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Abstract. The paper is devoted to introduce the notions of some types of stabilizers in non-commutative
residuated lattices and to investigate their properties. We establish a connection between (contravariant)
Galois connection and stabilizers of a residuated lattices. If A is a residuated lattice and F be a filter of A,
we show that the set of all stabilizers relative to F of a same type forms a complete lattice. Furthermore, we
prove that ST − F�l , ST − Fl and ST − Fs are pseudocomplemented lattices.

1. Introduction

Various logical algebras have been proposed as the semantical systems of non-classical logical systems,
for example, residuated lattices, divisible residuated lattices, MTL-algebras, Girard monoids, BL-algebras,
Gödel algebras, etc. Among these algebras, residuated lattices are very basic and important algebraic
structures because the other logical algebras are all particular cases of residuated lattices.

In Gentzen-style systems, a structural rule is an inference rule that does not refer to any logical connective.
Substructural logics were introduced as logics which, when formulated as Gentzen-style systems, lack some
of the three basic structural rules as follows:

Weakening rule:

Γ,∆⇒ φ

Γ, α,∆⇒ φ
.

Contraction rule:

Γ, α, α,∆⇒ φ

Γ, α,∆⇒ φ
.

Exchange rule:

Γ, α, β,∆⇒ φ

Γ, β, α,∆⇒ φ
.
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Commutative residuated lattices are the algebraic counterpart of logics without contraction rule. The
concept of commutative residuated lattice firstly introduced by W. Krull in [21] who discussed decompo-
sition into isolated component ideals. After him, they were investigated by M. Ward and R. P. Dilworth
in [37], as the main tool in the abstract study of ideal lattices in ring theory. The properties of residuated
lattices were presented in [13, 20, 26–35]. For a survey of residuated lattices we refer to [19].

Non-commutative residuated lattices, sometimes called pseudo-residuated lattices, biresiduated lattices
or generalized residuated lattices, are the algebraic counterparts of substructural logics; i.e. logics which
lack at least one of the three structural rules, namely contraction, weakening and exchange. Complete
studies on non-commutative residuated lattices were developed in [1, 7, 8] and [19]. In this paper, a
residuated lattice will be a FLw-algebra. We denote by RL the class of residuated lattices. Following the
results of Blount and Tsinakis [2], we deduce that the class RL of residuated lattices is equational, hence it
forms a variety. A subclassV of the variety RLwhich is also a variety is called a subvariety of RL.

The deductive system theory of the logical algebras plays an important role in studying these algebras
and the completeness of the corresponding non-classical logics. From a logical point of view, various
deductive systems correspond to various sets of provable formulas. Since deductive systems correspond
to subsets closed with respect to Modus Ponens so they are sometimes called (implicative) filters.

Di Nola, Georgescu and Iorgulescu in [9] introduced the notion of left stabilizers in pseudo-BL algebras.
After that Haveshki and Mohamadhasani in [14] generalized the notion of stabilizers to the stabilizers
with respect to a subset and introduced the notion of left stabilizer with respect to a subset in BL-algebras.
Borzooei and Paad in [5] introduced some new types of stabilizers in BL-algebras. Borumand and Mo-
htashamnia in [3] introduced the notion of right and left stabilizer in (commutative) residuated lattices.
Haveshki in [15] improved some results in [3]. Motamed and Torkzadeh in [22] introduced the notion of
right stabilizers in BL-algebras and define a class of BL-algebras, called RS-BL-algebra. In this paper we
introduced the notion of some type of stabilizers in (non-commutative) residuated lattices and we establish
a connection between them and Galois connection.

This paper is organized in four sections. In Section 2 we recall some definitions, properties and results
relative to (non-commutative) residuated lattices and Galois connection. In this section we give some
examples of residuated lattices which will be used in the following sections of the paper. In Section 3, we
introduce the notions of ll, lr, rl, rr, left, right stabilizer relative to a filter in (non-commutative) residuated
lattices and we investigate their properties and give some examples of them. In section 4 we establish a
connection between stabilizers and Galois connection. We show that the set of all stabilizers relative to a
filter of a same type forms a complete lattice.

2. A brief excursion into residuated Lattices and Galois connections

In this section we recall some definitions, properties and results relative to residuated lattices and Galois
connection which will be used in the following sections of this paper.

2.1. residuated Lattices
Definition 2.1. [19] A residuated lattice is an algebra A = (A;∨,∧,�,→l,→r, 1) of type (2, 2, 2, 2, 2, 0) satisfying
the following conditions.

RL1 (A;∨,∧, 0, 1) is a bounded lattice.

RL2 (A,�, 1) is a monoid.

RL3 x � y ≤ z iff x ≤ y→l z iff y ≤ x→r z for x, y, z ∈ A.

The operations →l and →r are referred to as the left and right residual of �, respectively. Note that,
in general, 1 is not the top element of the lattice reduct of A, `(A). A residuated lattice with a constant 0
(which can denote any element) is called a pointed residuated lattice or a full Lambek algebra (FL-algebra).
If 1 is a top a element of `(A), then A is called an integral residuated lattice. A FL-algebra A in which
(A;∨,∧, 0, 1) is a bounded lattice is called a FLw-algebra. A FLw-algebra is sometimes called a bounded
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integral residuated lattice. A residuated lattice A is called commutative if→l=→r. It is obvious that A is a
commutative residuated lattice if and only if � is a commutative binary operation. A residuated lattice A
in which x � y = x ∧ y (or equivalently, x2 = x)for all x, y ∈ A is called a Heyting algebra or pseudo-Boolean
algebra [36]. Clearly, a Heyting algebra is a commutative residuated lattice.

In this paper, a residuated lattice will be a FLw-algebra. A residuated lattice A is nontrivial if and only
if 0 , 1. In a residuated lattice A, for any a ∈ A, we put ¬la := a→l 0 and ¬ra := a→r 0. Also, ¬l¬la, ¬l¬ra,
¬r¬la and ¬r¬ra are denoted by ¬lla, ¬rla, ¬lra and ¬rra, respectively.

A residuated lattice A is called a pseudo-MTL algebra [12] if it satisfies the pseudo-pre-linearity condition
(denoted by pprel) (x→l y) ∨ (y→l x) = (x→r y) ∨ (y→r x) = 1. It is easy to see that each linearly-ordered
residuated lattice is a pseudo-MTL algebra. We denote by PMTL the class of pseudo-MTL algebras.
Obviously, the class PMTL of pseudo-MTL algebras is equational, hence it forms a subvariety of the
variety RL. A is called a pseudo divisible residuated lattice [11] (or a bounded R` monoid in [25]) if it satisfies
the pseudo-divisibility condition (denoted by pdiv) x � (x →r y) = (x →l y) � x = x ∧ y. We denote by R`
the class of bounded R` monoids. Obviously, the class R` of bounded R` monoids is equational, hence it
forms a subvariety of the variety RL. A residuated lattice is called proper if it is not a pseudo-MTL algebra
or a bounded R` monoid, i.e. if (pprel) and (pdiv) do not hold. A is called a pseudo-BL algebra if it satisfies
both (pprel) and (pdiv). Denote by PBL the class of pseudo-BL algebras. A pseudo-MTL algebra is called
proper if it is not a pseudo-BL algebra, i.e. if (pdiv) does not hold. A bounded R` monoid is called proper
if it is not a pseudo-BL algebra, i.e. if (pprel) does not hold. A pseudo BL-algebra A is called a pseudo
MV-algebra (GMV-algebra) [16] if it is an involutive (or regular) i.e. ¬lrx = ¬rlx = x. Denote by PMV the
class of pseudo-MV algebras. It is well-known that a residuated lattice A is a pseudo MV-algebra if and
only if it satisfies the following assertions:

mvl (x→l y)→r y = (y→l x)→r x.
mvr (x→r y)→l y = (y→r x)→l x.

