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On a Ricci Quarter-Symmetric Metric Recurrent Connection and a
Projective Ricci Quarter-Symmetric Metric Recurrent Connection in a
Riemannian Manifold
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YFaculty of Mathematics, Kim Il Sung University, Pyongyang, D. P. R. K.

Abstract. Two new types of connections, Ricci quarter-symmetric metric recurrent connection and projec-
tive Ricci quarter-symmetric metric recurrent connection, were introduced and some interesting geometrical
and physical characteristics were achieved.

1. Introduction

The concept of the semi-symmetric connection was introduced by Friedman and Schouten in [6] for
the first time, Hayden in [11] introduced the metric connection with torsion, and Yano in [21] defined
a semi-symmetric metric connection and studied its geometric properties. N. Agache and M. Chafle [1]
investigated the semi-symmetric non-metric connection. Recently, De, Han and Zhao in [2] studied the
semi-symmetric non-metric connection. On the other hand, the Schur’s theorem of a semi-symmetric non-
metric connection is well known ([12, 13]) based only on the second Bianchi identity. A semi-symmetric
metric connection that is a geometrical model for scalar-tensor theories of gravitation was studied ([3])
and a conjugate symmetry condition of the Amari-Chentsov connection with metric recurrent was also
studied. Recently in [9] the similar topics were further studied in sub-Riemannian manifolds. A quarter-
symmetric connection in [8] was defined and studied. Afterwards, several types of a quarter-symmetric
metric connection were studied ([4, 10, 19, 22]). In [7, 14, 20, 23, 24], the geometric and physic properties of
conformal and projective the semi-symmetric metric recurrent connections were studied. And in [17, 18]
a projective conformal quarter-symmetric metric connection and a generalized quarter-symmetric metric
recurrent connection were studied. In [5] a curvature copy problem of the symmetric connection was
studied. And in [18] the mutual connection of a semi-symmetric connection was studied.

Motivated by the previous researches we define newly in this note the Ricci quarter-symmetric metric
recurrent connection and the projective Ricci quarter-symmetric metric recurrent connection and study
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their properties. And the Schur’s theorem of the Ricci quarter-symmetric metric recurrent connection and
the projective Ricci quarter-symmetric metric recurrent connection and several types of these connections
with constant curvature are discovered.

2. A Ricci Quarter Symmetric Metric Recurrent Connection

Let (M, g) be a Riemannian manifold (dimM > 2), g be the Riemannian metric on M, and V be the
Levi-Civita connection with respect to g. Let X(M) denote the collection of all vector fields on M.

Definition 2.1. A connection V is called a Ricci quarter-symmetric metric recurrent connection, if it satisfies
Vz9(X,Y) =20(Z)9(X,Y), T(X,Y) = n(UX - n(X)UY (1)

where U is a Ricci operator, w and 1 are 1-form respectively. If U(X) = X, then V is a semi-symmetric metric
recurrent connection studied in [24].

Let (x) be the local coordinate, then g, FVV, V,w,n,U and T have the local expressions g;;, {’]?1.}, F’in, w;, T, Ul]
and Tﬁ. respectively. At the same time the expression (1) can be rewritten as
ngji = Za)kgﬁ, T];i = T(,’U? - njuf (2)
The coefficient of V is given as
Fi.‘]. = {Z} - wiél; - a)]'(Si»{ + g,-,-a)k + njuf.‘ - U,']'Hk (3)

where Uj; is a Ricci tensor of the Levi-Civita connection V. From (3), the curvature tensor of V, by a direct
computation, is

1 _ 1 1 <l P S | 1. 11y,
Rijk = Ki].k+6ia]k 6jalk+g]kai glkaj+u].b,k Uib]k

! ! ! ) ) 1 1
+ Uikbj - ujkbi + Cijnk - c]-ink — CjjkTt + CjikTC — 6k(w,-]- - cu]-i) (4)

where ngk is the curvature tensor of the Levi-Civita connection V and other notations are given as

aAj = -Vdia)k + w;wy + U,-ka)pnp - Ufa)pnk - %gikwpcu”
b v y L
ik = Vi + mop — U mymy — 5 T
i = Villp
(4),‘]‘ = ’6,'6()]'
Let
Agjk = 55&1]‘;( + aﬁgjk - Ufbjk - bgu]'k + Ci»]»T(k - C,‘jkT(l - (5;((1),']'
Then, we get
R, =K, +A, —AL (5)
] 1 1 Ji

So there exists the following.

