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Systems of k Boolean Inequations and a Boolean Equation
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Abstract. In this paper elementary generalized systems of Boolean equations are investigated. The
formula for solving systems of k Boolean inequations and a Boolean equation is presented. This systems
have many applications in computer science for solving logical problems. Presented formulas can accelerate
application of elementary generalized systems of Boolean equations.

1. Introduction

The study of Boolean equations in arbitrary Boolean algebras began with Bool, Schröder and Löwenheim.
The basic facts and various forms of solutions of Boolean equations can be found in Rudeanu’s books [5],[6].
Let (B,∩,∪,′ , 0, 1) be a Boolean algebra and n be a natural number.

Definition 1.1. Let x ∈ B. Then
x1 = x, x0 = x′.

If X = (x1, . . . , xn) ∈ Bn and A = (a1, . . . , an) ∈ {0, 1}n then

XA = xa1
1 ∩ · · · ∩ xan

n .

In the sequel ∩will be omitted. For the following definitions and theorems, see e.g. Rudeanu [5].

Definition 1.2. The Boolean functions of n variables (BF n) over the Boolean algebra (B,∪, ·,′ , 0, 1) are determined
by the following rules:

0) For every a ∈ B, constant function fa : Bn
→ B defined by

fa(x1, . . . , xn) = a (∀x1, . . . , xn ∈ B)

is a BF n.
1) For every i = 1, 2, . . . ,n, the projection function εi : Bn

→ B defined by

εi(x1, . . . , xn) = xi (∀x1, . . . , xn ∈ B)
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is a BF n.
2) If f , 1 : Bn

→ B are BF n, then the functions f ∪ 1, f1, f ′ : Bn
→ B defined by

( f ∪ 1)(x1, . . . , xn) = f (x1, . . . , xn) ∪ 1(x1, . . . , xn) (∀x1, . . . , xn ∈ B),

( f1)(x1, . . . , xn) = f (x1, . . . , xn) · 1(x1, . . . , xn) (∀x1, . . . , xn ∈ B),

f ′(x1, . . . , xn) = ( f (x1, . . . , xn))′ (∀x1, . . . , xn ∈ B)

are BF n.
3) Any BF n is obtained by applying the rules 0), 1) and 2) a finite number of times.

Theorem 1.3. (Corollary 1 in [5]) The function f : Bn
→ B is Boolean if and only if it can be written in the canonical

disjunctive form
f (X) =

⋃
A

f (A)XA.

A Boolean equation in n unknown is an equation of the form

f (X) = 1(X),

where f , 1 : Bn
→ B are Boolean function.

Theorem 1.4. (Theorem 2.1 in [5]) Every Boolean equations is equivalent to a single Boolean equation of the form
f(X)=0.

Theorem 1.5. (Theorem 1.5,(1.52) in [5]) Let x1, ...xn, ac, bc(C ∈ {0, 1}n ⊆ Bn) be elements of a Boolean algebra
(B,∪, ·,′ , 0, 1); put X = (x1, x2, ..., xn). The following relation holds:

(
⋃

c acXc)(
⋃

c bcXc) = (
⋃

c acbcXc).

2. Generalized systems of Boolean equations

Definition 2.1. The generalized systems of Boolean equations (GSBE’s for short) over a Boolean algebra are defined
recursively as follows:

(i) every Boolean equation f (X) = 0 is a GSBE;
(ii) the negation, logical conjunction and logical disjunction of any GSBE’s is a GSBE;
(iii) every GSBE is obtained by applying rules (i) and (ii) finitely many times.

Definition 2.2. Let S(x1, . . . , xn) denote a GSBE whose (free!) variables belong to the set {x1, . . . , xn}. By a solution
of S(x1, . . . , xn) is meant any vector (a1, . . . , an) ∈ Bn such that the statement S(a1, . . . , an) obtained by replacing each
xi by ai is true. A GSBE which has solutions is said to be consistent or satisfiable. Two GSBE’s S(x1, . . . , xn) and
T(x1, . . . , xn) are said to be equivalent provided they have the same set of solutions.

Definition 2.3. An elementary GSBE is either a Boolean equation f (X) = 0 or the system of the form

(1) f1(X) , 0 ∧ · · · ∧ fk(X) , 0

or of the form

(2) 1(X) = 0 ∧ f1(X) , 0 ∧ · · · ∧ fk(X) , 0.

If k = 1 then the GSBE is atomic. An atomic GSBE of the form f (X) , 0 will be called a Boolean inequation.
The problem of solving GSBE’s reduces to a particular case of it.

The previous definitions and more on generalized systems of Boolean equations can be found in Rudeanu
[6]. The problem of solving GSBE’s is not completely solved. In the sequel we describe all solutions of
elementary GSBE’s.
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3. Boolean equations

To solve a Boolean equation f (X) = 0 means to determine all X ∈ Bn such that f (X) = 0 holds i.e. to
determine the set S = {X| f (X) = 0 ∧ X ∈ Bn

}.