A pseudo-BL algebra is called proper if it is not a pseudo-MV algebra, i.e. if mvl or mvr do not hold.
Note that PMTL, R`, PBL are all subvarieties of RL, connected as Figure 2.
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Figure 1: The interrelation between some subvarieties of RL

Example 2.2. [7] Let A5 = {0, a, b, c, 1} be a lattice whose Hasse diagram is below (see Figure 2). Define �,→l and
→r on A5 by the following tables.

� 0 a b c 1
0 0 0 0 0 0
a 0 0 0 a a
b 0 a b a b
c 0 0 0 c c
1 0 a b c 1

→l 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b c c 1 c 1
c 0 b b 1 1
1 0 a b c 1

→r 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b 0 c 1 c 1
c b b b 1 1
1 0 a b c 1
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Figure 2: The Hasse diagram of A5.

Routine calculation shows that A5 = (A5;∨,∧,�,→l,→r, 0, 1) is a residuated lattice. One can check that A5 is a
proper pseudo-MTL algebra, because the property (pdiv) does not hold:

c � (c→r a) = c � b = 0 , a = c ∧ a.

Example 2.3. Let A7 = {0, a, b, c, d, e, 1} be a lattice whose Hasse diagram is below (see Figure 3). Define �,→l and
→r on A7 as follows:

� 0 a b c d e 1
0 0 0 0 0 0 0 0
a 0 a a a a a a
b 0 a a a a a b
c 0 a a c c c c
d 0 a a c c c d
e 0 a b c d e e
1 0 a b c d e 1

→l 0 a b c d e 1
0 1 1 1 1 1 1 1
a 0 1 1 1 1 1 1
b 0 d 1 d 1 1 1
c 0 b b 1 1 1 1
d 0 b b d 1 1 1
e 0 b b d d 1 1
1 0 a b c d e 1

→r 0 a b c d e 1
0 1 1 1 1 1 1 1
a 0 1 1 1 1 1 1
b 0 e 1 e 1 1 1
c 0 b b 1 1 1 1
d 0 b b e 1 1 1
e 0 a b c d 1 1
1 0 a b c d e 1
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Figure 3: The Hasse diagram of A7.

Routine calculation shows that A7 = (A7;∨,∧,�,→l,→r, 0, 1) is a proper residuated lattice, because the property (pprel) does
not hold: (b→l c) ∨ (c→l b) = d ∨ b = d , 1 and the property (pdiv) also does not hold: d � (d→r b) = d � b = a , d ∧ b.

Example 2.4. Let B5 = {0, a, b, c, 1} be a lattice whose Hasse diagram is below (see Figure 4). Define �,→l and→r
on B5 by the following tables.
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� 0 a b c 1
0 0 0 0 0 0
a 0 0 0 a a
b 0 0 0 b b
c 0 a a c c
1 0 a b c 1

→l 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b b c 1 1 1
c 0 a b 1 1
1 0 a b c 1

→r 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b b b 1 1 1
c 0 b b 1 1
1 0 a b c 1

 

0 

b 

a 

c 

1 

Figure 4: The Hasse diagram of B5.

Routine calculation shows that B5 = (B5;∨,∧,�,→l,→r, 0, 1) is a proper linearly-ordered pseudo-MTL algebra,
because (pdiv) does not hold:

a = b ∧ a , b � (b→r a) = b � b = 0.

Example 2.5. [17, 18] Let A6 = {0, a, b, c, d, 1} be a lattice whose Hasse diagram is below (see Figure 5). Define
� = ∧ and→ on A6 as follows.

→ 0 a b c d 1
0 1 1 1 1 1 1
a b 1 b 1 1 1
b a a 1 1 1 1
c 0 a b 1 1 1
d 0 a b c 1 1
1 0 a b c d 1

Routine calculation shows that A6 = (A6;∨,∧,�,→, 1) is a proper commutative bounded R` monoid, since the
property (pprel) (here (prel)) is not verified: (a → b) ∨ (b → a) = b ∨ a = c , 1; more precisely A6 is a Heyting
algebra.

The following proposition provides some rules of calculus in a residuated lattice.

Proposition 2.6. [1, 4, 9] Let A be a residuated lattice. Then the following assertions are satisfied for any x, y, z ∈ A,
� ∈ {l, r}.

r1 x ≤ y⇔ x→� y = 1.
r2 x→� x = 0→� x = x→� 1 = 1 and 1→� x = x.
r3 x→l (y→l z) = (x � y)→l z and x→r (y→r z) = (y � x)→r z.
r4 x � y ≤ (x � (x→r y)) ∧ ((x→l y) � y) ≤ x ∧ y. In particular, x ≤ y→� x and x ≤ (x→l(r) y)→r(l) y.
r5 x ≤ y⇒ x � z ≤ y � z and z � x ≤ z � y.
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Figure 5: The Hasse diagram of A6.

r6 x ≤ y⇒ z→� x ≤ z→� y and y→� z ≤ x→� z.
r7 x→l(r) y ≤ (y→l(r) z)→r(l) (x→l(r) z).
r8 x→l(r) y ≤ (z→l(r) x)→r(l) (z→l(r) y).
r9 x→l (y→r z) = y→r (x→l z)

r10 x→� (y ∧ z) = (x→� y) ∧ (x→� z). In particular, x→� y = x→� (x ∧ y).
r11 ((x→l(r) y)→r(l) y)→l(r) y = x→l(r) y.

Let A be a residuated lattice and F be a subset of A. For convenience, we enumerate some conditions
which will be used in this paper.

c∅ F , ∅.
c1 1 ∈ F.
c� x, y ∈ F⇒ x � y ∈ F.
c≤ x ≤ y, x ∈ F⇒ y ∈ F.
c∨ x ∈ F and y ∈ A⇒ x ∨ y ∈ F.
cl x, x→l y ∈ F⇒ y ∈ F.
cr x, x→r y ∈ F⇒ y ∈ F.

Definition 2.7. Let A be a residuated lattice and F be a subset of A.

• F is called an ordered-filter of A if it satisfies c∅ and c≤.

• F is called a filter of A if it satisfies c∅, c� and c≤.

• F is called a 1-ideal of A if it satisfies c∅, c� and c∨.

• F is called a left deductive system of A if it satisfies c1 and cl.

• F is called a right deductive system of A if it satisfies c1 and cr.

Proposition 2.8. Let A be a residuated lattice and F be a subset of A containing 1. Then the following assertions are
equivalent for any x, y, z ∈ A.

F1 F is a filter.
F2 F is a 1-ideal.
F3 F is a left deductive system.
F4 F is a right deductive system

F5 x→l y, y→l z ∈ F⇒ x→l z ∈ F.
F6 x→r y, y→r z ∈ F⇒ x→r z ∈ F.
F7 x→l y, x � z ∈ F⇒ y � z ∈ F.
F8 x→r y, z � x ∈ F⇒ z � y ∈ F.
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F9 x→l y,¬ly ∈ F⇒ ¬lx ∈ F.
F10 x→r y,¬ry ∈ F⇒ ¬rx ∈ F.

F11 x, y ∈ F and x ≤ y→l z⇒ z ∈ F.
F12 x, y ∈ F and x ≤ y→r z⇒ z ∈ F.

Proof. It is straightforward by Proposition 2.6.

The set of ordered-filters and filters of a residuated lattice A will be denoted by OF(A) and F(A),
respectively. It is clear that F(A) ⊆ OF(A). Trivial examples of filters are 1 = {1} and A. A filter F of A is
proper if F , A. Clearly, F is a proper filter if and only if 0 < F.

