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Abstract. In this paper, we define the quaternionic Fock spaces &, of entire slice hyperholomorphic
functions in a quaternionic unit ball B in H. We also study growth estimates and various results of entire

slice regular functions in these spaces. The work of this paper is motivated by the recent work of [5] and
[26].

1. Introduction

The notation of slice hyperholomorphicity is introduced in [15] in 2006 and till then a lot of works
have been done in this direction. Several function spaces like Hardy spaces, Bergman spaces, Bloch
spaces, Besov spaces, Dirichlet spaces, Pontryagin De Branges Rovnyak spaces, etc are studied in the
slice hyperholomorphic settings, see [5-12, 23, 26]. We refer to survey [14] and the book [13] for details
information and references for the systematic development of slice hyperholomorphic functions and their
applications. The Fock spaces in the slice hyperholomorphic settings were studied by D. Alpay, F. Colombo

and L. Sabadini, [7]. The Fock spaces are fundamental for their role in quantum mechanics, see [3, 9, 28]
and references therein. By symbol

H:{XO+X1i+X2j+X3k2xlE]RfOI‘OSlS3},

we denote the set of 4-dimensional non-commutative real algebra of quaternions generated by imaginary
units i, j, k such that
2= =k =-1ij=-ji=k jk=—kj=iki=-ik =]

The Euclidean norm of a quaternion g is given by

lgl = \ag = +fq =

3
lez, forx; e R,
1=0
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where g = Rel(q) — Im(q) = xo — (x1i + x2j + x3k), denote the congugate of . The multiplicative inverse of
non-zero quarternion q is given by W%

The set
S:{qe]I—I;q:xli+X2j+X3kandx%+X%+x§:1}

represents the two-dimensional unit sphere of purely imaginary quaternions. Any element I € § is such
that I = —1. This implies that the elements of S are imaginary units. The quaternion is considered as the
union of complex plane C; = R + RI (also called slices) each one is identified by an imaginary unit I € 5.
Let Q; = QN Cy, for some domain Q of H. For any quaternion q we can write

g = xo +x1i + x2] + x3k = xo + Im(q) = xo + [Im(q)ll; = x + yl,

Im
with I, = ﬂ if |Im(q)| # 0, otherwise we take arbitrary I in 5.

~ |Im(g)]
Here, we begin with some basic results in the quaternionic-valued slice regular functions.

Definition 1.1. [14, Definition 2.1.1] Let Q be a domain in H. A real differentiable function f : Q — H is said to
be the (left) slice regular or slice hyperholomorphic if for any I € S, f; is holomorphic in Yy, i.e:,

J J
(a—xo + Ia—y)f[(XO + yl) = 0,

where fr denote the restriction of f to Q. The class of slice regular function on C is denoted by SR(Q).
For slice regular functions, we have the following useful result.

Theorem 1.2. [16, Theorem 2.7] A function f : B — H is said to be slice regular if and only if it has a power series
of the form

Y 1 0"f(0
fg) = ;q”un, where a, = 8{( © .

converging uniformly on B.
Splitting Lemma gives the relation between classical holomorphy and slice regularity.

Lemma 1.3. [14, Definition 2.1.4] (Splitting Lemma) If f is a slice reqular function on the domain (), then for any
i, j € 5, with iLj there exists two holomorphic functions F, L : Qp — Cj such that

f1(z) = F(z) + L(z)] for any z = x + yL. (2)

Definition 1.4. [14, Definition 2.2.1] Let ) be an open set in H. We say Q is axially symmetric if for any
q = x + yl; € Qall the elements x + yl are contained in Q, for all I € $ and Q is said to be slice domain if Q N R is
non empty and Q N Cy is a domain in C; for all I € 5.

Theorem 1.5. [14, Theorem 2.2.4] (Representation Formula) Let f be a slice reqular function in the domain QO C H.
Then for any j € Sand forall z = x + yl € (),

fla yl) = 10+ D=y + (L= Ife+ yD)

Remark 1.6. Let I, | be orthogonal imaginary units in S and Q be an axially symmetric slice domain. Then the
Splitting Lemma and the Representation formula generate a class of operators on the slice reqular functions as follows:

Q1 : SR(Q) — hol(Qy) + hol(Q))]
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Qr:f fitfo]
Py = hol(Qy) + hol(Qp)] — SR(Q)

1
PI[fl(q) = Pilf1(x + yl;) = E[(l = LDf(x+yl)+ (1 + D) f(x — yD)].
Also,
Py o Qr = Isg) and Qr o Pr = Isroiy)+holy),
where 1 is an identity operator.

