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Abstract.
The main purpose of this paper is to study questions concerning representations of Clifford valued

functions by the product bases of Clifford polynomials. By the way we generalize several results from
complex analysis to the setting of Clifford analysis.

1. Introduction

Hyper-complex function theory is one of the possible generalizations of the theory of holomorphic
functions of one complex variable taking advantage of Clifford algebras and provides the fundamentals of
Clifford analysis as a refinement of harmonic analysis in higher dimensions which have many applications
in mathematical physics. In the mid of 1980′s, it became clear that Clifford analysis provided a natural
framework for generalizing a lot of results from complex analysis in the plane to the higher dimensional
case (see [11, 12]).

With this in hand, an extension of the theory of bases (basic sets) of polynomials in one complex variable,
as introduced by J.M. Whittaker and B. Cannon (see [31]) to the setting of Clifford analysis has been given in
(see [2–6, 9, 10, 13, 32, 33]), where an important subclass of the Clifford regular functions were considered,
for which several results on their representations in closed ball were obtained.

From this starting point, many results on the polynomial bases in the complex case of one complex
variable were refined and generalized to the Clifford setting (see [1–9, 27]). In this line of research in
Clifford setting, one of the interesting problem has been investigated by Zayed et al. [32] where the
authors explored the effectiveness of the hypercomplex derivative and primitive basic sets associated with
the previously mentioned polynomials. Recently, these polynomials were used to prove a counterpart
of Hadamard’s three-hyperballs theorem within Clifford analysis and to establish an overconvergence
property of a special monogenic simple series (see [9]). As an application of this overconvergence property
on generalized monogenic Bessel polynomials, we refer to [1] .

The aim of this contribution is to study questions concerning representations of special monogenic
functions by the product bases of polynomials. We work with the field Am of the real 2m-dimensional
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Clifford algebra, where it is a real algebra freely generated by the standard basis e0, e1, e2, . . . , em in Rm+1

subject to the conditions e0 = 1 and e jek + eke j = −2δ jk for 1 ≤ j, k ≤ m (we refer to [8], [9] for the basic facts
aboutAm). Note that e.g. A0 is the field of real numbers,A1 is the field of complex numbers andA2 = H
the quaternionic skew field, respectively.

We embed canonically Rm+1 inAm. For x ∈ Am, Rex the real part of x, will stand for the e0-component
of x and Imx = x − (Rex)e0.

We also equip Am with the Euclidean norm |x|2 = Re(xx) where the conjugation is the unique linear
morphism ofAm for which e0 = e0, e j = −e j for 1 ≤ j ≤ m and xy = y.x for all x, y ∈ Am.

As Am is isomorphic to R2m
we may provide it with the R2m

-norm |a| and one sees easily that for any
a, b ∈ Am, |a.b| ≤ 2

m
2 |a| . |b|, where a =

∑
A⊆M aAeA and M stands for {1, 2, ...,m}.

Suggested by the case m = 1, call aAm-valued function f inRm+1 Clifford analytic (monogenic), provided
it is annihilated by the generalized Cauchy-Riemann operator

D =

m∑
j=0

e j(
∂
∂x j

), i.e. D f = 0.

The right Am-module Am[x] defined by Am[x] =spanAm {zn(x) : n ∈ N} is called the space of special
monogenic polynomials, whereAm is the Clifford algebra and x is the Clifford variable. zn(x) is defined by
(see [2])

zn(x) =
∑

i+ j=n

( m−1
2 )i( m+1

2 ) j

i! j!
xix j

where for b ∈ R, (b)` stands for b(b + 1)...(b + ` − 1), x is the conjugate of x, x ∈ Rm+1, Rm+1 is identified with
a subset ofAm.

If Pn(x) is homogeneous special monogenic polynomial of degree n in x, then (see. [2]) Pn(x) = zn(x).α,
α is some constant inAm and

sup
|x|=R
|zn(x)| =

(
m + n − 1

n

)
Rn =

(m)n

n!
Rn

where

(m)n

n!
= (m + n − 1)!/n!(m − 1)!