Example 2.9. Consider the proper pseudo-MTL algebra A5 from Example 2.2. Then F(A5) = {F1 = 1,F2 =
{b, 1},F3 = {c, 1},F4 = A5}.

Example 2.10. Consider the proper residuated lattice A7 from Example 2.3. Then F(A7) = {F1 = 1,F2 = {e, 1},F3 =
{c, d, e, 1},F4 = {a, b, c, d, e, 1},F5 = A7}.

Example 2.11. Consider the proper linearly-ordered pseudo-MTL algebra B5 from Example 2.4. Then F(B5) =
{F1 = 1,F2 = {c, 1},F3 = B5}.

Example 2.12. Consider the proper commutative bounded R` monoid A6 from Example 2.5. Then F(A6) = {F1 =
1,F2 = {d, 1},F3 = {c, d, 1},F4 = {b, c, d, 1},F5 = {a, c, d, 1},F6 = A6}.

Let A be a residuated lattice. We define the distance functions as for pseudo-BL algebras [9] dl(a, b) =
(a→l b) � (b→l a) and dr(a, b) = (a→r b) � (b→r a), for any a, b ∈ A. With any filter of a residuated lattice A
we associate two binary relations ≡l

F and ≡r
F on A by defining as for pseudo-BL algebras [9];

(a, b) ∈≡l
F if and only if dl(a, b) ∈ F,

(a, b) ∈≡r
F if and only if dr(a, b) ∈ F,

As for pseudo-BL algebras [9], the binary relations ≡l
F and ≡r

F are equivalence relations on A. ≡l
F and ≡r

F
are called the left equivalence relation and the right equivalence relation induced by F, respectively. In the
following, for any a ∈ A the equivalence classes a/ ≡l

F and a/ ≡r
F are denoted by [a]l

F and [a]l
F, respectively.

Definition 2.13. [10] Let A be a residuated lattice. A filter F of A is called normal if the following condition holds,
for any x, y ∈ A:

x→l y ∈ F if and only if x→r y ∈ F.

We shall denote by Fn(A) the set of normal filters of A.

Example 2.14. Consider the proper residuated lattice A7 from Example 2.3. Then we have Fn(A7) = {F1 = 1,F3 =
{c, d, e, 1},F4 = {a, b, c, d, e, 1},F5 = A7}

It is obvious that if F is a normal filter of the residuated lattice A then the right and the left equivalence
relations induced by F are equal and both of them are denoted by ≡F. So (x, y) ∈≡F if and only if dl(x, y) ∈ F if
and only if dr(x, y) ∈ F. As for pseudo-BL algebras [10, Proposition 1.7], if F is a normal filter of a residuated
lattice A then ≡F is a congruence relation on A. In this case, For any a ∈ A, let a/F be the equivalence class
a/ ≡F and A/F = {a/F|a ∈ A}. A/F becomes a residuated lattice with the natural operations induced from
those of A and it is denoted by A/F.

Let A be a residuated lattice. It is obvious that (A; F(A)) is an algebraic closed set system. The closure
operator associated with the closed set system (A; F(A)) is denoted by FiA : P(A) −→ P(A). Thus for any
subset X of A, FiA(X) = ∩{F ∈ F(A)|X ⊆ F} is the smallest filter of A contains X. FiA(X) is called the filter
generated by X. For each x ∈ A, the filter generated by {x} is denoted by FiA(x) and it is called the principle
filter of A. When there is no ambiguity we will drop the superscript A.

If {Fi}i∈I is a family of all filters of A, we define ∧i∈IFi = ∩i∈IFi and Yi∈IFi = Fi(∪i∈IFi). According to [7],
(F(A),∧,Y) is a complete Browerian algebraic lattice which its compact elements are exactly the principal
filter of A.
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Proposition 2.15. [7] Let A be a residuated lattice and X be a subset of A. Then we have

Fi(X) = {a ∈ A|x1 � · · · � xn ≤ a, f or some inte1er n, x1, · · · , xn ∈ X}.

Let A be a residuated lattice. The set of all complemented elements in the lattice reduct A is denoted
by B(A) and it is called the Boolean center of A. Complements are generally not unique unless the lattice
is distributive. In residuated lattices however, although the underlying lattices need not be distributive,
according to [8], the complements are unique.

Proposition 2.16. [8] Let A be a residuated lattice, e ∈ B(A) and a ∈ A. Then the following assertions hold for any
�1,�2 ∈ {l, r}.

(1) ec = ¬le = ¬re, ¬lre = ¬rle = e and e2 = e.
(2) e→�1 ¬�2 e = ¬�2 e, ¬�1 e→�2 e = e.
(3) e � a = e ∧ a.

Let A be a residuated lattice. An element a of A is said to be the left (right) dense element of A if and
only if ¬la = 0(¬ra = 0). We denote by Dl

s(A) and Dr
s(A) the sets of the left and the right dense elements of

A, respectively. Also, the intersection of the left and the right dense elements of A is said to be the dense
elements of A and denoted by Ds(A). One can check that Ds(A) = {a ∈ A|¬lra = 1 = ¬rla}. Obviously, if A is
an involutive residuated lattice then Dl

s(A) = Dr
s(A) = Ds(A) = {1}.

Proposition 2.17. [7] Let A be a residuated lattice. Then Dl
s(A) and Dr

s(A) are proper filters of A. In particular,
Ds(A) is a proper filter of A.

Let A be a residuated lattice and F be a filter of A and X be a subset of A. The generalized co-annihilator
of X (relative to F) is denoted by (F : X) and defined as follow.

(F : X) = {a ∈ A|x ∨ a ∈ F,∀x ∈ X}.

In the following proposition, we collect the properties of generalized co-annihilators.

Proposition 2.18. [28] Let A be a residuated lattice, F,G be filters of A and X,Y be subsets of A. Then the following
conditions satisfy.

(1) (F : X) is a filter of A.
(2) F ⊆ (F : X).
(3) (F : X) = A if and only if X ⊆ F.
(4) X ⊆ (F : (F : X)).

Let A and B be residuated lattices. A mapping h : A −→ B is called a homomorphism, in symbols
h : A −→ B, if it preserves the fundamental operations. If h : A −→ B is a homomorphism we put
coker(h) = h←(1). It is easy to check that coker(h) is a normal filter of A. Also, it is obvious that h(a1) = h(a2)
if and only if a1 →� a2, a2 →� a1 ∈ coker(h) and it implies that h is an injective homomorphism if and only if
coker(h) = {1}.

Proposition 2.19. Let h : A −→ B be a homomorphism.

(1) If h is surjective and F ∈ F(A)(F ∈ Fn(A)) such that coker(h) ⊆ F then h(F) ∈ F(B)(h(F) ∈ Fn(B)).
(2) If F ∈ F(B)(F ∈ Fn(B)) then h←(F) ∈ F(A)(h←(F) ∈ Fn(A)) and coker(h) ⊆ h←(F).

Proof. It is straightforward.



S. Rasouli / Filomat 34:4 (2020), 1223–1239 1231

2.2. Galois connection
This section is devoted to recall some definitions, properties and results relative to Galois connection.

Definition 2.20. Let A = (A;≤) and B = (B;4) be posets and f : A −→ B be a map between posets.

1. f is antitone if a1 ≤ a2 implies f (a2) 4 f (a1), for all a1, a2 ∈ A.

In particular case which A = B,

1. f is inflationary (also called extensive) if a ≤ f (a) for all a ∈ A.
2. f is idempotent if f 2 = f .
3. f is a closure operator on A if it is inflationary, isotone and idempotent. A fixpoint of the closure operator f ,

i.e. an element a of A that satisfies f (a) = a, is called a closed element of f . The set of closed elements of the
closure operator f will be denoted by C f .

