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Abstract. In this paper, we will establish some results on perturbation theory of block operator matrices
acting on X", where X is a Banach space. These results are exploited to investigate the M-essential spectra
of a general class of operators defined by a 3 x 3 block operator matrix acting on a product of Banach spaces

X3.
1. Introduction

Let X be a Banach space. In this paper, we investigate the M-essential spectra of a general class of
operators defined by a 3 x 3 block operator matrix acting on a product of Banach spaces X°

A B C
Lo=| D E F |,
G H K

where the entries of the matrix are in general unbounded operators. Note that Ly is neither a closed nor a
closable operator, even if its entries are closed. We prove under some conditions, that L is closable. We
shall denote its closure by L. We denote by £L(X) (respectively C(X)) the set of all bounded (respectively
closed, densely defined) linear operators acting on X and we denote by K(X) the subspace of compact
operators. For T € C(X), we write D(T) C X for the domain, N(T) C X for the null space and R(T) c X for

the range of T. The nullity, a(T), of T is defined as the dimension of N(T) and the deficiency, f(T), of T is
defined as the codimension of R(T) in X.

We denote by @, (X), P_(X) and P(X) the classes of upper semi-Fredholm, lower semi-Fredholm and
Fredholm operators. The sets of left and right Fredholm inverses are respectively, defined by:

@)(X) :={T € C(X) such that T has a left Fredholm inverse},
®,(X) := {T € C(X) such that T has a right Fredholm inverse}.

Let @ (X), @ (X), P*(X), P¥(X) and ®2(X) denote respectively the sets

0. (X) N L(X), D-(X) N LX), D(X) N L(X), ©,(X) N L(X) and O(X) N L(X).
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It follows from [9, Theorem 14. and 15. p. 160] that
CD;’(X) ={Te (I)ljr (X) such that R(T) is complemented}

and
(X)) =T e @' (X) such that ker(T) is complemented}.

Note that we have the following inclusions:
P'(X) c DI(X) C DL(X)

and
PU(X) c PY(X) c DY (X).

Definition 1.1. Let X be a Banach space and let F € L(X).
(i) The operator F is called Fredholm perturbation if U + F € ®(X) whenever U € O(X).

(ii) F is called a upper (resp. lower) semi-Fredholm perturbation if U + F € @, (X) (resp. U + F € ®_(X)) whenever
U e d(X) (resp. U € D_(X)).

(iii) F is called a left (resp. right) semi-Fredholm perturbation if U + F € ®)(X) (resp. U + F € ®(X)) whenever
U € Oy(X) (resp. U € O(X)).

We denote by F(X), F+(X), F-(X), F1(X), F+(X), the sets of Fredholm, upper semi-Fredholm, lower semi-
Fredholm, left semi-Fredholm and right semi-Fredholm respectively.

If in Definition 1.1 we replace ®(X), @, (X), ®_(X), ¢/(X) and ,(X) by *(X), ¥4 (X), *(X), P!(X) and
®’(X) we obtain the sets F(X), FL(X), F£(X), ?lb(X) and F,/(X). These classes of operators were introduced
and investigated in [7, 13]. In particular it is shown that F%(X), F2(X), FX(X), F(X) and F(X) are closed
two-sided ideals of £(X). Note that in general we have:

K(X) c FLUX) c FUX),
K(X) c FHX) € FUX).
The following result was established in [3]

Lemma 1.2. [3] Let X be a Banach space, then
F(X) = FUX), F1(X) = FLUX) and F_(X) = FL(X).

Let S € L(X). For T € C(X), we define the S-resolvent set by:
ps(T) := {A € C, AS — T has a bounded inverse},

and the S-spectrum of T
as(T) = C\ ps(T).

In this paper, for S € £(X), we are concerned with the following S-essential spectra:

0e,,5(T) :={A € C suchthat AS-T ¢ O, (X)},
0e,,s(T) :=={A € C such that AS - T ¢ ®_(X)},
0e,,s(T) :={A € C suchthat AS - T ¢ ®.(X)},

0e,s(T) :={A € C suchthat AS - T ¢ O(X)},

Oes,s(T) := C\ {A € Org such thati(AS —T) = 0},

0¢,s(T) := C\ {A € C such that all scalars near A are in ps(T) and that i(AS — T) = 0}.
01e,s(T) := {A € Csuch that AS = T ¢ O)(X)},

Ores(T) := {A € Csuch that AS — T ¢ ©,(X)}.



