) Ui
R f (s=m—57—dnxy
ot (1)
a2 P*h (x,1)
+ f (6% (y) - 77)(8—172)‘177
y
By using Remark 2.2, we have
t
Ph
1491,P2,92 1.491,P2,92 é’
RO (i) - () < R ﬂ[fu—a e y)’dé;;x,y]
95,”1”71)(36
+ f Pl‘h)( ) zha(éi/y)’
L RPrALP22) f| aZh *, n)‘dn. X, Y
ny,ny 2 r7%%r
9(!72 Wz)( )
Ph(x,1)
* - o[ P
< {R(m A1P2,02) (( 0—%)7%;x y)
R:f?f; P (o1 — x; %, y)} lIhllca
HREDTP (1 = )%, y)
+R;(£1;jzl P (oo — y; x, y)} hllcaq ,
which imply
RSP () =hGoy)| < whih™™ @ylilcog - ?)
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On the other hand, we have

R‘(Plﬂl/r’zﬂz) (h,‘ X, ]/)’ < RS?];ZLPLQZ) (h; X, y)‘ + ’h (9,(1’11"71) ), 9322/112) (y))| + ‘h (x/ ]/)

Ny

7

which implies

RO (1,y)| < 3l - ®)
Considering (7) and (8), for f € C(I), we can write
RO (Fx,y) = (e y)| < [REEP (F3,9) - £ ()
+ F(O0 " @), 00 () - £ (v, )
REA ) (f = I, )

IN

IN

+

RUSAPE) (; x, ) = h (x, y)|

+|1 (e y) - £ (xy))

+|f (08 (), 08 (1) - £ (v, )|
4f|f - h“cm + A (x, y) e gy

o Aol ).

Taking the infimum on the right-hand side over all 1 € C® (I) and using the inequality (6), we obtain

IA

R%j;,pz,qz) (F;x,9)— f(x, y)| < 4K ( f; M%l’ﬁ;,pmz) (x, y))
o (f; P (x, y))
<

M {az (f " y))
+ min {1, ngll,;jzl'pzm) (x, y)} “f“c(l)}

o (f; Vo (, y)) :

O

4. Construction of GBS Operators

Recently, the generalized Boolean sums of some tensor product operators have been introduced and
studied their approximation properties(see [3, 18, 23]).

Now , we define the generalized Boolean sum (GBS) operators associated with tensor product (p,q)-
Baladzs-Szabados operators as follows:

GUMIP) (£ (1,5); 3, y) = R (£ (6,y) + £ (59~ £ (,5);3,9),

forall (x,y) € L.
The generalized Boolean sum (GBS) operators are linear and positive operators defined from the space
C (I) on itself.
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5. Rate of Convergence of GBS Operators

In [10] , Bogel defined Bogel-continuous and Bogel-bounded functions. Now, we recall some basic
definitions and notations given by Bogel. Details can be found in [10-12].

Let X and Y be compact subset of R. A function f : XxXY — Ris called Bogel-continuous (B-continuous)
function at (xg, yo) € X X Y if

M sl =0

where Aly) f [x0, yo; x, y] denotes the mixed difference defined by

Aoy f o yoix,y] = £, ) = f (%, y0) = f (x0, ) + f (x0, o) -

Let A is a subset of R?. The function f : A — R is Bogel-bounded (B-bounded) function on A if there exists
M > 0 such that ‘A(w) fltsx, y]‘ < M, for every (x,y),(ts) € A. If A is a compact subset of R?, then each
B-continuous function is a B-bounded function.

Let denote by Cj (A), the space of all real valued B-continuous functions defined on A with the norm
“f”B = sup {|A(x,y)f [t s x, y]| (v y),(@ts) € A}. And also, we denote with C(A) and B (A) the space of all
real valued continuous and bounded functions on defined A, respectively. C (A) and B (A) are Banach spaces
with the norm ||f| =sup {|f (x, y)( t(xy) € A}. It is known that C (A) C Cy (A).