Definition 2.21. Let A = (A;≤) and B = (B;4) be posets. Suppose that f : A −→ B and 1 : B −→ A are functions
such that for all a ∈ A and b ∈ B we have

a ≤ 1(b) if and only if b 4 f (a).

Then the pair ( f , 1) is called a (contravariant or antitone) Galois connection between A and B

Proposition 2.22. Let A and B be posets and f : A −→ B and 1 : B −→ A be two functions. Then the pair ( f , 1)
forms a Galois connection between A and B if and only if the following assertions hold.

(1) IA � 1 f and IB � f1.
(2) f and 1 are antitone functions.

Proof. Let ( f , 1) forms a Galois connection between A and B. Consider a ∈ A. We have f (a) 4 f (a) and it
implies that a ≤ 1( f (a)). So IA � 1 f . Analogously, we can show that IB � f1. If we have a1 ≤ a2 then we have
a1 ≤ 1( f (a2)) and it states that f (a2) 4 f (a1). In a similar way, we can obtain that 1 is an antitone function.

Now, let (1) and (2) holds. Assume that a ≤ 1(b) for some a ∈ A and b ∈ B. So we have b 4 f (1(b)) 4 f (a).
Analogously, we can show that b 4 f (a) implies a ≤ 1(b). Therefore, ( f , 1) forms a Galois connection between
A and B.

Proposition 2.23. Let A and B be posets and ( f , 1) forms a Galois connection between A and B. Then the following
assertions hold.

(1) f1 f = f and 1 f1 = 1.
(2) If ∨X exists for some X ⊆ A then ∧ f (X) exists and ∧ f (X) = f (∨X).
(3) If ∨Y exists for some Y ⊆ B then ∧1(Y) exists and ∧1(Y) = 1(∨Y).
(4) f (a) = max{b ∈ B|a ≤ 1(b)}, 1(b) = max{a ∈ A|b 4 f (a)}
(5) 1 f is a closure operator on A and C1 f = 1(B).
(6) f1 is a closure operator on B and C f1 = f (A).

Proof. 1. Let a ∈ A. By Proposition 2.22(1) we have a ≤ 1( f (a)) and f (a) 4 f (1( f (a))) and by 2.22(2) we get
that f (1( f (a))) 4 f (a). It shows that f = f1 f . Analogously, we can show that 1 = 1 f1.

2. Let x ∈ X. Then x ≤ ∨X and it implies that f (∨X) 4 f (x) and this means that f (∨X) is a lower bound
of the set f (X). Assume that b 4 f (x) for any x ∈ X. So we obtain that x ≤ 1(b) for any x ∈ X. So we
have ∨X ≤ 1(b) and this states that b ≤ f (∨X). Therefore, f (∨X) = ∧ f (X).

3. Let a ∈ A. By Proposition 2.22(1) we obtain that f (a) ∈ {b ∈ B|a ≤ 1(b)}. Assume that b ∈ {b ∈ B|a ≤ 1(b)}.
Then a ≤ 1(b) and it implies that b ≤ f (a). Analogously, we can show that 1(b) = max{a ∈ A|b 4 f (a)}.

4. By Proposition 2.22(1), 1 f is inflationary and by Proposition 2.22(1), 1 f is isotone. Also, by (1) we can
conclude that 1 f is idempotent. It states that 1 f is a closure operator on A .
Let b ∈ B. By (1) we have 1(B) ⊆ C1 f . Also, for each a ∈ A, a ∈ C1 f implies a = 1( f (a)) ∈ 1(B) and this
shows that C1 f ⊆ 1(B). Hence, we have C1 f = 1(B). Analogously, we can show that f1 is a closure
operator on B and C f1 = f (A).



S. Rasouli / Filomat 34:4 (2020), 1223–1239 1232

Theorem 2.24. [6] Let A be set and f : P(A) −→ P(A) be a closure operator. Then the set of closed elements of f ,
C f , is a complete lattice with respect to the following operations.

∧
f : C f × C f −→ C f

(X,Y) 7−→ X ∩ Y,
∨

f : C f × C f −→ C f
(X,Y) 7−→ f (X ∪ Y).

Corollary 2.25. Let A be a set and ( f , 1) forms a Galois connection between P(A) and P(B). Then the following
assertions hold.

(1) L1 = (1(P(B));∧1,∨1, 0 = 1(B), 1 = 1(∅)) is a complete lattice where ∧1i∈I1(Yi) = 1(∪i∈IYi) and ∨1i∈I1(Yi) =
1(∩i∈I f1(Yi)) for any family {Yi}i∈I ∈ P(B).

(2) L f = ( f (P(A));∧ f ,∨ f , 0 = f (A), 1 = f (∅)) is a complete lattice where ∧ f
i∈I f (Xi) = f (∪i∈IXi) and ∨ f

i∈I f (Xi) =
f (∩i∈I1 f (Xi)) for any family {Xi}i∈I ∈ P(B).

Proof. By Proposition 2.23(5), 1 f is a closure operator on P(A) and C1 f = 1(P(B)). So by Theorem 2.24,
(1(P(B));∧1 f ,∨1 f ) is a complete lattice where ∧1 f

i∈I1(Yi) = ∩i∈I1(Yi) and ∨1 f
i∈I1(Yi) = 1 f (∪i∈I1(Yi)) for any

family {Yi}i∈I ∈ P(B). Now, let {Yi}i∈I be a family of subset of the set B. By Proposition 2.23(3) we have
∩i∈I1(Yi) = 1(∪i∈IYi) and this shows that ∧1 f

i∈I1(Yi) = ∧
1

i∈I1(Yi). Also, we have 1 f (∪i∈I1(Yi)) = 1(∩i∈I f1(Yi))

and it implies that ∨1 f
i∈I1(Yi) = ∨

1

i∈I1(Yi). Since 1 is an antitone function so we have 1(B) ⊆ 1(Y) ⊆ 1(∅) for
any Y ⊆ B. Therefore, (1(P(B));∧,∨, 0 = 1(B), 1 = 1(∅)) is a complete lattice. Analogously, we can show that
(2) holds.

3. Stabilizer in residuated lattice

In this section we introduce and investigate the notion of stabilizer relative to a filter in residuated
lattices.

Definition 3.1. Let A be a residuated lattice, F be a filter of A and X be a subset of A. The ll, lr, rl and rr-stabilizer
of X relative to F is denoted by (F : X)l

l, (F : X)r
l , (F : X)l

r and (F : X)r
r, respectively and defined as follows.

1. (F : X)l
l = {a ∈ A|(a→l x)→r x ∈ F, ∀x ∈ X}.

2. (F : X)l
l = {a ∈ A|(a→r x)→l x ∈ F, ∀x ∈ X}.

3. (F : X)l
r = {a ∈ A|(x→l a)→r a ∈ F, ∀x ∈ X}.

4. (F : X)l
r = {a ∈ A|(x→r a)→l a ∈ F, ∀x ∈ X}.

(F : X)l(r) = (F : X)l
l(r)∩(F : X)r

l(r) is called the left (right) stabilizer of X relative to F and (F : X)s = (F : X)l∩(F : X)r

is called the stabilizer of X relative to F. Let �1,�2 ∈ {l, r}. If X = {x} then (F : {x})�2
�1

is denoted by (F : x)�2
�1

. Also,
(1,X)�2

�1
is called the �1�2-stabilizer of X and it is denoted by (X)�2

�1
.

Example 3.2. Consider the proper pseudo-MTL algebra A5 from Example 2.2 and its filters from Example 2.9.

In the following proposition, we collect some properties of stabilizers.