Theorem 2.2. When Af.].k = A;l.k, then the curvature tensor will keep unchanged under the connection transformation
VoV
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From (3), the coefficient of dual connection V of the Ricci quarter-symmetric metric recurrent connection
Vis

’ﬁ;j = {f]} + a),'(S];- - w]'éi-( + g,'ja)k + Hju;( - Ul']‘TCk (6)

By using the expression (6), the curvature tensor of dual connection Vis

Bl _ ) 1 <l P S | Iy 11y,
Rijk = Kijk+6ia]k 6].alk+g]kal. glkaj+ujb,k uib]k

+ Uikb§ - Ujkbf» + Céjﬂk - Cé','nk - C,']'kT(] + C]'ikT(l + 62(@1-]' - a)]'i) (7)
In the Riemannian manifold (M, g) if Rﬁjk = Eﬁjk, then the connection V is called a conjugate symmetry and

if Rjy = Ejk, then the connection V is called a conjugate Ricci symmetry, and if P;; = Ej, then the connection
V is called a conjugate quasi-Ricci (or Volume) symmetry, where Pj; = g"R;i.

Theorem 2.3. In a Riemannian manifold (M, g) with a Ricci quarter-symmetric metric recurrent connection V if a
1-form w is a closed form, then the Riemannian manifold (M, g, V) is a quasi-Ricci flat and the Ricci quarter-symmetric
metric recurrent connection is a conjugate symmetric.

Proof. By using the contraction of the indices k and [ in the (4) we have
Pji = Pji — n(wji — wy)

where 171»]» = Kijkk = 0. If a I-form w is a closed form, then w;; = wj;. Hence P;; = 0. Consequently the
Riemannian manifold (¥, g, V) is a quasi-Ricci flat. On the other hand, from the expressions (4) and (7), we
obtain

Rﬁjk = Rij' + 26, (wij — wjy) 8)
If a 1-form w is a closed form, then w;; = wj. Hence from the expression (8), we have Eﬁjk = Rjjkl.

Consequently, the Ricci quarter-symmetric metric recurrent connection V is a conjugate symmetry. [

Theorem 2.4. The Ricci quarter-symmetric metric recurrent connection V on a Riemannian manifold (M, g) is a
conjugate symmetry if and only if It is a conjugate Ricci symmetry or a conjugate volume symmetry.

Proof. By using the contraction of the indices i and / in (8) we have

Rjx = Rjx = 2(wjx — wg;).
From this expression, we arrive at
Wjk — Wkj = %(Rjk - Rp).
Substituting this expression into (8), we have
Rl + 0}Rij = Ry + 8 R;; )
From the equation (9) it is easy to show that R,-]-kl = j{\gjk if and only if Ry = j{\jk. On the other hand, by using

the contraction of the indices k and / in (8), we have

—

P,'j = Pi]' + Zn(wij - a)ﬁ)
From this expression, we arrive at

1 —
@jk = kj = 5 (Rje = Rj)-
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Substituting this expression into (8) we have

— 1 =~ 1
1 5. _ I 1
Rl.].k - Eékpif =R - ﬁékPii (10)
From the equation (10), it is easy to show that R,-]-kl = ﬁﬁjk if and only if P;; = f’:] O

It is well known that a sectional curvature at a point p in a Riemannian manifold is independent of I1 (a
2-dimensional subspace of T,,(M)), the curvature tensor is

Rii' = k(p)(Slgj - 5;9ik) (1)
In this case, if k(p) =const, then the Riemannian manifold is a constant curvature manifold.

Theorem 2.5. Suppose that (M, g)(dimM > 3) is a connected Riemannian manifold associated with an isotropic
Ricci quarter-symmetric metric recurrent connection V. If there holds

wy = =Sy, (12)

then (M, g, V) is a constant curvature manifold, where s, = anlTZp( Schur’s theorem for the Ricci quarter-symmetric
metric recurrent connection)

Proof. Substituting the expression (11) and using the expression (2) into the second Bianchi identity of the
curvature tensor of the Ricci quarter-symmetric metric recurrent connection V, we get

ViRii' + ViRj' + ViRpi' = TR + T;’;Rhmkl + T%Rimkl
then we have
(Vik(p) + 20ik(p)) 019k = 8igi) + (Vik(p) + 20k () (S gk — 61,9 )
+(Vik(p) + 2w ik(p)) (8}, ik — igne)
= k(p) [ (O U — 5§Uik + Ulgy — u;!]ik) + ni(ééuhk — &l U + U;_l]hk - U gx)
+70(8), Uik — 8: U + Uy gix — Ulgie)]
Contracting the indices i and /, then we obtain