Definition 1.1. (Special monogenic function) Let Ω be a connected open subset of Rm+1 containing 0, then a
monogenic function f in Ω is said to be special monogenic in Ω iff its Taylor series near zero (which is known to exist)
has the form f (x) =

∑
∞

n=0 zn(x)cn, cn ∈ Am. A function f is said to be special monogenic on B(R) if it is special
monogenic on some connected open neighborhood Ω f of B(R).

The fundamental references for special monogenic functions are [17, 28].

Definition 1.2. A set β = {Pk(x) : k ∈ N} of special monogenic polynomials is called basic if and only if it is a base
for the spaceAm[x] of special monogenic polynomials, in the sense of Hamel basis.

Suppose that Pn(x) =
∑
∞

j=0 z j(x)Pnj, Pnj ∈ Am. The base {Pn(x)} is said to be simple if Pn(x) has degree
n, for all n ∈N, and a simple base is called simple monic if Pnn = 1 for every n ∈N. The matrix P = (Pnj) is
called the matrix of Clifford coefficients of the base {Pn(x)}.

From the definition of Pn(x), we shall have the zn(x) representation in the form

zn(x) =
∑

Pi(x)πni, πni ∈ Am (1)
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where the matrix Π = (πni) is said to be the matrix of operators of {Pn(x)}.
Let f (x) be special monogenic function as defined above, then there is formally an associated basic series

given by (see [2])

∞∑
k=0

Pk(x)

 ∞∑
n=0

πnkck

 (2)

when this associated basic series (2) converges normally to f (x) in B(R), then it is said that the basic series
represents f (x) in B(R).

A base {Pn(x)} is said to be effective if for every special monogenic function f , defined in a closed
neighborhood of zero B(R) of the radius R > 0, the series (2) converges normally to f in B(R).

Write

λn(x) =

∞∑
k=0

sup
|x|=R
|Pk(x)πnk| =

∑
k

‖Pk(x)πnk‖R


and

λ(R) = lim sup
n→∞

(λn(R))
1
n

The base {Pn(x)} is called effective in B(R) iff λ(R) = R (see [2], Theorem 1).
The order ω and type γ of a Cannon base have been adapted to the Clifford case and introduced in [2]

as follows:

ω = lim
R→∞

lim sup
n→∞

logλn(R)
n log n

.

If 0 < ω < ∞, the type is

γ = lim
R→∞

e
ω

lim sup
n→∞

[λn(R)]
1

nω

n

If
∞∑
0

zn(x)cn is special monogenic on all of Rm+1, then its ”order” is defined to be

lim sup
n→∞

(n log n)/ log(1/ |cn|), (c.f. [2]).

It has been shown in [2, 3] that a base {Pn(x)} of order ω will represent in any closed ball B(R) every entire
special monogenic function of order less than 1

ω .

Definition 1.3. (The product base) If Q and P are the matrices of Clifford coefficients of the respective bases {Qn(x)}
and {Pn(x)}, then one can show that the matrix QP is the matrix of Clifford coefficients of a base {Un(x)}, given by
Un(x) =

∑
∞

j=0 Q j(x)Pnj, Pnj ∈ Am. The base {Un(x)} is said to be the product base of the bases {Qn(x)} and {Pn(x)} in
the given order.

In analogue with the complex case, an important question arises in the theory of bases in Clifford
analysis that is: when the product base of special monogenic polynomials is effective?

This question is partially answered in ([5, 6]) for the product base, under some restrictive conditions,
that is for the case of simple bases.

It has been shown in [5] that in general the product of two effective bases need not be effective.
Other possibilities, for effectiveness of the product base when each of its factors is effective, that its

product base is not effective in some closed ball (see [5]).
Besides, if each of the factors of the product base is not effective in a closed ball B(R), is the product base

{Un(x)} not effective there either? The answer is negative since we can take {Pn(x)} as the inverse base of
{Qn(x)} to yield for the product base {Un(x)}, the unit base {zn(x)}which is everywhere effective.
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Remark 1.1. Several open questions concerning the convergence properties of the product bases of special monogenic
polynomials have not yet been investigated.