B. Abdelmoumen, S. Yengui / Filomat 34:4 (2020), 1187-1196 1189

Remark that
063,S(T) = O'gl/S(T) n OEz,S(T) c 064,S(T) c 065,S(T) c GL’(,,S(T)'

Note that if S = I, we recover the usual definition of the essential spectra of a closed densely defined
operator T.

A complex number A is in @rg if AS — T € O(X). The set @1 has very nice properties such as:

Proposition 1.3. [15] Let T € C(X) and S a non null bounded linear operator acting on X. Then we have the
following results:

(i) Prs is open.
(ii) i(AS = T) is constant on any component of Prg.

(iii) a(AS = T) and B(AS — T) are constant on any component of @t s except on a discrete set of points on which they
have larger values.

In the following we will denote the complement of a subset Q c C by Q.

Proposition 1.4. [15] Let T € C(X) and M € L(X).
(i) If “0e, m(T) is connected and pp(T) is not empty, then

664,M(T) = 0-65,M(T)~
(ii) If €0, m(T) is connected and pp(T) is not empty, then

O‘6’5,1\/1(’11) = GB@,M(T)'

The study of the essential spectra of block operator matrices has been arround for many years. Among the
works in this subject we can quote, for example, [1,4-6, 8, 14-19]. Note that the idea of studying the spectral
characteristics of block operator matrices goes back to the classics of the spectral theoryfor the differential
operator (see for instance [9-12]). Recently, C. Tretter gives in [16-18] an account research and presents a
wide panorama of methods to investigate the spectral theory of block operator matrices. In the paper [6],
M. Faierman, R. Mennicken and M. Méller propose a method for dailing with the spectral theory for pencils
of the form Ly — pM, where M is a bounded operator. The authors in [4], extend the obtained results in
[19] and prove some localization results on the essential spectra of a general class of operators defined by a
2 x 2 block operator matrix. The analysis uses the concept of the measures of weak-noncompactness which
possess some nice properties (cf [2]). Similarly, [15] study the M-essential spectra of 2 X 2 operator matrix.
Whereas in the paper of [5], Aref and all investigate the essential spectra of a 3 x 3 blok operator matrix.

The purpose of this work is to pursue the analysis started in [4, 5, 8, 15, 19]. In Section 1, we establish
some stability results on Fredholm theory. The main results of this section is Theorem 2.4. In Section 2, we
apply the results of Section 1 to describe the M-essential spectra of a general class of operators defined by
a 3 x 3 block operator matrix, where M is a bounded operator (see Theorem 3.3).

2. Some results on perturbation theory of matrix operator

In this section we will establish some results on perturbation theory of matrix operator that acts on X"
where X is a Banach space. We beguin with the following preparating results which are crucial for the
purpose of our paper.

Proposition 2.1. Let A;j € L(X), (i,j) € {1,..., n}? such that Ajj = 0ifi> j, and consider the matrix operator:

Ty = (Aij<ij<n € LX").
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) If, Vie (1, ..,n}, Aij € D(X), then T, € D(X"), where . designs +,—,1 or r.
(i) If T, € ©(X"), then A11 € D(X).

(i) If Ty, € D_(X"), then A,y € D_(X).

(iv) If T, € ®(X™), then A1 € Di(X).

) If T, € D(X"), then A, € D(X).

Proof. (i) We can write T, in the following form:

I 0 - 0 I A, -+ Aw oAy 0 - 0
0 Axp -+ Ay . 0 I 0 0
r.=|. T ° L . M
0 -+ 0 Awllg ... o 7] 0 - 0 I
We use a reasoning by induction on n € IN\{0, 1} and we apply [9, Theorem 5, p 156].
The results of (ii) and (iv) follow immediately from (1) and [9, Theorem 6, p 157].
The assertions (iii) and (v) can be checked if we write T, in the following form:
I 0 - . 0 o 0 A A o Arpa 0
0 0 o || ° : 0 " :
T, = 0 0 (2)
. . I 0 . . . . An1na 0
0 - . 0 A o - o A”I‘l” 0 .- 0 I

Using the same reasoning as the proof of the previous proposition, we can show the following:
Proposition 2.2. Let Ajj € L(X), (i, ]) € {1, ..., 1Y% such that Aij = 0ifi < j, and consider the matrix operator:
T; = (Aiph<ij<n € LX").
) If, Vie(l,...,n}, Ai € D.(X) then T; € O.(X"), where . designs +,—,1 or .
(i) If T; € ©,(X"), then Apy € D1 (X).
(iii) If T; € ©_(X"), then A1q € D_(X).
(iv) If T € Dy(X™), then Ay, € Py(X).
(0) If T; € D (X"), then Aq1 € D(X).