(n = 2)(Vik(p) + 2wik(p))gjx — (n = 2)(V jk(p) + 20 ik(p)) gik
= k(p)[(n = 3)(ruwU jx — 70 Upi) + (U} — Uj, ) g — (UL — niu;')ghk]

Multiplying both sides of this expression by g/, then we have
(1 = 1)1 = 2)(Vik(p) + 20nk(p)) = 201 — Dk(p)(r0, L], — U,

From this equation above we obtain
Vik(p) = =2(wy + sp)k(p).

Consequently, from that we know k(p) =const if and only if w, = —s;,. O

By Theorem 2.5, the expression (2) for the Ricci quarter-symmetric metric connection with a constant
curvature satisfies

Vigii = —2519ji, Tfj = Uk - niujf (13)
Similarly, the formula (3) shows

T = () +si0) + 5705 = gigs" + ;U = Uyt (14)
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If the Riemannian manifold is an Einstein manifold, then we obtain

k
Uy = — Yk (15)
From the expression (15), we have
k

Sy = ——Ty.
n
Hence, for an Einstein manifold, the expression (13) shows
2k v _k k k

Vigij = T T;; = E(njéi - 70;) (16)

Similarly, the formula (14) shows
k
ko_oqky _ K ok

Ty = {} = —mid)] (17)

This connection was studied in [3].

m
From the expression (3), the coefficient of mutual connection V of the Ricci quarter-symmetric metric
recurrent connection V is

mk

1’,-]- = {Z} - wiél; - w]'éi-‘ + g,-,-a)k + RinF - Ui]-nk (18)
This connection satisfies the relation
k
m m
Vk!]ij = Zwkg,-]- - Zﬂkui]' + ukl‘ﬂ]‘ + uk]"IZi, Tij = nill;? - njuf. (19)

m m
From the expressions (18) and (19), the coefficient of dual connection V of the mutual connection V is
—~k

m
rij = {i(]} + a)i(sl; — a)jéf + g,-]-a)k - RiU§ + ﬂju;(. (20)

w
On the other hand, in a Riemannian manifold the Weyl connection V satisfies the relation

wk

w
ngi,- = Zwkgij, Tij =0. (21)
w
and the coefficient of V is
k
m
l",.j = {fj} - cuié’]‘. - a)]‘é? + g,']wk. (22)

—

w w
From the expressions (21) and (22), the coefficient of a dual connection V of the Weyl connection V is
W
rz’]’ = {Z} + wi(sl; - a)j(Si-( + g,'ja)k. (23)

—

m m
Theorem 2.6. In a Riemannian manifold (M, g) the dual connection V of the mutual connection V of a Ricci

w
quarter-symmetric metric recurrent connection V is projective equivalent to dual connection V of the Weyl connection
w
V.

Proof. From the expressions (20) and (23), we have
—% =k
m w
Tap = Tap,

m w
where (i) expresses the symmetry of the indices. Hence the connection V has the same geodesic as V. Thus

—

m w
the connection V is projective equivalent to the connection V. [
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3. A Projective Ricci Quarter-Symmetric Metric Recurrent Connection

p
Definition 3.1. In a Riemannian manifold (M, g), a connection V is called a projective Ricci quarter-symmetric

P
metric recurrent connection, if the V is projective equivalent to a Ricci quarter-symmetric metric recurrent connection
V.

4
In a Riemannian manifold (M, g), a projective Ricci quarter-symmetric metric recurrent connection V

satisfies the relation

p
Vzg(X,Y)

—2[V(Z2) - w(D)]g(X,Y) - W (X)g(Y, Z) - Y (Y)9(X, Z),
Tx,v)

n(UY - n(X)UY.