(I) Concerning effectiveness for functions of bounded radii of convergence. The first trial to obtain, the
effectiveness of the product base {Un(x)} of special monogenic polynomial in the closed ball B̄(R), is due to
Abul-Ez [5] who started with the following special cases:

Result(1): Let {Pn(x)} and {Qn(x)} be simple monic bases of special monogenic polynomials both effective
in B̄(R). Then the product base {Un(x)} = {Qn(x)}{Pn(x)} is effective in B̄(R).

Result(2): If {Pn(x)} and {Qn(x)} are such that {Pn(x)} is simple and {Qn(x)} is simple monic and both are
effective in B̄(R) then {Un(x)} = {Qn(x)}{Pn(x)}is effective in B̄(R).

In order to obtain the effectiveness property of the product of the two non-monic simple bases, it is
necessary to impose some additional conditions on {Pn(x)} and {Qn(x)} and in this respect Abul-Ez [5] have
obtained the following result.

Result(3): Let {Pn(x)} and {Qn(x)} be simple bases of special monogenic polynomials and suppose that
{Qn(x)} is effective in B̄(R) and satisfying

lim
n→∞

∣∣∣qnn

∣∣∣ 1
n = H, 0 < H < ∞

Then the product base {Un(x)} is effective in B̄(R), if and only if, the base {Pn(x)} in effective in {B̄(HR)}.
(II) Concerning effectiveness for entire functions in terms of the mode of increase, we have the following

interesting result due to Abul-Ez [6]. For which he had obtained the representation of Clifford valued
function by the product base of special monogenic polynomials.

Result(4): Let {Pn(x)} and {Qn(x)} be simple bases of special monogenic polynomials of order ω1 and ω2
respectively, and suppose that f (x) is an entire special monogenic function of order < 1

ω1+2ω2
. If the base

{Qn(x)} is monic, then the product base {Un(x)} = {Qn(x)}{Pn(x)} represents f (x) in any closed ball B̄(R).
The above result (4) gives us an estimation of an upper bound of the order of the product base of special

monogenic polynomials, stated in the following result [6].
Result(5): Let {Qn(x)} and {Pn(x)} be simple bases of special monogenic polynomials of orders ω1 and

ω2 respectively. If {Qn(x)}monic base, then the order ωU of the product set {Un(x)} = {Qn(x)}{Pn(x)} does not
exceed ω1 + 2ω2.

As it is interesting to know the value of the lower bound of the order ωU of the product base {Un(x)}, it
is known that ωU ≥ 0, but the value of the lower bound is not always zero as the following results show [6].

Result(6): If 0 ≤ ω1 ≤
1
2ω2, then the order ωU of the product base {Un(x)} = {Qn(x)}{Pn(x)} of the two

simple monic bases {Qn(x)} and {Pn(x)} is such that,

(
1
2
ω2 − ω1) ≤ ωU ≤ (ω1 + 2ω2)

Result(7): If 0 ≤ ω2 ≤
1
2ω1, then the order ωU of the product base {Un(x)} = {Qn(x)}{Pn(x)}, satisfies the

relation

(ω1 − 2ω2) ≤ ωU ≤ (ω1 + 2ω2)

provided that {Qn(x)} is a monic base.

Corollary 1.1. If 1
2ω2 ≤ ω1 ≤ 2ω2, then ωU may be equal to zero.

2. Aim of the work

Now we are ready to carry out our goal in this paper that is to obtain generalizations of the previous
results and by the way to get some extensions of some results in complex case as given in ([14–16, 18–26, 29]),
we start with:
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3. Effectiveness of the product base for functions with bounded radii of convergence

The main aim of this section is to generalize the original results of Nassif ([21–24]), and Tantawi
([29, 30]). This generalizes also to the Clifford setting the analogue results in the complex case given by
Mikhail ([18, 19]). We start with the following result (with Newns condition [26]).