Proposition 3.3. Let A be a residuated lattice. Then the following assertions hold for any family {X}∪ {Y}∪ {Xi}i∈I ∈

P(A), {F} ∪ {G} ∪ {Fi}i∈I ∈ Fi(A), �1,�2 ∈ {l, r} and � ∈ {l, r, s}.

(1) X�1
l = {a ∈ A|a→�1 x = x,∀x ∈ X} and X�1

r = {a ∈ A|x→�1 a = a,∀x ∈ X}.
(2) (F : X) ⊆ (F : X)s. In particular, F ⊆ (F : X)s.
(3) X ⊆ Y implies (F : Y)�2

�1
⊆ (F : X)�2

�1
. In particular, if X ⊆ Y then (F : Y)� ⊆ (F : X)�.

(4) (F : Fi(X))�2
�1
⊆ (F : X)�2

�1
. In particular, (F : Fi(X))� ⊆ (F : X)�.

(5) F ⊆ G implies (F : X)�2
�1
⊆ (G : X)�2

�1
. In particular, if F ⊆ G then (F : X)� ⊆ (G : X)�.

(6) X ∩ (F : X)�2
�1
⊆ F. In particular, X ∩ (F : X)� ⊆ F.

(7) If X contains F then X ∩ (F : X)�2
�1

= F. In particular, if X contains F then X ∩ (F : X)� = F.
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0 a b c 1

F1 = {1}

ll F3 F1 F3 F2 A5
lr F2 F1 F3 F2 A5
rl F1 F1 F3 {0,b,1} A5
rr F1 F1 {0,c,1} F2 A5

F2 = {b, 1}

ll {a,b,c,1} F2 A5 F2 A5
lr F2 F2 A5 F2 A5
rl F2 {0,b,1} A5 {0,b,1} A5
rr F2 F2 A5 F2 A5

F3 = {c, 1}

ll F3 F3 F3 A5 A5
lr {a,b,c,1} F3 F3 A5 A5
rl F3 F3 F3 A5 A5
rr F3 {0,c,1} {0,c,1} A5 A5

F4 = A5

ll A5 A5 A5 A5 A5
lr A5 A5 A5 A5 A5
rl A5 A5 A5 A5 A5
rr A5 A5 A5 A5 A5

Table 1: Table of stabilizers of the residuated lattice A5.

(8) (F : X)�2
�1

= A if and only if X ⊆ F. In particular, (F : X)� = A if and only if X ⊆ F.
(9) (F : ∅)s = (F : 1)s = (F : F)s = A.

(10) X ⊆ (F : (F : X)l(r)
l )l(r)

r , (F : (F : X)l(r)
r )l(r)

l , (F : (F : X)l(r))r(l), (F : (F : X)s)s.
(11) ∩i∈I(Fi : X)�2

�1
= (∩i∈IFi : X)�2

�1
. In particular, ∩i∈I(Fi : X)� = (∩i∈IFi : X)�.

(12) (F : 0)l(r)
r = (F : 0)r = (F : 0)s = (F : A)�2

�1
= F.

(13) (F : 0)l(r)
l = {a ∈ A|¬lr(rl)a ∈ F}. In particular, (0)�l = D�s (A).

Proof. 1. By r1 we have Xl(r)
l = {a ∈ A|(a →l(r) x) →r(l) x = 1, ∀x ∈ X} = {a ∈ A|a →l(r) x ≤ x, ∀x ∈ X}.

On the other hand, by r4 we have x ≤ a →� x, for any a, x ∈ A. It implies that Xl(r)
l = {a ∈ A|a →l(r)

x = x, ∀x ∈ X}. It shows that X�l = {a ∈ A|a →� x = x,∀x ∈ X}. Analogously, we can show that
X�r = {a ∈ A|x→� a = a,∀x ∈ X}.

2. Let a ∈ (F : X). Then for any x ∈ X we have a∨x ∈ F. By r4 we have a∨x ≤ ((a→l(r) x)→r(l) x)∧ ((x→l(r)
a) →r(l) a). Since F is a filter so we have ((a →l(r) x) →r(l) x) ∧ ((x →l(r) a) →r(l) a) ∈ F. It shows that
a ∈ (F : X)l ∩ (F : X)r = (F : X)s. By Proposition 2.18(2) we can conclude that F ⊆ (F : X)s.

3. Let X ⊆ Y and a ∈ (F : Y)l(r)
l . Then for any x ∈ X, since X ⊆ Y, we have (a →l(r) x) →r(l) x ∈ F and it

shows that a ∈ (F : X)l(r)
l . So (F : Y)l(r)

l ⊆ (F : X)l(r)
l . Analogously, we can obtain the other cases.

4. It is an immediate consequence of (3).
5. Let F ⊆ G and a ∈ (F : X)l(r)

l . For any x ∈ X we have (a →l(r) x) →r(l) x ∈ F. It implies that
(a→l(r) x)→r(l) x ∈ G and it shows that a ∈ (G : X)l(r)

l . Analogously, we can show that the other cases.

6. Let a ∈ X ∩ (F : X)l(r)
l . Then (a →l(r) x) →r(l) x ∈ F for any x ∈ X. Let x = a. By r2 we have a ∈ F and it

implies that X ∩ (F : X)l(r)
l ⊆ F. Similarly, we can obtain the other cases.

7. It is an immediate consequence of (2) and (6)
8. Let (F : X)l(r)

l = A and x ∈ X. We have x = 1 →r(l) x = (x →l(r) x) →r(l) x ∈ F and it shows that X ⊆ F.
Conversely, if X ⊆ F, then by Proposition 2.18(3) we have (F : X) = A and (2) implies that (F : X)l(r)

l = A.
Analogously, we can obtain the other cases.

9. It is an immediate consequence of (8).
10. Let x ∈ X. Then for any a ∈ (F : X)l(r)

l we have (a →l(r) x) →r(l) x ∈ F and it implies that x ∈ (F : (F :
X)l(r)

l )l(r)
r . Analogously, we can show that X ⊆ (F : (F : X)l(r)

r )l(r)
l , (F : (F : X)l(r))r(l), (F : (F : X)s)s.
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11. By (5), for each i ∈ I we have (∩i∈IFi : X)�2
�1
⊆ (Fi : X)�2

�1
and it shows that (∩i∈IFi : X)�2

�1
⊆ ∩i∈I(Fi : X)�2

�1
.

Conversely, let a ∈ ∩i∈I(Fi : X)l(r)
l . Thus, for any i ∈ I and x ∈ X we have (a →l(r) x) →r(l) x ∈ Fi and it

implies that we have (a→l(r) x)→r(l) x ∈ ∩i∈IFi for any x ∈ X. Hence we obtain that a ∈ (∩i∈IFi : X)l(r)
l .

Analogously, we can obtain the other cases.

12. By (2) we know that F ⊆ (F : 0)l(r)
r , (F : A)�2

�1
. Let a ∈ (F : 0)l(r)

r . Thus we have a = 1 →r(l) a =

(0 →l(r) a) →r(l) a ∈ F. It means that (F : 0)l(r)
r = F. If a ∈ (F : A)l(r)

l , then for each x ∈ A we have
(a →l(r) x) →r(l) x ∈ F. Consider x = a. So we have a = 1 →l(r) a = (a →l(r) a) →r(l) a ∈ F. It shows that
(F : A)l(r)

l = F. Analogously, we can obtain the other cases.
13. It is straightforward.

Proposition 3.4. Let A be a residuated lattice and F be filters of A. Then the following assertions hold for any X ⊆ A.

(1) (X)l
l and (X)r

l are filters of A.
(2) (X)�r = (Fi(X))�r for � ∈ {l, r}.
(3) Fi(X) ∩ Xr = {1}.