The local expression of this relation is

p
Vlkcgij = =2(Vk — wi)gij — Vg = Vigx,

4 k k @)
Tij = ﬂ]ul - nzu]
p
and the coefficient of V is
pk k k k k k k
1",~ = {ij} + (\Iji - a),f)éj + (\y]' - a)j)éi + gijw + T(]'Ui - Ui]'T( . (25)
where W, is a projective component.
p
From (25), we find that the curvature tensor of V is
p ! 1, <P 1 p! p! 1P 1P
Rijk = Kijk + (S].aik - 61»61]‘k + gjkbi - gikbj + chik - UI-C]‘k
A Pl pooop
+ Uz'kd]- - u]‘kdi + (el-j - eji)nk - (e,'jk - Ejik)ﬂl (26)

Si(wij — wji) + 5 (Wi; — W)

where K; jkl is the curvature tensor of the Levi-Civita connection ’6, and the other notations are given as

P —
ax = ViV — wr) = (Vi — o) (Wi — wx)
P
) +Ui(Vy — wp)P — U (W — wp)mti — gix(W)p — wp)a”
bik = Viwg + wijwy + Uikcupnp - U?a)pﬂk
p —
ek = Vimg — mi(We — wp) — U'mpmy + FUger, P (27)
P —
d,’k = V{ﬂk + Ty — Uipﬂpﬂk + %Uiknpnp
P —
eijk = Villjx
\If,']' = Vi\y]‘
Let
1 _ <P p! 1P P b1, sl I
Bi/‘k = 6iajk + gjkbi - Ul.cjk - lljkd,- + eijnk — kTl + 6k\yij - 6ka)ij
Then we get

Pl I I
Rijk = Kijc + Bjik — Biji'-

So there exists the following.
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Theorem 3.2. When B jikl = Bijkl, then the curvature tensor will keep unchanged under the connection transformation
- P
Vo>V

4
From (25) and (26), the coefficient of dual connection V of the projective Ricci quarter-symmetric metric

p
recurrent connection V is

—~k
P

Ty = {5} = (Pi = )8k = (W = @)g — w;f + U} - Uym” (28)

4
By using the expression (28), the curvature tensor of dual connection V is

Bl Ly slh _slh pl o pt b "
Rijk = Kijk + 6ibjk - 5jbik + gikdj — Gk + ujdik - lll.djk
l ! / !
P by PP
+ U,’kC]- - u]'kCz- + (61-]- - eﬁ)nk - (e,«ik - ejik)n (29)
1 1
+ O (wij — wji) + 6(Wij — W)

From the expressions (26) and (29), we have

P o P b ol P ol b
Rij" = Ry +0i(ap +bjx) = 0,(@ix + bi) + gi(@a; + by) — gj(@; + by)
P b P ol P ol b
+ Uj(cik + dik) - ui(C]'k + d]'k) + Uik(cj + dj) - U]-k(c,- + dl) (30)
+ 265{(\1—’1']' - ‘I’ﬁ) + 262((1)1']' - a),-,-)
Let
= e b+ gl + b+ U )+ U+ ) 28
Diji* = 0i(ajx + bjx) + gir(a; + by) + Uy(cix + di) + Ui(c; + d;) + 26, (Wi + wyj)
Then we get
lpq,,l_lpq..l Dl — D! 31
ijk = RNijk + jik ijk - ( )

So there exists the following.

p
Theorem 3.3. In the Riemannian manifold (M, g, V), if 1-form WV and w are of closed forms, then the Riemannian
manifold is a quasi-Ricci(or volume) flat and if D j,-kl = Di]»kl, then the projective Ricci quarter-symmetric recurrent

P
connection V is a conjugate symmetry.

Proof. By using the contraction of the indices k and ] in the expression (26) we have

4 ~ p p PP 7 P P, P
Pi]' = P,']' ta;;—aj;+ b,‘j - b]'i + UjCik - LI,. Cjk + U,‘kdj - u]'kdl-
pe Bt k Y. — . . 3 32
+ (el»]» - eﬁ)nk + (ejix — e +n(Wij — Wy) — n(wij — wji) (32)

— kK p.. — Kl _ | k
where P,']' = Rijklg ,P,']' = Kijklg =0, and ez.jnk = €jkTT .
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Using the expression (28), there holds the following

4 p p p
aij—aj = (\I]U - \I—’ﬂ) — (a)ij — a)ﬁ) - Ul. (\I]p — a)p)nj + LI] (\yp - a)p)m,
p I " p
b,‘j - bj,‘ = Wij— Wi — Ui WyTTj + ll].a)pm,
kP kP ko ko k k
ch,-k - Ul- Cik = u].V,»nk - Ui V]'T[k - U].(\I/k - a)k)n,- + LIi (\I’k - a)k)nj,
g k ’ k .k .k k k
Uikdj - jkdi = Uiijn - LI]-kVin + Ujw T — U]-ka) Ti,
k k
el.jnk - eﬁnk = 0,
k k
el']'kT[ —EjikTC = 0.