Theorem 3.1. Let {Pn(x)} and {Qn(x)} be two bases of special monogenic polynomials such that {Pn(x)} be effective
in B̄(aR+) and {Qn(x)} effective in B̄(R+). If

µ(R+) ≤ aR, a is a positive constant (3)

ν(ρ) > aR , for all ρ > R (4)

µ(R) = lim sup
n→∞

{Bn(R)
1
n } and ν(R) = lim inf

n→∞
{Bn(R)

1
n }.

Then the product base {Un(x)} is effective in B̄(R+).

Proof. We shall take R5 any number > R and then choose the intervening R′s,R < R1 < R2 < R3 < R4 < R5 to
suit their requirements. We also associate the expressions Bn(R), λni, θn(R), σ(R) with the base {Qn(x)} and
the expressions Cn(R), δni,Φn(R), τ(R) with the base {Un(x)}, then from (4) we have

(aR4)n < k1Bn(R5) for all n, k1 is constant. (5)

Since {Pn(x)} is effective in B(aR+), κ(aR+) = aR.
Hence, κ(aR3) < aR4. So that

Fn(aR3) < k2(aR4)n, ∀n, k2 is constant. (6)

Now

Φn(R) = sup
|x|=R

∣∣∣Ui(x)δnj + · · · + Uk(x)
∣∣∣

= sup
|x|=R

∣∣∣∣∣∣∣∣
k∑

i= j

Ui(x){
∑

t

πtiλnt}

∣∣∣∣∣∣∣∣
= sup

|x|=R

∣∣∣∣∣∣∣∑t

{U j(x)πt j + · · · + Uk(x)πtk}λnt

∣∣∣∣∣∣∣
= sup

|x|=R

∣∣∣∣∣∣∣∑i

{U j(x)πi j + · · · + Uk(x)πik}λni

∣∣∣∣∣∣∣ .
Thus

Φn(R) ≤ 2
m
2

∑
i

sup
|x|=R

∣∣∣U j(x)πi j + · · · + Uk(x)πik

∣∣∣ |λni| . (7)

We now write

fi(x) = P j(x)πi j + · · · + Pk(x)πik =
∑

t

zt(x) fit. (8)

Then from the relation Un(x) =
∑

i Qi(x)pni =
∑

i
∑

j z j(x)qi jpni, we have

1i(x) = U j(x)πi j + · · · + Uk(x)πik =
∑

t

Qt(x) fit. (9)
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Hence, writing Li(R) = sup
|x|=R

∣∣∣ fi(x)
∣∣∣, Ni(R) = sup

|x|=R

∣∣∣1i(x)
∣∣∣. We have

Li(R) ≤ Fi(R). (10)

Then from (8) and (10) and relying on Cauchy’s inequality [3] for the special monogenic polynomials in (8)
we get

∣∣∣ fit∣∣∣ ≤ √
n!

(m)n


sup
|x|=aR3

∣∣∣ fi(x)
∣∣∣

(aR3)t

 ≤
√

n!
(m)n

(
Li(aR3)
(aR3)t

)

=

√
n!

(m)n

(
Fi(aR3)
(aR3)t

)
Hence from (9) and (3) one can deduce

Ni(R1) = sup
|x|=R1

∣∣∣1i(x)
∣∣∣ = sup

|x|=R1

∣∣∣∣∣∣∣∑t

Qt(x) fit

∣∣∣∣∣∣∣
≤ 2

m
2

∑
sup
|x|=R1

|Qt(x)|
∣∣∣ fit∣∣∣

≤ 2
m
2

∑
t

Bt(R1)

√
n!

(m)n

(
F(aR3)
(aR3)t

)
< 2

m
2

∑
t

k3(aR2)t

√
n!

(m)n

(
Fi(aR3)
(aR3)t

)
= 2

m
2

√
n!

(m)n
k3Fi(aR3)

∑
t

(aR2

aR3

)t

.

Thus Ni(R1) < k4Fi(aR3). Now (5), (6) and (7) lead to

Φn(R1) < 2
m
2 k4

∑
i

Fi(aR3) |λni|

< 2
m
2 k4

∑
i

k2(aR4)i
|λni|

< 2
m
2 k4k2

∑
i

k1Bi(R5) |λni|

< k5Nn
∞

max
i=0

Bi(R5) |λni|

< k5Nnθn(R5)

Therefore, τ(R1) ≤ σ(R5). Making R5 → R+, R1 → R+, we get τ(R+) ≤ σ(R+). Since {Qn(x)} is effective in
B(R+), σ(R+) = R. Hence τ(R+) = R. The Theorem is therefore established.