Proof. 1. See [9, Proposition 4.38].
2. By (4) we have (Fi(X))l

r ⊆ (X)l
r. Let a ∈ (X)l

r and x ∈ Fi(X). By Proposition 2.15, there exist x1, x2, · · · , xn ∈

X, such that x1 � · · · � xn ≤ x. By Proposition 2.6(r3 and r6) we have x →l a ≤ (x1 � · · · � xn) →l a =
x1 →l (x2 →l · · · (xn →l a) · · · ). On the other hand, we have xi →l a = a for i = 1, · · · ,n. This states that
x→l a = a and it implies a ∈ (Fi(X))l

r. Analogously, we can show that (X)r
r = (Fi(X))r

r.
3. It is an immediate consequence of Proposition 3.3(6) and (2).

In the following example we show that assertions of Proposition 3.4 may not be true for the any stabilizer
of any subset.

Example 3.5. Consider Example 3.2. Then we have (F2 : 0)l
l, (F3 : 0)r

l , (F2 : a)l
r and (F3 : a)r

r are not filters of A.
Also, we have (F2 : 0)l

l , (F2 : Fi(0))l
l, (F3 : 0)r

l , (F3 : Fi(0))r
l , (F2 : a)l

r , (F2 : Fi(a))l
r and (F3 : a)r

r , (F3 : Fi(a))r
r.

Proposition 3.6. Let A be a residuated lattice, F be a filter of A, x, y ∈ A and e ∈ B(A). Then the following assertions
hold.

(1) x ≤ y implies (F : x)�r ⊆ (F : y)�r . In particular, x ≤ y implies (F : x)r ⊆ (F : y)r.
(2) (F : x � y)�r ⊆ (F : x ∧ y)�r ⊆ (F : {x, y})�r .
(3) If F is a normal filter of A then (F : x/F)�2

�1
= (F : x)�2

�1
.

(4) e ∈ B(A) if and only if ¬le ∈ (e)s if and only if ¬re ∈ (e)s.

Proof. 1. Let x ≤ y and a ∈ (F : x)l
r. By r6 we have (y →l a) →r a ≥ (x →l a) →r a ∈ F and it implies that

a ∈ (F : y)l
r.

2. It follows by (1).

3. By Proposition 3.3(3), it is obvious that (F : x/F)�2
�1
⊆ (F : x)�2

�1
. Now, let a ∈ (F : X)l(r)

l and y ∈ x/F.
Therefore, dl(x, y) ∈ F and this means dl((a →l(r) x) →r(l) x, (a →l(r) y) →r(l) y) ∈ F. On the other hand,
we have (a→l(r) x)→r(l) x ∈ F and this implies that (a→l(r) y)→r(l) y ∈ F. Thus a ∈ (F : x/F)l(r)

l and this
shows the equality.

4. It is obvious by Proposition 2.16(2) and Proposition 3.3(1).

In the following example we show that assertions of Proposition 3.6 may not be true for the any stabilizer
of any subset.
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Example 3.7. Consider Example 3.2. Then we have 0 ≤ c but (F2 : 0)l
l * (F : c)l

l. Also, we have (F2 : a � a)l
r ( (F2 :

a ∧ a)l
r.

Proposition 3.8. Let h : A −→ B be a surjective homomorphism and �1,�2 ∈ {l, r}.

(1) If F is a filter of A containing coker(h) and X ⊆ A then h((F : X)�2
�1

) = (h(F) : h(X))�2
�1

.
(2) If F is a filter of B and Y ⊆ B then h←((F : Y)�2

�1
) = (h←(F) : h←(Y))�2

�1
.

Proof. 1. Let F be a filter of A and X ⊆ A. By Proposition 2.19(1), h(F) is a filter of B. If X = ∅ then
by Proposition 3.3(8) we have (F : X) = A and (h(F) : h(X)) = B. Since h is surjective so the equality
holds. So let X be a nonempty subset of A. Assume that b ∈ (h(F) : h(X))l(r)

l . So for each y ∈ h(X) we
have (b →l(r) y) →r(l) y ∈ h(F). Hence, there are x ∈ X, a ∈ A and f ∈ F such that h(x) = y, h(a) = b
and (b →l(r) y) →r(l) y = h( f ). It means that (h(a) →l(r) h(x)) →r(l) h(x) = h( f ) and it implies that
f →l ((a→l(r) x)→r(l) x) ∈ coker(h) ⊆ F. Since F is a filter so we can conclude that (a→l(r) x)→r(l) x ∈ F.
Thus a ∈ (F : X)l(r)

l and it states that b ∈ h((F : X)l(r)
l ).

Now, let b ∈ h((F : X)l(r)
l ) and y ∈ h(X). So there are a ∈ (F : X)l(r)

l and x ∈ X such that h(a) = b and
h(x) = y and it results that (a →l(r) x) →r(l) x ∈ F. Therefore, (h(a) →l(r) h(x)) →r(l) h(x) ∈ h(F) and it
implies that b ∈ (h(F) : h(X))l(r)

l . Analogously, we can show that h((F : X)l(r)
r ) = (h(F) : h(X))l(r)

r
2. Let F be a filter of B and Y ⊆ A. By Proposition 2.19(2), h(F) is a filter of A. If Y = ∅ then we

have (F : Y)l(r)
l = B and (h←(F) : h←(Y))l(r)

l = A. Since h is surjective so the equality holds. Suppose
that a ∈ (h←(F) : h←(Y))l(r)

l . Consider y ∈ Y. So there is x ∈ A such that h(x) = y. We have
(h(a) →l(r) y) →r(l) y = (h(a) →l(r) h(x)) →r(l) h(x) = h((a →l(r) x) →r(l) x). On the other hand, we have
x ∈ h←(Y) and it implies that (a →l(r) x) →r(l) x ∈ h←(F). Therefore, (h(a) →l(r) y) →r(l) y ∈ F for each
y ∈ Y and it states that h(a) ∈ (F : Y)l(r)

l . It shows that a ∈ h←((F : Y)l(r)
l ).

Conversely, assume that a ∈ h←((F : Y)l(r)
l ) and x ∈ h←(Y). Hence h(a) ∈ (F : Y)l(r)

l and h(x) ∈ Y. It
implies that h((a→l(r) x)→r(l) x) = (h(a)→l(r) y)→r(l) y ∈ F. Therefore, (a→l(r) x)→r(l) x ∈ h←(F) and it
concludes that a ∈ (h←(F) : h←(Y))l(r)

l . Analogously, we can show that h←((F : Y)l(r)
r ) = (h←(F) : h←(Y))l(r)

r .

Let A be a residuated lattice and F be a normal filter of A. The mapping πAF : A −→ A/F defined by
πAF (a) = a/F is called the natural homomorphism. It is obvious that the natural homomorphism πAF is
surjective and coker(πAF ) = F. Therefore, by Proposition 2.19 we have

F(A/F) = {H/F|F ⊆ H ∈ F(A)}.

Lemma 3.9. Let A be a residuated lattice and F be a normal filter of A. Then for any x ∈ A − F there is a subset
X , A of A such that x ∈ X, (F : X)�l ⊆ (F : x)�l and (F : X)�l is a filter of A.

Proof. Let x ∈ A. By Proposition 3.8(1) we have πF(F : x)�l = (x/F)�l . By Proposition 3.4(2), (x/F)�l is a filter of
A/F and by 2.19(1) and Proposition 3.4(1) it implies that (π←F (F/F), π←F (x/F))�l = (F : π←F (x/F))�l is a filter of
A. On the other hand we have x ∈ π←F (x/F) and π←F (x/F) , A. Since if π←F (x/F) = A then 1 ∈ π←F (x/F) which
it implies that x ∈ F. Now, by Proposition 3.3(3) we get that (F : π←F (x/F))�l ⊆ (F : x)�l .