Substituting these expressions into the expression (32) and using 1-form W and w are of closed 1-forms,

r p
then P;; = 0. Hence the Riemannian manifold (M, g, V) is a qusai-Ricci(or volume) flat.

4 P
On the other hand, from the expression (31) if D jikl = Dijk’ , then R,-]-kl = Rijk !, Hence the projective Ricci
quarter-symmetric recurrent connection is of conjugate symmetry. [

Theorem 3.4. Suppose that (M, g)(dimM > 3) is a connected Riemannian manifold associated with an isotropic
Ricci quarter-symmetric metric recurrent projective connection. If there holds

v, = 2(a)h + Sh) (33)

p
then (M, g, V) is a constant curvature manifold, where s, = ﬁTZp (the Schur’s theorem for the Ricci quarter-
symmetric metric recurrent projective connection)

Proof. Substituting the expression (11) into the second Bianchi identity of the curvature tensor of the
projective Ricci quarter-symmetric metric recurrent connection, we get

PP, PP PP PP PP PP
ViRij" + ViR + ViRpix" = Tpi°Rjsk " + Tij "Rpsk” + T * Risk
then by using the expression (24) we have
p p
[Vik(p) + Qawy, — Wi)k(p)1(Sg — 6;!]%) +[Vik(p) + Quw; - \yi)k(P)](éé‘ghk — 895

4
+[Vk(p) + 2w;j = W)k, g1 — Oim)
= k(P)[ﬂh((Si-Ujk — 8 Ui + Ujgj — Uiga) + mi(05Unk — 6, Uk + Ul — U, g )
+ 700} Ui — 61U + U, g — Uﬁghk)]
Contracting the indices i and /, we obtain
p p
(n = DIVik(p) + Qon = Wik(p)lgix — (n = DIVik(p) + Qw; =V k(p)]gn

p p
+[Vik(p) + Qw; — W )]gm — [Vik(p) + Qo — Wp)]g

= k(P){T(h[(n =2Uj + gl = ml(n = 2)Upk + g UL] + 70U — 10, U
+ ghkuins - gijZﬂs}

Multiplying both sides of this expression by g/, then we have

(n—1)(n— 2)[%hk(p) + Qan = Pk(p)] = 2(n = 2)k(p) (U — 7, L)
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From this equation above we obtain

4
Vik(p) = [Wh = 2(wp + ) Jk(p)
Consequently from that we know k(p) =const if and only if W), = 2(wy, +s1,). O

Theorem 3.5. If an Einstein manifold (M, g)(dimM > 3) associated with a projective Ricci quarter-symmetric metric

4 4
recurrent connection V has a constant curvature, then the Riemannian manifold (M, g, V) is conformal flat.

Proof. Adding the expressions (26) and (29), we obtain

1 opl

» I b1 Lyt b o 4
Rije" + Rije" = 2K +6(aix — bix) = 6,(@jx — bjx) + gie(@j — by )
plop! po P po b pl !
= gxlai =bi) + Uj(ci + dix) — Ui(cjr + dji) + Uin(cj +dj) (34)

1op! ! !
p plop P
— Uglci +di) +2(eij — eji ) — 2(eqi — eju)

From the assumption that a Riemannian manifold is an Einstein manifold, we have

Uje = ng"'
Using this expression, from (27) we obtain
e = 0. (35)
Using these expressions, from the expression (34), we have
Iinjkl + Ip{ijk’ = 2K1-]-k’ + 65.041-;( - 6f.ajk + gika§ - g]-kaf (36)

where a; = a; — by + %(c,-k + dj). Contracting the indices i and I of (36), we get

por .
R]'k + R]'k = 2Kjk - (1’1 - 2)0zjk - gjka§ (37)

Multiplying both sides of (37) by g/¥, then we arrive at

o7 .
R+R =2K-2(n - 1)al.

From this expression above we have

P 1 P or
0} = 5oy 2K~ R+ R)]

Using the expression from (37), we have

1 P 1 Py
aj = m{ZKjk = (R + Ry - mgjk[ZK -(R+ R)])}

Substituting this expression into (36) and putting

p bop ! 1 47 i p! p! R z z
Cik = Rijx — m(éiRjk = O;Rix + gjkR; — gikRj) + m(éﬂjk —0,0ix)
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?] —~ — —~ —~ —~ p

1 lP IP P |4 R
= Rijk — m(éink — (3]-R,'k + giji - gikRj) +

m(éﬁg ik — 5?5]&)

— 1 K
1l ! ! ! 1 ! I
Cijr = Kij' = = 2(5in1< — 0;Ki + gjxK; — gikK]») + D=2 &9k = 07ix)

then by a direct computation, we obtain
—
p |

- =l
Cijk + Cijk = 2C

ijk (38)

;1

p P P
By using the fact that V has a constant curvature, thus we have C; = C; ik = 0. Hence, one gets

o
Cly =0.