Theorem 3.2. Let {Pn(x)} be a base effective in the open ball B(aR). Let {Qn(x)} be a base effective in the open ball
B(R) and such that

µ(r) < aR, ∀r < R (11)

ν(R−) ≥ aR. (12)

Then the product base {Un(x)} is effective in B(R).

Proof. Similarly, the proof of theorem 3.2 will be very parallel to the proof of theorem 3.1.
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4. Order’s bounds of the product base

The upper and lower bounds of the order of the product base, in terms of the orders of the factor bases
are given by the following theorems.

Theorem 4.1. Let {Pn(x)} and {Qn(x)} be two simple bases of special monogenic polynomials, of order ωP and ωQ
respectively. Also let

log
∣∣∣qnn

∣∣∣
n log n

→ 0 as n→∞.

Then the product base {Un(x)} = {Qn(x)}{Pn(x)} is of order ωU ≤ ωP + 2ωQ.

Theorem 4.2. Let {Pn(x)} and {Qn(x)} be two simple bases of special monogenic polynomials, of order ωP and ωQ
respectively, where

ωP > 2ωQ ≥ 0.

Also, let

log
∣∣∣qnn

∣∣∣
n log n

→ 0 as n→∞.

Then the product base {Un(x)} = {Qn(x)}{Pn(x)} is of order

ωU ≥ ωP − 2ωQ

Theorem 4.3. Let {Pn(x)} and {Qn(x)} be two simple bases of special monogenic polynomials, of orders ωP and ωQ
respectively where

ωQ > 2ωP ≥ 0.

Also, let

log
∣∣∣pnn

∣∣∣
n log n

→ 0,
log

∣∣∣qnn

∣∣∣
n log n

→ 0 as n→∞.

Then the product base {Un(x)} = {Qn(x)}{Pn(x)} is of order ωU ≥
1
2ωQ − ωP.

Remark 4.1.

(1) Theorem 4.1 generalizes a result of Nassif [21] to the Clifford setting.
(2) The original forms of theorems 4.2 and 4.3 in complex analysis are due to Ewida [14]. Our results here (theorems

4.2 and 4.3) are not only generalizations of those of Ewida [14], but also are extension to more general classes
of bases of special monogenic polynomials.

(3) Also in complex case, Mikhail [19] has proved (using his own method) the analogue of theorems 4.1, 4.2, and 4.3
considering the condition qnn = o(n}), } finite, in theorems 4.1, 4.2, and 4.3, and the corresponding condition
pnn = o(n}) in theorem 4.3.

(4) We shall improve these conditions given in the above statements of (3) by introducing more general ones. With
this in hand, and using the analogue of Mikhail′s method in complex case, we shall investigate in the present
work, the extent of generalization to Clifford case, of the results in ([14, 19, 21]), as stated in theorems 4.1 4.2,
and 4.3.

Now, In order to prove these results (theorems 4.1, 4.2, and 4.3), an interesting lemma is given first
which in fact is the generalization of the one given by Mikhail [18].
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Lemma 4.1. Let {Pn(x)} and {Qn(x)}be two bases of special monogenic polynomials for which

lim sup
n→∞

D(n)
n

=
1

2m DP,
1

2m DQ respectively.

Then the product base {Un(x)} = {Qn(x)}{Pn(x)} is of order

ωU ≤ 2mlim sup
n→∞

log max
k
|λnk|

n log n
+ ωpDQ + DpDQlim sup

n→∞

log max
j

∣∣∣qnj

∣∣∣
n log n

.

Proof. For

ωU =

lim sup
n→∞

log max
i, j
|δni|

∣∣∣ui j

∣∣∣
n log n

=

lim sup
n→∞

max |
∑
πkiλnk|

∣∣∣∑ qt jpit

∣∣∣
n log n

That k ranges from 0 to DQ(n) at most, and t ranges from 0 to Dp(k) at most.