Since pointwise product of functions does not preserve slice regularity (see [13]) a new multiplication
operation for regular functions is defined. In the special case of power series, the regular product (or

*—product) of f(9) = Y.eo §"an and g(q) = Yo 9" bn is

f*9@) = Z q Zn: axby—.

n=0 k=0
The *—product is related to the standard pointwise product by the following formula.

Theorem 1.7. [8, Proposition 2.4] Let f,g be reqular functions on B. Then f x g(q) = 0 if f(g) = 0 and

F@9(f@qf(@) if f(q) # 0. The reciprocal f~* of a regular function f(q) = Yo q"an with respect to the
*—product is

0= 7

where f(q) = Yoo q"n is the regqular conjugate of f. The function f~* is reqular on B\ (9 € B|f * f°(q) = 0) and
f* f~* =1 there.

2. Fock spaces

In this section, we study some basic properties of Fock spaces in the slice hyperholomorphic settings.
Fock spaces of holomorphic functions are discussed in details in the book [28]. The slice hyperholomorphic
quaternionic Fock spaces are studied in [7]. Let dA be the normalized area measure on C. For 0 < p < oo,
the Fock space &),c is defined as the space of entire functions f : C — C such that

ap 2P o
- fc [f@)e? [ dA(z) < o,

where z € C and dA(z) = %dxdy, z=x+jy, x,y € R Let B(O,1) = B = {g = x + yl; : |g] < 1} be the
quaternionic unit ball centered at origin in IH and B N C; = B; denote unit disk in the complex plane C;
for I € 5. A function slice regular on the quaternionic space H is called all slice regular and have power
series representation of the form (1) converging everywhere in IH and uniformily on the compact subsets
of H. Let SR(H) denote the space of entire slice regular functions on the unit ball B. Here we begin with
the following definition.

Definition 2.1. For 0 < p < oo and I € S, the quaternionic right linear space of entire slice reqular functions f is
said to be the quaternionic slice regular Fock space on the unit ball B, if for any g € B

_sluspf |f(q)g z"lq\2| dA(g) < oo,
that is,
04 =42
¥, = f € SROH) : 5L sup f f@e? [ dA(q) < oo,
T Ies JB;



S. Kumar et al. / Filomat 34:4 (2020), 1197-1207 1200

where dA[(q) denote the normalized differential area in the complex plane C; such that area of By is equal to one and
is Mobius invariant measure on B with norm given by

a a2 |P g
Il = (—p Supf [f@e?" | dAiq): q=x+yl, € B
21 1es J,
By & ,, we denote the quaternionic right linear space of entire slice regular functions on BB such that

% fB | F(2)eF | dA(z) < oo

Furthermore, for each function f € %Z » we define

o —a |2
lIfllz =(2—pf [f@e? [ dAyz) :z=x+yle BNC
a,l TC ]BI

Remark 2.2. [26] Let I € S be such that JLI. Then there exist holomorphic functions fi, f» : By — Cp such that
f1=Qilf] = fi + f2] for some holomorphic map Qi f] in complex variable z € By. Then

i@e | < |f@eF | < 2mm0r-U| f@)eFFE| 4 2ma0p-11| £y (2)e F P
The condition f € ‘E;Z | is equivalent to fi and f, belonging to one dimensional complex Fock space.

Proposition 2.3. Suppose I € S and a > 0. Then f € ‘&Z v p > Lifand only if f € §. Moreover, the spaces
(i§a ol ”32,1) and (&, ”'”i}ﬁ ) have equivalent norms. More precisely, one has

Fo< < 2°|IfIF
A5, <AL, < 2UFIE, .

Proof. Let f € §". Since B; c B. Then by definition, ||f||p_p < ||f||pp which implies g c ‘&Z,I. Now, let f € ‘&Z,I.

. Im(q)
For g = x + yl; € Bwith I, = IIZ(Z)I

slice regular functions, we have

andz=x+yl e By and as |g| = |z|. Then by Representation Formula for

ap —a IZIZ

%ﬁywmwmw o ), —MIMﬂw
+ (1+1 1)( f(z)e TP AA(2)
omax{0,p—1} f |f(Z a|z|2) dA[(Z)

IN

, P e 4A (2
L pmaxlop- ”g jl; | |f@e? | dA(2).

Hence on taking supremum over all I € 5, we have

IA

”f”(;p omax{0,p-1} (f |f(z)e AIZIZ‘ dA(2) +f |f(2)e’7“|2|2|27 dAL(2)
@ IBI

p-1
zzwm

IN

This completes the proof. O

We can easily prove the following results.
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Proposition 2.4. Supposep > 1, > 0. If f € SR(H), then following statements are equivalent:
(@) f € B
() f € ‘&Zlfor somel € 5.