In this section, we estimate the degree of the approximation for GBS operators in terms of the mixed

modulus of smoothness and the Lipschitz class for B-continuous functions.
The mixed modulus of smoothness of f € C, (I) is defined by

v (f91,82) 1= sup {[ A F 1153 yl] It =51 < 0, fs = o] < 02,

for all (x,y),(t,s) € ,61,02 € (0,00). Wyixed is well defined. The basic properties of mixed modulus of
smoothness were obtained in [6] and [7], which are similar to properties of the usual modulus of continuity.
The mixed modulus of smoothness satisfies the following property

Omixed (f3 2101, 1202) < (1 + A1) (1 + A2) @mived (f; 01, 02) for Ay, Az > 0. )

Theorem 5.1. Let f € Cy, (I). Then for all (x,y) € L, it holds the following inequality

GV ) (£ (1,5)5%, 9) = F (3, )| < domivad (f: Oy (), 00, (1)

Proof. Using the definition of mixed modulus of smoothness and the inequality in (9), we can write

),

|A(x,y)f [t/S;x/y]| < Wmived (f}|t_x|/ s—y

which implies

— S —
‘A(x,y)f [tls;xry]‘ < (1 + |t61X|)(1 + | 62y|]wmixed (f}51,52), (10)

for every (x,y), (f,s) € I and for any 61,6, > 0.
From the definition of A(x,y) £ [x0, y0; x, y], we have

s = F L) = £5) = £ ()~ Ay F L],
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Applying the operators R,(filf;j;’pz’m to the last equation and considering the definition of GBS operator

GS,T},’,ZLPZ’W), we can write

U™ (F(t:9ixy) = F G RIA™ (e, y) = REEP (8 f[six ] i7,y).

Since R,(ff,?; 72%) (1;x, y) = 1, considering the inequality in (10) and applying the Cauchy-Schwarz inequality,

we get

GUAP) (£ (1,5) %, ) - f (x,y)‘ < RpLP (|A(x,y)f [t5:%, y] ;x,y)
< {RIAP (1)

gy (RO (0= )
g (R0 (=)

1 R 5]

1.41,P2,42 1/2
(R (6=, ) )
XWmixed (f; 01, 02)
Choosing 61 = 0y, (x) and 0, = 0y, (y), we get the desired result. [

Now, we define the Lipschitz class for B-continuous functions.
The Lipschitz class B — Lipp (a1, ap) for f € Cp, (I), is defined by

f€B - Lipy (a1, a2) iff |A(x,y) fltsix y]| <Mt -t s — o,
where 0 < ay, a2 <1, (t,5),(x, y) € I are arbitrary.

Theorem 5.2. Let f € B — Lipy (a1, ) . Then for all (x,y) € 1, we have

Ggfféqzl'pz'qz) (ft,9);xy)— f(xy)

where M > 0,0 < oy, a0 < 1.

< M (6711 (x))al (61’12 (y))a2 4

Proof. From the definition of GBS operator G,Sff,;zl'p 1) and by the linearity of Riﬁl,f; %) and by our hypoth-

esis, we can write

P1A1,p2.4: A1,P2,
GIA™ ) (F5in ) - | <RI (6 /Tt vl]ix)
a
< MRi(fll,;jzl/quZ) (|t XM ‘S _ y| 2 X, y)
= RYMIPR) (| — x| x, )

(141,027 a2
XRIIP) (|5 -y x, ).

. . 2 . . . _ 2 _ _ 2 _ 2 .
Now, using the Holder’s inequality with 1y = 0= Uy = and v, = T respectively, we have

2
2—&1 4

GO (£ (t,9)%,) - £ (%, y)\ < (R (= 0 0)) " (RIS (5 - )™

12 12
Replacing 6y, (x) = (Riﬁ LA P2A2) ((t —x)* ;x)) ” and Ou, (y) = (Rgﬁ 1A1P242) ((s -y y)) / , we get the desired
result. O
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