ωU ≤ 2mlim sup
n→∞

log{[DQ(n) + 1][DP(DQ(n) + 1) + 1]}max
i, j
|πki|

∣∣∣pit

∣∣∣ · |λnk|
∣∣∣qt j

∣∣∣
n log n

Since

lim sup
n→∞

k
n
≤ lim sup

n→∞

DQ(n)
n

=
1

2m DQ

and

lim sup
n→∞

t
n
≤ lim sup

n→∞

Dp(k)
n

≤ lim sup
n→∞

(
Dp(DQ(n))

DQ(n)
·

DQ(n)
n

)

≤
1

2m Dp ·
1

2m DQ,

it follows that

ωU ≤ 2mlim sup
n→∞

log[DQ(n) + 1][Dp(DQ(n) + 1)]
n log n

+2mlim sup
n→∞

log max
k
|λnk|

n log n
(1stterm)

+2mlim sup
n→∞

log max
i

∣∣∣pit

∣∣∣ |πki|

n log n
(2ndterm)

+2mlim sup
n→∞

log max
j

∣∣∣qt j

∣∣∣
n log n

(3rdterm)
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We note that:
The 2nd term

2mlim sup
n→∞

log max
i, j

∣∣∣pit

∣∣∣ |πki|

k log k
k log k
n log n

≤ 2mωp
DQ

2m = ωPDQ

The 3rd term

2mlim sup
n→∞

log max
j

∣∣∣qt j

∣∣∣
t log t

·
t log t
n log n

≤ 2m DP

2m ·
DQ

2m lim sup
n→∞

log max
j

∣∣∣qnj

∣∣∣
t log t

≤ DPDQlim sup
n→∞

log max
∣∣∣qnj

∣∣∣
n log n

Then

ωU ≤ 2mlim sup
n→∞

log max
k
|λnk|

n log n
+ ωPDQ + DPDQlim sup

n→∞

log max
j

∣∣∣qnj

∣∣∣
n log n

Hence the required result is already proved.
Proof of theorems 4.1, 4.2, and 4.3.
From the above lemma we can easily deduce the above three results (theorems 4.1 4.2, and 4.3) as

follows.
Since the bases considered are simple ones then

DP = DQ = 1

Hence by the above lemma we have:

ωU ≤ 2mlim sup
n→∞

log max
k
|λnk|

n log n
+ ωP + lim sup

n→∞

log max
k

∣∣∣qnj

∣∣∣
n log n

(13)

But

2mlim sup
n→∞

log max
k
|λnk|

n log n
≤ 2mlim sup

n→∞

log max
k(n)

∣∣∣λn,k(n)

∣∣∣
n log n

= 2mlim sup
n→∞

log max
∣∣∣λn,DQ(n)

∣∣∣ ∣∣∣qnn

∣∣∣
DQ(n) log DQ(n)

·
DQ(n) log DQ(n)

n log n

≤ 2mωQ
DQ

2m = ωQDQ (14)

Since

log
∣∣∣qnn

∣∣∣
n log n

→ 0 as n→∞, k(n) ≤ n

It follows that

lim sup
n→∞

log max
j

∣∣∣qnj

∣∣∣
n log n

≤ lim sup
n→∞

log
∣∣∣qn, j(n)

∣∣∣
n log n

= lim sup
n→∞

log |λnn|
∣∣∣qn, j(n)

∣∣∣
n log n

= ωQ.
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Since log |λnn| = − log
∣∣∣qnn

∣∣∣ and the base {Qn(x)} being a simple monic, it follows that

lim sup
n→∞

log max
∣∣∣qnj

∣∣∣
n log n

≤ ωQ. (15)

Substituting from (14) and (15) into (13) we obtain

ωU ≤ ωP + 2ωQ.