Proposition 2.5. LetI,] €S,p>1and a > 0.If f € SR(H), then f € ‘&Z,I ifand only if f € ‘E;ZJ.

Proposition 2.6. The space &, p > 1 and a > 0 is complete.

Proof. Let {fu}men be a Cauchy sequence in &. Then, forI €, { fm} is Cauchy sequence in TyZ ;- Let J € Sbe
such that JLI and let f,1, 2 be holomorphic functions such that f; = Qi[f] = fi,1 + fnz) Since {fu1}m=0
and {fu2}ms=0 are Cauchy sequences in the complex Fock space %Z C and the fact that i}Z C is complete, so

we conclude that, there exist functions f; € S-Z ¢, such that each f,,; — fias m — oo for [ =1,2. Now set
f = P[(fl + fz]) Therefore,

Wi = AIE, <Wfoa = Ay +llfuz2 = folll, =0 as m— oo,
Sl ¢ Sug,

aCy

This implies that f,, — f in ‘&Z ;- Hence f € ‘&Z ;and so f € §. Thus, the slice regular Fock space § is
complete. [

Remark 2.7. If we write
dhai(@) = S dA(g);q = x + vl € B,

then the slice regular Fock space has the structure of quaternionic Hilbert space with their inner product (., .), defined
by
L= [ ST
1

for f,g € &

Proposition 2.8. On the slice reqular Fock &, the function {.,.), is a quaternionic right linear inner product, i.e.,
forall f,g,h € ), and a € H, we have

(i) positivity: (f, fYa = 0and (f, f)o = 0ifand only if f = 0;
(it) quaternionic hermiticity: (f, g, = m;
(iii) right linearity: {f,ga + h)y = {f, §ad + {f, N)a.
Proposition 2.9. For p > 1 and a > 0, the space (8{;, (., )a) 1s quaternionic Hilbert space.

Proof. From Proposition 2.8, it follows that the function ., .), is a quaternionic right linear inner product
and Proposition 2.6 shows that the slice regular Fock space is complete. [J

Remark 2.10. By LP(IB;, dA, 1, H), we define the set of functions g : By — H such that

lg(@)PPdA 1 (w) < oo,
By

where dA, (W) = %e‘“|z|2dA1(w) for a > 0 is called the Gaussian probability measure. Note that for | € S with JLI
and g = g1 + g2 with g1, 9> : By = Cy, then g € LP(By, dA 1, H) if and only if g1, g» € LP(By, dA4 1, C)).
Clearly, ), is a closed subspace of LP(By, dA, 1, H). In complex analysis, the reproducing kernel of complex Fock space
for p = 2 is given by

Kg’ (z,w) = G 2w e QL
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This gives the motivation for the following definition.

Definition 2.11. For any q € B, the slice reqular exponential function is given by
-3

be a holomorphic function in variable z in the complex plane C;. Clearly, e is not slice regular

: |

n

Letezw=iz w”

n=0

in both variable. Setting e’ = Z 7w e
=0

in w, where % denote the slice regular product. By Representation Formula, we can obtain the extension of function
e toH, as

ext(e*™’) = %{(1 —I))e™ + (1 + I))e™} = €™,
where q € B and for some arbitrary w. For I € $ and o > 0, we define
Ba(q,w) = &™ foreach q € B
and is called slice reqular reproducing kernel of quaternionic Fock space.

Proposition 2.12. For any positive integer m, the set of the form e,,(q) = q™ \/% is orthonormal in the quaternionic
Fock space F%(B).

Proof. By Lemma 1.3, we can write f; = f; + f»] for some C;-valued holomorphic functions fj, f,. Now for
any m > 0, we have

<f/em>a <f1 +f2]rem>a = <flrem>a + <f2]/€m>a

Fi@endroi(z) + f F@endlar(2)].
B By

o)

In complex plane every power series of the form f(z) = Z Z*ayy, 1 = 1,2 converges uniformly on |z| < R,

k=0
for each z € B;.
Therefore, we obtain
enza = [ Y Fme@it@+ [ Y Foe it
|z|<R %=0 |z|<R k=0
= Yo [ Fe@itue 2 Y B XCUNCY
= [el<R [el<R
= I%im (a1,m + az,m]) z e,,,d)\a,l(z)

|z|<R
= lim dmf qkem(q)d/\a,l(q)r
R— o0 B,

where d,,, = a3, + ap,,J. But in complex Fock space &2(B;), each gy = 0 for [ = 1,2 implies d,, = 0 and so
f = 0. Thus the sequence {ey,},;>0 is complete in Fi(B). O