As an immediate consequence of propositions 2.1 and 2.2 we have:
Corollary 2.3. If T, € ©(X") (resp. T; € D(X")), then A1y € P(X) and Ay € P_(X).
(resp. A1 € O_(X) and Ayy € D(X)).
The main result of this section is the following;:
Theorem 2.4. Let F := (Fjj)1<i j<n where F;j € L(X), V(i j) € {1, ..., 1}2. Then
(i) F € F(X") if and only if F;; € F(X), Y(i, ) € {1,...,n}%
(ii) F € F(X") if and only if Fij € F(X), Y(i, j) € {1, ..., n}*.
(iit) F € F1(X") if and only if Fij € F1(X), Y(, j) € {1, ..., n}*.
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Proof. (i) Suppose that F := (Fjj)1<ij<n € F(X"). For (i, j) € {1, ..., n}?, there exists P;j and Q;; two invertible
matrix operators in £(X") such that:

PyFQy=| T |erw. 3)

So, to prove that F;; € (X)), it suffice to prove that F1; € ¥(X). Let A be in ®(X) and consider

A -Fp - . =Py
0 I —Fxn :
L] = . . .
_Fn—ln
o .- 0 I

It follows from Proposition 2.1(7) that L; € ®(X"). Thus,

Fu+A 0 0
F» I+F» O :

F+Li=|: : € O(X").
: . . 0
Fn o+ Fuper I+ Fpn

Hence, by Corollary 2.3, F11 + A € ®_(X).

A 0 e 0
LetL, = _1?21 I . Then according to Proposition 2.1(i), L, € ®(X") and
: . . 0
_Fnl e _Fn n-1 I
Fn+A Fp -+ Fu
Fel=| O It C e,
: - ) Fn—l nn
0 - 0 I+Fu,

Thus, by Corollary 2.3, F1; + A € ®.(X) and therefore, F1; € ¥ (X).
Conversely, suppose that F;; € F(X), Y(i,j) € {1, ..., n)2. We can write:

0 --- 0
— — . 0
F= Z Fij, where F;; = - 0 F; 0
1<i,j<n
0
0
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So, it is sufficient to prove that if, for (7, j) € {1, ..., n}?, Fij € ¥(X), then Ej € ¥(X"). Using the same reasoning
as (3):

FEi 0 - 0
— o 0 -

PijFijQij = . 4)
0 .- 0

So, to prove that E-]- € ¥ (X"), it suffice to prove that fn € F(XM).

Suppose that Fi; € ¥(X) and let L := (Lij)1<ij<n € P(X"). According to [9, Theorem 13. p. 159], there exists
Lo := (L?].)lgljgn € ®(X") such that LLy = I + K, where K € K(X"). We have

I+ F11L(1)1 F11L(1)2 cee FHL(l)n
— — 0 I 0 0
(L+F11)L0 =I+K+F11L0 = . X . . + K.
0 0

Since I + F11L(1)1 € O(X), then, by Proposition 2.1(i), (L + fn)Lo € ®(X"). Thus L + Fi € @O(X") and therefore
Fip € F(X).
We prove the assertion (ii) in the same way as in (i).

To prove the assertion (iii), suppose that F := (Fjj)1<; j<x € F1(X"). Arguing as the proof of (i), we can deduce
that Fij € Fi(X), Y@, 7)) € {1,..,n> Conversely, Suppose that Fi; € #(X) and let L := (Li]-)lsi,js,q € Oy(X").
There exists Ly := (L?j)lg,]’Sn € O(X") such that LyL = I + K, where K € K(X"). We have

I+ F11L[1)1 0 .o 0

_ _ I9F I 0 0
Lo(L+F11) :I+K+L0P11 = . . . . + K.

IOFn - 0 1

Since I + F11L(1J1 € @y(X), then, by Proposition 2.2, Ly(L + f-:ll) € O)(X"). Thus L + f-:ll € @)(X") and therefore
F11 € F1(X").

3. The M-essential spectra of the 3 X 3 matrix operator L

The purpose of this section is to apply Theorem 2.4 to describe the M-essential spectra of the 3 X 3 matrix
operator L, closure of L that acts on the Banach space X> where M is a bounded operator formally defined
on the product space X> by a matrix

My My Mis
M=| My My My
Mz Ms Ms3
and Ly is given by:

Lo = .