Writing {Pn(x)} = {Q̄n(x)}{Un(x)}, where {Q̄n(x)} is the inverse base of {Qn(x)}, we have

ωP ≤ lim sup
n→∞

log max
∣∣∣qnk

∣∣∣
n log n

+ ωU + lim sup
n→∞

log max
∣∣∣λnj

∣∣∣
n log n

= lim sup
n→∞

log |λnn|
∣∣∣qn,k(n)

∣∣∣
n log n

+ ωU + lim sup
n→∞

log
∣∣∣λn, j(n)

∣∣∣ ∣∣∣q j(n), j(n)

∣∣∣
n log n

Hence ωU ≥ ωP − 2ωQ. Writing{Qn(x)} = {Un(x)}{P̄n(x)}, theorem 4.1 gives

ωQ ≤ ω̄Q + 2ωU.

But by theorem (2) of [8] we have ω̄P ≤ 2ωP. Therefore ωQ ≤ 2ωP + 2ωU and then ωU ≥
1
2ωQ − ωP.

We note that the upper and lower bounds of the orderωU, given in the above theorems. are all attainable.
These facts are illustrated by the following two examples.

Example 4.1. Let

Pn(x) =

1 + nnzn−1(x) + zn(x) if n is odd
zn(x) if n is even

and

Qn(x) =


zn(x) if n is odd
1 + n3nzn−1(x) + zn(x) if n is even
1 if n = 0

It is easy to see that

Un(x) =

1 + nn + nn(n − 1)3(n−1)zn−2(x) + nnzn−1(x) + zn(x) if n is odd
1 + n3nzn−1(x) + zn(x) if n is even

We easily verify that ωP = 1, ωQ = 3, ωU = 7. Thus ωU = ωP + 2ωQ. It is also clear that ω̄Q = 3. Writing
{Pn(x)} = {Un(x)}{Q̄n(x)}, and noticing that

ωP = 1 = ωU − 2ω̄Q

gives the fact that the lower bound in theorem 4.2 is attainable.

Example 4.2. Suppose that

Pn(x) =

zn(x) − nω1nzn−1(x) + nnω1 zn−2(x) if n is even
zn(x) − zn−1(x) if n is odd
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and

Qn(x) =


zn(x) + nnω1 zn−1(x) + nnω1 (n − 2)(n−2)( ω2

2 −ω1)zn−1(x) if n is even
zn(x) + {(n − 1)(n−1)( ω2

2 −ω1) + 1}zn−1(x) + (n − 1)(n−1)ω1 zn−2(x)
+(n − 1)(n−1)ω1 (n − 3)(n−3)( ω2

2 −ω1)zn−3(x) if n is odd

Then

Un(x) =

zn(x) if n is even

n(x) + (n − 1)(n−1)( ω2
2 −ω1)zn−1(x) if n is odd

The bases {Pn(x)}, {Qn(x)} and {Un(x)} are respectively of orders ω1, ω2 and −ω1.

5. Growth order and type of the product base

The main result is the following:

Theorem 5.1. Let {Pn(x)} be a base of special monogenic polynomials of order F and type Γ. Let {Qn(x)} be a simple
base satisfying

0 < a ≤ lim inf
n→∞

∣∣∣qnn

∣∣∣ 1
n
≤ lim sup

n→∞

∣∣∣qnn

∣∣∣ 1
n
≤ b < ∞ (16)

and such that

θ(R)
R
→ c, as R→∞,

where θ(R) corresponds to λ(R). Then the product base {Un(x)} is of increase less than order F, type Γ( c
a )

1
F .

Proof. From (16) we get

(a1R)n < k1Bn(R), a1 < a, for all n, and all R. (17)

Bn(R) < k2(b1R)n, b1 > b, for all n, and all R. (18)

Also from the definition of the order and type, we have for a general base the number F = limR→∞ F(R) is
defined as the order of the base {Pn(x)}, (see [3]), where

F(R) = lim sup
n→∞

log Fn(R)
n log n

is called the order on the ball B̄(R).
When 0 < F < ∞ the base is also said to be of type Γ, where.

Γ = lim
R→∞

Γ(R) = lim
n→∞

e
F

lim sup
n→∞

{Fn(R)}
1

nF

n
.