Proposition 2.13. Forsome I € S, the slice reqular orthogonal projection on B is defined by T, : L*(By, dA,;, H) —
&2. Then for all g, w € B, the integral representaion for T, is given by

Tusfl@) = 5 [ fButq we aw)

forall f € Ly(By, dA1, H), where By(q, w) = eD’(q ) = ¢} is reproducing kernel for F2.
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Proof. Given f € L2(By,dA, 1, H), let Qi f1 = fibeits restriction. Then we write Q[ f] = f1 + f2], where ] is an
element of 5 such that [ LI and f;, f, are complex valued holomorphic functions. Further, if for all z, w € BBy,
then the two functions KE'(Z, w) and B,(z, w) coincide and from the fact that f = (f, B,) (see [7, Theorem
3.10]), one conclude
Ta,If = (Ta If B ( )>a

= <Tal(fl +f2] >a

Tty Ky Ty fal K

= (fi, Ko + (S K Ve

= (fi+H) KM

= <f B >a

= f F(w)Ba(g, w)dAy 1 (w)

= = f f(w)Ba(g, w)e ™ dA (w).
This completes the proof. [J

In the next result, we give the growth rate estimation for entire slice regular functions in quaternionic Fock
space.

Theorem 2.14. Let 1 < p < oo and a > 0. Then for every f € Fh,

Im(q)

m(g)l

Proof. LetI, ] be the orthogonal imaginary units in two dimensional sphere $. If f € &, then by Proposition
24, f¢€ 2’;Z ,and [|f “8”1 < 1. Now, we can find two holomorphic functions f;, f, in ‘&Z c such that Q;[f] =

sup{lf(q)l ||f||~p < 1} < Zezlql where g = x + yly and 1, =

fi + f2]. By using [28, Theorem 2.7], each f; satisfies sup {I fi@)] |l flllg_pC < 1} = 57" Furthermore,
aCy

z€By

sup {If@: Iflly, < 1} < sup{IA@I: lfilly, <1} +sup{Ia@I: 1Ay, <1},

zeBy zeBy zeBy

Let g = x + yl; and z = x + yl. By using triangle inequality and Theorem 1.5, we have

f@I <1f@I+1fE)I.

On taking supremum over all 4 € B, we conclude that

sup {IF @1 Wflly <1} < sup {17 Iflly, <1} +sup {If@1: Ik, <1}
qeB zeB; zeB;

= 2e3FF

= 2031,

Hence the result. [
Corollary 2.15. Suppose p > 1and a > 0. If f is in F,(B), then

If@)| < 2718 fll», forall g = x + yI, € B.
Proof. Let f € & ;- Then by Remark 2.2 and [28, Corollary 2.8], we have

f@)F VAP +/EP)
G I 1

P
C[ wa CI

IAIE, ®)

IA

IA

P|Z|2

IA

2Pe
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Now, on applying Representation Formula, condition (3) and Remark 2.3, we obtain

Z av
f@F <2if@P <2 FFAL, <2 E £,
al Sa

0
We can easily prove the following result.
Proposition 2.16. Let 1 <p < coand r € (0,1). Then for any f € A
. _ 4 —

o)

where f,(q) = f(rq) = Z *q*ay, for all g € B.

k=0

Proof. Let f € . Then f € § . LetI,] € § be such that IL]. Let fi, f, be holomorphic functions in BB;. By
Remark 2.2, it follows that f, f> lie in the complex Fock space ‘&Z ¢, By applying corresponding results [28,

Proposition 2.9 (a)] to f1, f, in &, ¢,» We obatin 1irr11|| fir— fl||’%p =0,1=1,2.Since ||f II’%p <2|f ||’;,, , we have
. r— Saq; Sa Oal
iml|f, - fIf, < 2°lim|f, - fI,
Lim Ilf: f”?yﬂ < lim IIf: f”%—fu
< Pl — . —
< 2(lmlfi - filly, - limllfar - flly, )
= 0.

Hence lirrllllfr —fllg,, =0. O
r— a

Proposition 2.17. For 1 < p < oo, the slice reqular Fock space is the closure of the sequence {p,,} of quaternionic

polynomials of the form p,,(q) = Z qkﬁm,k, where B € H with norm ||.||3Z . In particular, the slice reqular Fock
k=0
space ", is separable.