4. Galois connection of stabilizers in residuated lattice

Let A be a residuated lattice, F be a filter of A, �1,�2 ∈ {l, r} and � ∈ {l, r, s}. We define the following
functions.

F�2
�1

: P(A) −→ P(A)
X 7−→ (F : X)�2

�1
,

F� : P(A) −→ P(A)
X 7−→ (F : X)�.

Proposition 4.1. Let A be a residuated lattice and F be a filter of A. Then the following pairs (Fl
l,F

l
r), (Fr

l ,F
r
r), (Fl,Fr)

and (Fs,Fs) are Galois connections on P(A).
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Proof. By Proposition 3.3(3), functions Fl
l and Fl

r are antitone and by 3.3(10), Fl
lF

l
r and Fl

rFl
l are inflationary

functions. So by Proposition 2.22 we obtain that (Fl
l,F

l
r) is a Galois connection on P(A). Analogously, we

can show that (Fr
l ,F

r
r), (Fl,Fr) and (Fs,Fs) are Galois connections on P(A).

Corollary 4.2. LetA be a residuated lattice and F be a filter ofA. Then the following assertions hold for any X,Y ⊆ A.

(1) X ⊆ (F : Y)�l if and only if Y ⊆ (F : X)�r .
(2) X ⊆ (F : Y)l if and only if Y ⊆ (F : X)r.
(3) X ⊆ (F : Y)s if and only if Y ⊆ (F : X)s.

Proof. It follows by Proposition 4.1 and Definition 2.21.

Corollary 4.3. Let A be a residuated lattice and F be a filter of A. Then the following assertions hold for any X ⊆ A
and � ∈ {l, r}.

(1) (F : X)�l(r) = (F : (F : (F : X)�l(r))
�
r(l))
�
l(r).

(2) (F : X)l(r) = (F : (F : (F : X)l(r))r(l))l(r).
(3) (F : X)s = (F : (F : (F : X)s)s)s.

Proof. It follows by Proposition 4.1 and Proposition 2.23(1).

Corollary 4.4. Let A be a residuated lattice and F be a filter of A. Then the following assertions hold for any family
{X} ∪ {Xi}i∈I ∈ P(A), �1,�2 ∈ {l, r} and � ∈ {l, r, s}.

(1) (F : ∪i∈IXi)�2
�1

= ∩i∈I(F : Xi)�2
�1

. In particular, (F : ∪i∈IXi)� = ∩i∈I(F : Xi)�.
(2) (F : X)�2

�1
= ∩x∈X(F : x)�2

�1
. In particular, (F : X)� = ∩x∈X(F : x)�.

(3) (F : X)�2
�1

= (F : X − F)�2
�1

. In particular, (F : X)� = (F : X − F)�.

(4) If 0 ∈ X, then (F : X)l(r)
r = (F : X)r = (F : X)s = F.

Proof. 1. It is straightforward by Proposition 4.1 and Proposition 2.23(2) and Proposition 2.23(3).
2. By taking X = ∪x∈Xx it follows by (1).
3. By (1) we have (F : X)�2

�1
= (F : (X − F) ∩ (X ∩ F))�2

�1
= (F : X − F)�2

�1
∩ (F : X ∩ F)�2

�1
and by Proposition

3.3(8) we have (F : X ∩ F)�2
�1

= A. It states that (F : X)�2
�1

= (F : X − F)�2
�1

.

4. Let 0 ∈ X. By (2) we have (F : X)l(r)
r = ∩x∈X(F : x)l(r)

r and by Proposition 3.3(12) we have (F : 0)l(r)
r = F.

Since F ⊆ (F : x)l(r)
r for any x ∈ X it implies that (F : X)l(r)

r = F. Analogously, we have (F : X)r = (F :
X)s = F.

Corollary 4.5. Let A be a residuated lattice and F be a filter of A. Then the following assertions hold for any X ⊆ A
and � ∈ {l, r}.

(1) (F : X)�l(r) = ∪{Y ∈ P(A)|X ⊆ (F : Y)�r(l)}.
(2) (F : X)l(r) = ∪{Y ∈ P(A)|X ⊆ (F : Y)r(l)}.
(3) (F : X)s = ∪{Y ∈ P(A)|X ⊆ (F : Y)s}.

Proof. Let X ⊆ A. By Proposition 4.1 and Proposition 2.23(4) we have (F : X)�l(r) = max{Y ∈ P(A)|X ⊆ (F :
Y)�r(l)}. let Γ = {Y ∈ P(A)|X ⊆ (F : Y)�r(l)}. We have max Γ ⊆ ∪Γ. By considering Y ∈ Γ we obtain that
X ⊆ (F : Y)�r(l) and it implies Y ⊆ (F : X)�l(r) by Proposition 4.2(1). Therefore, ∪Γ ⊆ (F : X)�l(r) and again by
Proposition 4.2(1) we obtain that X ⊆ (F : ∪Γ)�r(l). So ∪Γ ∈ Γ and it means that ∪Γ = max Γ. Similarly, (2) and
(3) hold.

Corollary 4.6. LetA be a residuated lattice and F be a filter ofA. Then the following assertions hold for any � ∈ {l, r}.

(1) F�l(r)F
�
r(l) is a closure operator on P(A) and CF�l(r)F

�
r(l)

= {(F : X)�l(r)|X ⊆ A}.
(2) Fl(r)Fr(l) is a closure operator on P(A) and CFl(r)Fr(l) = {(F : X)l(r)|X ⊆ A}.
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(3) FsFs is a closure operator on P(A) and CFsFs = {(F : X)s|X ⊆ A}.

Proof. By Proposition 4.1 and Proposition 2.23((5) and (6)) we obtain that F�l(r)F
�
r(l) is a closure operator on

P(A) and CF�l(r)F
�
r(l)

= {F�l(r)(X)|X ⊆ A} = {(F : X)�l(r)|X ⊆ A}. Analogously, (2) and (3) hold.

Corollary 4.7. LetA be a residuated lattice and F be a filter ofA. Then the following assertions hold for any � ∈ {l, r}.

(1) ST − F�l(r) = (F�l(r)(P(A));∧ST−F�l(r) ,∨ST−F�l(r) ,F,A) is a complete lattice where operations ∧ST−F�l(r) and ∨ST−F�l(r) are
defined as follows.

∧
ST−F�l(r)

i∈I (F : Xi)�l(r) = (F : ∪i∈IXi)�l(r),

and

∨
ST−F�l(r)

i∈I (F : Xi)�l(r) = (F : ∩i∈I(F : (F : Xi)�l(r))
�
r(l))
�
l(r).

(2) ST − Fl(r) = (Fl(r)(P(A));∧ST−Fl(r) ,∨ST−Fl(r) ,F,A) is a complete lattice where operations ∧ST−Fl(r) and ∨ST−Fl(r) are
defined as follows.

∧
ST−Fl(r)

i∈I (F : Xi)l(r) = (F : ∪i∈IXi)l(r),

and

∨
ST−Fl(r)

i∈I (F : Xi)l(r) = (F : ∩i∈I(F : (F : Xi)l(r))r(l))l(r).

(3) ST − Fs = (Fs(P(A));∧ST−Fs ,∨ST−Fs ,F,A) is a complete lattice where operations ∧ST−Fs and ∨ST−Fs are defined
as follows.

∧
ST−Fs
i∈I (F : Xi)s = (F : ∪i∈IXi)s,

and

∨
ST−Fs
i∈I (F : Xi)s = (F : ∩i∈I(F : (F : Xi)s)s)s.