Then we get

Fn(R) < k3(
nΓ1F

e
)nF, Γ1 > Γ ∀n and R. (19)
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Hence as in the proof of theorem 3.1 we have

Ni(R) ≤ 2
m
2

∑
t

Bt(R)

√
n!

(m)n
(
Fi(b2R)
(b2R)t )

< 2
m
2

∑
t

k2(b1R)t

√
n!

(m)n
(
Fi(b2R)
(b2R)t )

Taking b2 > b1 then

Ni(R) < k4Fi(b2R) (20)

Hence, from (7), (19), and (20) we obtain

Φn(R) < 2
m
2 k4

∑
Fi(b2R) |λni|

< 2
m
2 k4

∑
i

k3(
iΓ1F

e
)iF
|λni|

< 2
m
2 k3k4

∑
i

(
iΓ1F

e
)iF 1

(a1R)i |λni| (a1R)i

< k5(
nΓ1F

e
)nF 1

(a1R)n

∑
i

|λni| (a1R)i,

where ( iΓ1F
e )iF 1

(a1R)i ÷ ( nΓ1F
e )nF 1

(a1R)n < 1, however large is R, for sufficiently large n.
Substituting for (a1R)i from (17), we get

Φn(R) < k1k5{
nΓ1F

e
}
nF 1

(a1R)n

∑
i

|λni|Bi(a1R)

< k6(
nΓ1F

e
)nF 1

(a1R)n Nn
∞

max
i=0

Bi(a1R) |λni|

< k6{
nΓ1F

e
}
nF 1

(a1R)n Nnθn(R)

If follows immediately that {Un(x)} is of order≤ F, and if the order is F, the type ≤ {θ(R)
a1R }

1
F Γ1i.e. the type

≤ (( e
a1

)
1
F Γ1).

Since Γ1 is arbitrarily > Γ and a1 is arbitrarily< a, it follows that the type < ( e
a )

1
F Γ, which is the required

result.

Remark 5.1.

(1) It is worthy to mention here that the above result (theorem 5.1)is the extent of generalization of the one given
by Nassif [23].

(2) The original proof in complex case of Nassif [23] is in fact not easy reading and covers only Cannon bases but
our result here (theorem 5.1)covers the case of general base in Clifford setting.

(3) Our proof here is much easier to the one given in complex case introduced by Nassif [23].

From theorem 5.1 we deduce the following important result.

Corollary 5.1. If {Pn(x)} is a base of order F, type Γ, and A , 0, B are any real constants, then {Pn(Ax + B} is a base
of order F and type |A|−

1
F Γ.
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Proof. Using the relation (2), it is seen at once that

{Pn(Ax + B)} = {Un(x)} = {Qn(x)}{Pn(x)}
{Qn(x)} = {zn(Ax + B)}.

Thus the base {Qn(x)} is a simple base and hence the product base {Pn(Ax + B)} is a base.
Also the base {Qn(x)} is effectively equivalent to {zn(x + B

A )}. For the later base

zn(x) = zn

((
x +

B
A

)
−

B
A

)
.

Hence θn(R) which is the same for the two bases, is equal to

θn(R) =
(m)n

n!
2n

∑
i

(
n
i

) (
R +

∣∣∣∣∣ B
A

∣∣∣∣∣)i ∣∣∣∣∣ B
A

∣∣∣∣∣n−i

=
(m)n

n!

(
R + 2

∣∣∣∣∣ B
A

∣∣∣∣∣)n

,

where sup
|x|=R
|zn(x)| = (m)n

n! Rn thus c = 1. Lastly, qnn = An for all n that q
1
n
nn = A for all n. Now, applying

theorem 5.1, the base {Un(x)} is of order F∗ ≤ F. But the base {Un(x)},may be written as {Pn( x
A −

B
A )} and hence

F ≤ F∗. Thus F∗ = F. Again the type of {Un(x)} by theorem 5.1 is Γ∗ ≤ A−
1
F Γ. Also Γ ≤ A

1
F Γ∗. Hence

Γ∗ = A−
1
F Γ.

Remark 5.2. The result in the above corollary generalizes the one given by Abul-Ez and Constales in [3], who dealt
only the case of Cannon bases.
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