Proof. Suppose f € &,. Then f € ?S‘Z 1 so that fi, fo € hol(By), where f;,1 = 1,2, is given by Splitting Lemma
1.3. Let Bx = Cuk + Vmk), where Cpx, Vmi € Ci. By denseness property of polynomials in complex Fock

space, we can choose polynomials of the form py ,,(z) = Z ZCup and pyu(z) = Z 2. Applying [28,
k=0 k=0
Proposition 2.9 (b)] to each f;, pim, I = 1,2, we see ||pym — ﬁll({?nC — 0 as m — oco. Thus, we have

”f_pmugi < 2p||f—Pm||ng
= 2I(A+ o)) - (pim + Pz,m])llgr;cl
< 2fi- Pl,mllg{jcl = 27| f _pZ,m“giCI — 0asm — oo.

Hence, &, is separable. [

o . u
Proposition 2.18. For 1 < p < u < oo with % +1 =1, § c % Moreover ||f||§‘5; < 2“+1E||f||gﬁ.

Proof. Let f € &,. For any I,] € S with IL]. Then Lemma 1.3, guarantees the existence of holomorphic
functions fi, f2 : BN C; — C; such that Qi[f](z) = fi(z) + f2(z)], for all z = x + yI € B;. From Remark
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2.2, it follows that fi, f, lie in the complex Fock space %Z o Therefore, from [28, Theorem 2.10], we have
1Al < 2All%, forl=1,2. Furthermore,
0 a,Cp P {?a,CI

= et aae < 215 [ A@e a
v 2 f}B | |2@e ] dA(2)
= 27Nl + 1Al )
< 2“—1;’—)(” filly +IEI, )
< 2“%||f||gﬁj. 4)
Now, Theorem 1.5 follows |f(q)| < |f(z)| +|f(2)I, where g = x + yI; € Bwith I, = % and z = x + yl € B; for

all x, y € R and by equation (4), we conclude that

IA

zf [f@)e " dAx(g) zf |f@e® " dAi(z)
B; B,
au N a2 |4 _

+ Efﬁ)f(z)eﬂw dA(Z)
au —a 2 |U

25— fB | [f@e | dAiz)
ut1 ¥ u
21 Al

a,l

u
2u+1 e u
Sl

IA

IA

IA

Hence the result. [J

n

Proposition 2.19. Let 1 < p < oo. Then for all q,w € 1B, the function f(q) = P; Z ePTng,,, is dense in , for some
m=0
positive parameters o and f3.

Proof. If f € &,, then f € & - Let fi, fo € hol(B) given as in Lemma 1.3 such that Qi[f] = fi + f2]. Therefore

from [28, Lemma 2.11], each functions of the form f(z) = Z eP1nc,, and fo(z) = Z ePond, is dense on
m=0 m=0
%Z/CI on B;. Consequently,

Q1) = fi@) + @] = Y ey + ) ¥,
m=0

m=0
This implies that for each g, w € B, we have

n

Y e (e + d))

m=0

f=ProQilf]l =P =P

n

m=0

where the sequence a,, = ¢, + d,,J lie in IP(H). Thus, the density of f; and f, in C&Z C implies f is dense in
8”; ;- Therefore, from Proposition 2.4, we conclude that the set of functions f is dense . O
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Proposition 2.20. Let 0 < p < oo and for some | € S. Then f € §h(B) if and only if there exists H-valued Borel
measure i such that

f(g) = f}B 51 444(C) for each C,q € B and {|u|(Gy + w) : w € H} € P(H). (5)

Proof. Suppose f € h(B) implies f € 8’21(181)' Let ] € Sbe such that J LI. Then f decomposes as f; = fi + f2],
where fi, f» : BN C; — C; with JLI. Clearly the holomorphic functions f;, f, lie in the complex Fock space
8{1 ¢, on B;. Further, for each f; € “&Z ¢ (By), I = 1,2 (see[28, p 91]), there exist complex positive Borel measure

p1 and po on BBy such that fi(z) = f e"‘iz_%lqzdy;(C), foreachz = x + yl € Byand {|ul(G, + w) : w € rR?*} €
B
IP(C;). Now if we decompose i = y11+ 2], then, we can write

f U315 g, (0) + f R T (8
By

B;

f@) = Qilfi + £1(9)

_ f R Ma)

By

Conversely, assume the condition (5) holds. So we can find complex valued Borel measure p; and p; in C;
such that u = py + pyJ. Therefore, for each z € IB;

P gy () + f AL TN (8))

B,

A@ + £ = Qlfl(z) = f

By

Therefore, fi(z) = f 51 41,(0),1 = 1,2 and as {|ul(G, + w) : w € H} € IP(H), it follows that {|u|(G, + w) :

B,

w € rR?} € IP(C)). This implies f; and f, belong to complex Fock space ?gf; ¢,(Br) which is equivalent to
fe i}zlandhencefe g inB. O
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