A B C
D E F
G H K

Each of the entries operator acts on X and has its own domain.
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In what follows, we will assume that the following hypotheses:

(H1) The operator A is closed, densely defined linear operator on X with nonempty M;;-resolvent set
pmy (A)-

(Hz) The operator D (resp. G) verifies that D(A) C D(D) (resp. D(A) € D(G)) and for some (hence for all)
L € pmy, (A), the operator D(A — uMi1) ™! (resp. G(A — uM11)7}) is bounded.

Set

F1(u) = (D — pMa1)(A — uMyp) ™.
and

Fa(p) = (G — uMsz1)(A — uMyp) ™.

(H3) The operators B and C are densely defined on X and for some (hence for all) u € pp,, (A), the operator
(A — uMi1)™'B (resp. (A — uM11)7*C) is bounded on its domain.

Let

Gi(u) = (A = uM1)"Y(B — uMy»)
and
Ga(p) = (A — uMn) ™' (C — uMs3).

(Hy) The lineal D(B) N D(E) is dense in X, and for some (hence for all) 4 € pp,, (A), the operator Si(u) =
E - (D — uM2)(A — uMi1) "1 (B — uMyy) is closed.

To explain this, let A, u € py,, (A). We have:

S1(A) = S1() = (A = (M Ga(u) + Fi(A)Maz = Fy ()M G ())- (5)
Since the operator on the right-hand side is bounded on its domain, then the operator S;(u) is closed for all
U € pmy, (A) if it is closed for some u € p,, (A).

(Hs) D(C) c DO(F) and the operator F — D(A — uM;1)"'C is bounded on its domain for some (hence for all)
U € pmy, (A). We will suppose that there exist p € par,, (A) N pum,, (S1) and we will denote by:

Gs(u) = (S1(u) — uMp)H[(F — uMp3) — (D — uMpz1)(A — uMy1)7(C — uMy3)].

(Hg) The operator H satisfies that D(B) ¢ D(H), and for some (hence for all) u € pp,, (A) N par,(S1) the
operator H — G(A — uM11)7'B(S1(1) — tMa2;)~! is bounded. Set

F5(p) = [(H — uMa2) — (G — uMz1)(A — uMi1) ™ (B — uMi2)1(S1(w) — uMa) ™.
(H7) For the operator K we will assume that D(C) c D(K), and for some (hence for all) u € ppr,, (A) N pan, (S1)
the operator K — GG,(u)H — F»(u)BGs(p) is closable. Denote by S;(u) the operator:
Sa(u) = K = (G = uMy)Ga(u)| (H — M) = Fa(u)(B — i) | Gi(1).
and by Sy(u) its closure.

In the following theorem we establish the closedness of the operator L.
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Theorem 3.1. Let the conditions (H1) — (Hy) be satisfied. Then the operator Ly is closable if and only if Sy(u) is
closable in X, for some p1 € par, (A) N Py, (S1(1)). Moreover, the closure L of Ly can been written as follows:

L= uM - U(@)DW)W(y), (6)

where
I 0 0 I Gi(p) Gaw)

U =| B 1T 0 [, Wu)=|0 I G

Fp(u) Fs(u) I 0 0 I
and
UMy — A 0 0
D(u) = 0 uMazy — S1(u) 0
0 0 uMss = Sy(u)
Proof.

For u € pu,, (A) N pu,, (S1(w)), the operator Ly can be factorized in the form:

‘LLMH -A 0 0
Lo = uM - U(u) 0 Mo — S1(u) 0 W(uw). 7)
0 0 1Mz — Sa(p)

The results follows the fact that the operators U(u) and W(u) are bounded and boundedly invertible.
Remark 3.2. Let p € ppmy, (A) N pu, (S1(w)) and set A € C. While writing L — AM = L — uM + (A — p)M, we have

L= AM = UG D, ()W(w) — (1 ~ HM(@), )
where
A - AMn 0 0
Di(u) = 0 S1(y) — AMp 0
0 0 So(u) — AM33
and
0 M11G1(1) — M2 M11Go(u) — Mas
M(u) =| Fi(wM — My F1(p)M11G1 (1) F1()M11Ga(p) + Mo Gs(p) — Moz

Fo(u)My —Mszy  Fa(u)My1Gi(u) + F3(u)Mao — Msz  Fa(u)My1Ga(u) + F3 ()M Gz (1)

Now, we are ready to state and prove the main result of this section.