This means that the Riemannian manifold (M, g, AV} is of conformal flat. O

p
Theorem 3.6. The projective Ricci quarter-symmetric metric recurrent connection V on an Einstein manifold
(M, g)(dimM > 3) is a conjugate symmetry if and only if it is a conjugate Ricci symmetry and conjugate volume
symmetry.

Proof. From (26) and (29), we get

— I
P p

Ry = Ry + 6 — 0 + g — 9B + 20, (39)

P P
where B = ij +bje+ %(zjk +dj), vij = (wij — wji) — (Wij — ¥j;). By using contraction of indices i and I of (39),
we obtain

P p .
Rje = Rjx + njx = gjxB; = 27 ji- (40)

Alternating the indices k and j of this expression, we obtain

P pp
Rj = Rij = Rj — Ryj + n(Bjx — Pij) — 4 ji
On one hand, contracting the indices k and / of (39) and changing index i for j, index j for k, we get

P p
Pje = Pjic + 2(Bjk — Prj) — 21y jk

From these expressions above we have

! {2[(}’3]7( - ijkj) - (ﬁjk - ﬁkj)] + ”(Ip{ﬂf - Ip{f'k)}

V= 22— 4)
Using this expression, from (40) we have

1,0 7 o1 P poop Poop
Bk = E(Rjk ~ Ry + gipi + 5 4{2[(ij — Pj) — (Rji = Rkj)] +n(Rji - Rjk)})
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Substituting the above two expressions into (39), we obtain

r o9 7 i p! p! 2 P p
Rijx =~ ©ORjx = O;Rix + giR; = gixRy) = m[é,‘(Rjk - Ryj)

5 R — R+ g (R — R — go(Re ! — R 4 15 (R — R
]'( ik ki) + Gir( j ‘]) g]k( i i)+n k( ij ]1)]

1 ]P ZP P I 14 ; lp
T2 — 4(61.ij - 5]-Pik +gixPj" — gixPi" + n6,Pij)

— — —

S B ) Ty 2 L
= Rije" =~ (ORjx = OjRix + gicR ; = gjxR }) = m[@(&k - Ryj)

e+ aulhrt Ry gulht Ry sty By
ik ki gzk( j -]) g]k( i i)+n k( ij ]z)]

(PRTRT) R WY
— 4((31-13]']( - 5]'Pik + gikpj - gjkpi + nékPij)

n2

— — — P P P
From this expression we arrive at Rijkl = Rijk’ if and only if Rjx = R, Pjx = Pjx. Where le = R]'SgSI,R.]-I =

4
R;jg*. This ends the proof of Theorem 3.6. [

—

4
From the expression (25), the coefficient of mutual connection V of the projective Ricci quarter-symmetric

4
metric recurrent connection V is

pm , ,
i = )} = (Wi = )8 + (W7 = 0o} + gijo* + mllf - Uym". (41)
This connection satisfies the relation
pm
Vigij = =2(Wx — wi)gij — Vigjx — Vg — 2muUi; + U + U (42)
mk k k
/T\ﬂ pm

From the expressions (41) and (42), the coefficient of dual connection V of the mutual connection V is

pm

r,‘]‘k = {Ilc]} — (\I’,‘ - cui)(S’]? - (\Pk - a)k)g,‘]‘ - CL)]‘(S;C - TII‘U? + Ul‘jﬂk. (44)
po po

On the other hand, the coefficient of a dual connection V of the Weyl projective connection V is given as

—

pw
Ty = () = (Wi = )0 = (W* = 0")gij — ;0] (45)
pm it
Theorem 3.7. In a Riemannian manifold the dual connection V of the mutual connection V of the projective Ricci
p pw
quarter-symmetric metric recurrent connection V is projective equivalent to dual connection V of the Weyl projective
pw
connection V.
Proof. From the expressions (44) and (45), we have
—~k =k
pm pw
Tap=Tap
pm po pm
Hence, the connection V has the same geodesic as V. Thus the connection V is projective equivalent to the

pw
connection V. [
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