Proof. By Proposition 4.1, (F�l ,F
�
r ) is a Galois connection and by Proposition 4.6(1), F�l(r),F

�
r(l) is

a closure operator on P(A) and CFl(r)Fr(l) = F�l(r)(P(A)). So by Proposition 2.25, ST − F�l(r) =

(F�l(r)(P(A));∧ST−F�l(r) ,∨ST−F�l(r) ,F�l(r)(A),F�l(r)(∅)) is a complete lattice. Also, by Proposition 3.3(9) we have
F�l(r)(∅) = (F : ∅)�l(r) = A and by Proposition 3.3(12) we have F�l(r)(A) = (F : A)�l(r) = F. Analogously, we
can show that (2) and (3) hold.

Proposition 4.8. LetA be a residuated lattice and F be a filter ofA. Then the following assertions hold for any X ⊆ A.

(1) If a, b ∈ (F : X)l(r)
r then a ∧ b ∈ (F : X)l(r)

r . In particular, a, b ∈ (F : X)r implies a ∧ b ∈ (F : X)r.
(2) (F : X)�l ∈ OF(A)[F,A]. In particular, (F : X)l ∈ OF(A)[F,A].

Proof. 1. Let a, b ∈ (F : X)l(r)
r . By r6 we have (x →l(r) a) →r(l) a ≤ (x →l(r) (a ∧ b)) →r(l) a for any

x ∈ X. Since F is a filter and (x →l(r) a) →r(l) a ∈ F so we have (x →l(r) (a ∧ b)) →r(l) a ∈ F
for any x ∈ X. Analogously, we can obtain that (x →l(r) (a ∧ b)) →r(l) b ∈ F. By r10 we have
(x →l(r) (a ∧ b)) →r(l) (a ∧ b) = [(x →l(r) (a ∧ b)) →r(l) a] ∧ [(x →l(r) (a ∧ b)) →r(l) b]. It means that
(x→l(r) (a ∧ b))→r(l) (a ∧ b) ∈ F for any x ∈ X. Hence, we have a ∧ b ∈ (F : X)l(r)

r .
2. Let a ≤ b and a ∈ (F : X)l(r)

l . By r6 we have (a →l(r) x) →r(l) x ≤ (b →l(r) x) →r(l) x for any x ∈ X. Since
F is a filter and (x →l(r) a) →r(l) a ∈ F so we have (b →l(r) x) →r(l) x ∈ F for any x ∈ X. Hence, we have
b ∈ (F : X)l(r)

l .
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Proposition 4.9. Let A be a residuated lattice and F be a filter of A. Then the following assertions hold.

(1) CF�r F�l
= {(F : G)�r |G ∈ OF(A)[F,A]}. In particular, C1�r 1�l

= {(F)�r |F ∈ F(A)}.
(2) CFrFl = {(F : G)r|G ∈ OF(A)[F,A]}. In particular, C1r1l = {(F)r|F ∈ F(A)}.
(3) CFsFs = {(F : G)s|G ∈ OF(A)[F,A]}. In particular, C1s1s = {(F)s|F ∈ F(A)}.

Proof. It is obvious that {(F : G)�r |G ∈ OF(A)[F,A]} ⊆ CF�r F�l
. Now, let H = (F : X)�r for some X ⊆ A. By

Proposition 4.3(1) we have (F : (F : H)�l )�r = H and by Proposition 4.8(2) we have (F : H)�l ∈ OF(A)[F,A]. It
shows that CF�r F�l

⊆ {(F : G)�r |G ∈ OF(A)[F,A]}.
Let H = (F)�r for some F ∈ F(A). By Proposition 4.3(1) we have ((H)�l )�r = H and by Proposition 3.4(1) we

have (H)�l ∈ F(A). It shows that C1�r 1�l
⊆ {(F)�r |F ∈ F(A)}. Analogously, we can show that (2) and (3) hold.

Proposition 4.10. Let A be a residuated lattice and F be a filter of A. Also let F1 and F2 be two ordered-filters of A
such that F ⊆ F1 ∩ F2. Then the following assertions are equivalent.

(1) F1 ∩ F2 = F.
(2) F1 ⊆ (F : F2).
(3) F1 ⊆ (F : F2)s.
(4) F1 ⊆ (F : F2)l

l.
(5) F1 ⊆ (F : F2)r

l .

(6) F1 ⊆ (F : F2)l
r.

(7) F1 ⊆ (F : F2)r
r.

(8) F1 ⊆ (F : F2)l.

(9) F1 ⊆ (F : F2)r.

Proof. Let f1 ∈ F1 and f2 ∈ F2. We have f1, f2 ≤ f1 ∨ f2 and it states that f1 ∈ (F : F2). Thus we have
F1 ⊆ (F : F2). Therefore (1) implies (2). By Proposition 3.3(2), (2) implies (3), (4), (5), (6), (7), (8) and (9).
Now, let f ∈ F1 ∩ F2. So we have f = 1→r(l) f = ( f →l(r) f )→r(l) f ∈ F and it shows that (4), (5), (6), (7) and
consequently (2), (3), (8) and (9) implies (1).

Corollary 4.11. Let A be a residuated lattice and F be a filter of A. Also let G be an ordered-filter of A containing F.
Then the following assertions hold.

(1) (F : G) = (F : G)s = (F : G)l = (F : G)l
l = (F : G)r

l ⊆ (F : G)r.
(2) (F : G)s, (F : G)l, (F : G)l

l and (F : G)r
l are filters of A.

(3) G ⊆ (F : (F : G)�l )�l ∩ (F : (F : G)�l )l ∩ (F : (F : G)l)l ∩ (F : (F : G)l)�l ∩ (F : (F : G)s)�l ∩ (F : (F : G)�l )s ∩ (F :
(F : G)s)s.

Proof. 1. Let G be an ordered-filter of A containing F. By Proposition 4.8(2) we know that (F : G)l
l is

an ordered-filter of A. Also, by hypothesis and Proposition 3.3(8) we have (F : G)l
l ∩ G = F. So by

Proposition 4.10 we obtain that (F : G)l
l ⊆ (F : G)s. It shows that (F : G) = (F : G)s = (F : G)l = (F : G)l

l ⊆

(F : G)r. Analogously, we can show that (F : G) = (F : G)s = (F : G)l = (F : G)r
l ⊆ (F : G)r.

2. It follows by (1) and Proposition 2.18(1).
3. It follows by (1) and Proposition 2.18(4).

Proposition 4.12. Let A be a residuated lattice and F be a filter of A. Then the following assertions hold.

(1) The complete lattice ST − F�l = (F�l (P(A));∧ST−F�l ,∨ST−F�l , (F : −),F,A) is a pseudocomplemented lattice.

(2) The complete lattice ST − Fl = (Fl(P(A));∧ST−Fl ,∨ST−Fl , (F : −),F,A) is a pseudocomplemented lattice.

(3) The complete lattice ST − Fs = (Fs(P(A));∧ST−Fs ,∨ST−Fs , (F : −),F,A) is a pseudocomplemented lattice.

Proof. Let (F : X)�l ∈ F�l (P(A)). By Proposition 3.3((2) and (7)) we have (F : X)�l ∩ (F : (F : X)�l )�l = F. Also,
Proposition 4.11(2) states that (F : X)�l is an ordered-filter of A. So by Corollary 4.11(2) we obtain that
(F : (F : X)�l )�l = (F : (F : X)�l ). It shows that (F : X)�l ∩ (F : (F : X)�l ) = F. Now, let (F : X)�l ∩ (F : Y)�l = F.
Since, (F : X)�l and (F : Y)�l are ordered-filters of A containing F so by Proposition 4.10 we obtain that
(F : Y)�l ⊆ (F : (F : X)�l ). It shows that the meet semilattice (F�l (P(A));∩, (F : −),F) is a pseudocomplemented
lattice. Analogously, we can show that (2) and (3) hold.
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