Theorem 3.3. Suppose that the assumptions (Hy) — (Hy) are satisfied.
(@) If, Vi # j, M;j € F(X) and if, for some p € puy, (A) N pay, (S1(w)), F(u) and G(u) are in F(X), Yk € {1,2,3},
then
OL’4,M(L) = O¢y,My; (A) U Oey,Mp (Sl([u)) U Oey,Ms3 (82(/'1))
and _
Ges,M(L) g GEs,Mll (A) U GEs,Mzz (Sl(”)) U 085,M33 (52(”))
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Moreover, if the sets “oe, m,, (A) and Co,, wm,, (S1(1)) are connected, then

Oé’s,M(L) = Oes,My; (A) ) Oes, My (Sl([u)) U Oes,M33 (§2(H))

If in addition, Co,, a1, (A), COes pt,, (S1(1)) are connected and p,,(S1(w)) # 0, then

Gﬁs,M(L) = Oeg, My (A) U O, My, (Sl(/”l)) U Oeq My (EZ(ILL))

(i) If, Vi # j, Mj; € Fi(X) and if, for some p € ppm,, (A) N par, (S1(1)), Fx(u) and Gi(u) are in F1(X), Yk € {1,2,3),
then

T1em(L) = Tronts; (A) U 01ty (S1(10)) U 1o atss (S (1))

(i1i) If Vi # j, Mij € F(X) and if for some u € pur,, (A) N pany, (S1(W)), Fr(p) and Gi(u) are in F(X), Yk € {1,2,3},
then

Tre (L) = Tre vy (A) U 0re My (S1(1)) U 0 vty (S2(1)-
To prove Theorem 3.3 we shall need to the following lemma:
Lemma 3.4. (i) Let p € ppy,, (A).
If Fi(u), Gi(u) and My are in F(X) then e, m,, (S1(1)) and oe, m,, (S1(1)) do not depend on .
(i) Let p € par, (A) N puy, (S1())-
If G1(p), Gs(u) and Ms; are in ¥ (X), then o¢, pm,, (m) and Oe; My, (m) do not depend on y.
Proof.

(i) Follows immediately from the equation (5).

(if) Let A, it € pam,, (A) N par, (S1(w))- Then

S2(A) = Sa(u) = (G = AM31)[Ga () — G2(A) = G1(w)G3(A) + G1(A) = G(u)]+
(H = AMz2)(G3() — G3(A)) + (A = w)(M31Ga(p) + M32Ga(u)
— M31G1(1)G3(w)).

Proof of Theorem 3.1.

(i) According to the hypotheses and applying Theorem 2.4, the second operator in the right hand side of
Eq. (8), M(u), is a Fredholm perturbation. Since U(u) and W(u) are boundlessly invertible, then

L-AM € O(X°) & Dy(u) € D(X%).
Moreover, we have
i(L = AM) = i(Dx(u)) = i(A — AM1) + i(S1(u) — AM22) +1(S2(p) — AM).
If i(A — AMu1) = i(S1(u) — AMa,) = i(Sa (i) — AMaz) = 0, then i(L — AM) = 0. Hence
Ges,M(L) € Gegpy (A) U G 1y (S1(1)) U G by (S2(10)-

Finally, the results of assertion (i) follow from Proposition 1.4

We can prove easily (i7) and (iii) by using the relation (8).



B. Abdelmoumen, S. Yengui / Filomat 34:4 (2020), 1187-1196 1196

Theorem 3.5. Suppose that the assumptions (Hy) — (Hy) are satisfied.
(i) If, for some 1 € pp,, (A) N Py, (S1(1)), Gr(p) € F+(X), Yk € {1, 2,3} and M(u) € F+(X), then

Oel/M(L) = O¢;, My (A) U Oe; M, (Sl(”)) U O, My (52(#))
(i) If, for some u € ppy, (A) N pan, (S1(1)), Gi(p) € F_(X), Yk € {1,2,3} and M(u) € F_(X), then
sz,M(L) = O¢,, My (A) U O¢y My, (Sl(['l)) U Oep,Mas (52(111))

(i) If, for some 41 € pasy (A) N paga(S1 (1), Gilp) € Fo(X) N F-(X), Vk € (1,2,3) and M() € F+(X) N F(X),
then

O-63,1\/1(14) = Oe3,My; (A) U Oe3,Mp (Sl(H)) ) Oes,Ms3 (EZ(H))U

Oey, My A)n [aeerzz(Sl(H)) N Tey Mz (EZ(H))] U Gel,Mzz(Sl(/J)) N [GCZerl A)yu 082,M33(§2(y))] U 0e Mz (52(”)) N
[Oé’z,Mn (A)v Oé’z,Mzz(Sl([J))]'

Proof.

The results follow immediately from (8).
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