Theorem 3.1. (Theorem 2.3 in [5]) Let f : Bn
→ B be a Boolean function. The equation f (X) = 0 has a solution if

and only if ∏
A

f (A) = 0.

Let T = (t1, . . . , tn) ∈ Bn.

Definition 3.2. Let f ,F1, . . . ,Fn : Bn
→ B be Boolean functions and F = (F1, . . . ,Fn). The formula

X = F(T),
or in scalar form

xi = Fi(t1, . . . , tn), (i = 1, . . . ,n)
expresses a general solution of the Boolean equation f (X) = 0 if and only if, for every X ∈ Bn,

f (X) = 0⇔ (∃T)X = F(T).

Definition 3.3. Let f ,F1, . . . ,Fn : Bn
× Bm

→ B be Boolean functions and F = (F1, . . . ,Fn). The formula

X = F(T,Y),

or in scalar form

xi = Fi(t1, . . . , tn,Y), (i = 1, . . . ,n)

expresses a general solution of the Boolean equation f (X,Y) = 0 by X if and only if, for every X ∈ Bn and every
Y ∈ Bm,

f (X,Y) = 0⇔ (∃S ∈ Bn) f (S,Y) = 0 ∧ (∃T ∈ Bn)X = F(T,Y).

In accordance with Theorem 3.1. the previous formula can be written as
f (X,Y) = 0⇔

∏
A f (A,Y) = 0 ∧ (∃T ∈ Bn)X = F(T,Y).

Lemma 3.4. (Lemma 2.2 in [5]). Suppose that the equation

ax ∪ bx′ = 0

has a solution (ab = 0). Then

(3) ax ∪ bx′ = 0⇔ (∃t)(x = a′t ∪ bt′)

(4) ax ∪ bx′ = 0⇔ b ≤ x ≤ a′

for all x ∈ B.

Theorem 3.5. (Theorem 3. in [1]) Let f : Bn
→ B be a Boolean function. If f (X) = 0 is consistent then , for every

X ∈ Bn

f (X) = 0⇔ (∃T)X =

k⋃
i=0

( f ′(Ai)Ai ∪ f (Ai) f ′(Ai1 )Ai1 ∪ f (Ai) f (Ai1 ) f ′(Ai2 )Ai2

∪ · · · ∪ f (Ai) f (Ai1 ) f (Ai2 ) · · · f (Aik−1 ) f ′(Aik )Aik )T
Ai

where, for every i ∈ {0, 1, . . . , k}, Ai,Ai1 , . . . ,Aik is a permutation of {0, 1}n.
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4. Systems of Boolean inequations

We shall use the following obvious equivalence

(5) f (X) , 0⇔ (∃p)(p , 0 ∧ f (X) = p).

Let f : Bn
→ B be a Boolean function. The relation

f (X) , 0

is called a Boolean inequation. To solve a Boolean inequation f (X) , 0 means to determine all X ∈ Bn such
that f (X) , 0 holds.

Theorem 4.1. (Remark 10.5 in [5]) Let f : Bn
→ B be a Boolean function. The inequation f (X) , 0 has a solution

if and only if
⋃

A f (A) , 0.

Theorem 4.2. (Theorem 5 in [2]) Let f : Bn
→ B be a Boolean function. Then

f (X) , 0⇔ (∃p)(p , 0 ∧
⋃

A

(( f (A) + p)XA) = 0).

Theorem 4.3. (Theorem 6 in [2]) Let f : Bn
→ B be a Boolean function. Suppose that the inequation f (X) , 0 has a

solution. Let X = Φ(T, p) expresses the general solution of the equation⋃
A

(( f (A) + p)XA) = 0.

Then, for every X ∈ Bn,

f (X) , 0⇔ (∃p)(∃T)(p , 0 ∧
∏

A

f (A) ≤ p ≤
⋃

A

f (A) ∧ X = Φ(T, p)).

Lemma 4.4. (Lemma 4 in [7]) Let f1, . . . , fk : Bn
→ B be Boolean functions. Then the equation

(6)
∏

A

(( f1(A) + p1) ∪ · · · ∪ ( fk(A) + pk)) = 0

in p1,. . . , pk has a solution.

Theorem 4.5. (Theorem 11 in [7] ) Let f1, . . . , fk : Bn
→ B be Boolean function. Then

f1(X) , 0 ∧ · · · ∧ fk(X) , 0⇔

(∃p1) · · · (∃pk)(∃T)(p1 , 0 ∧ · · · ∧ pk , 0 ∧ X = Φ(p1, . . . , pk,T)

∧
∏

A f1(A) ≤ p1 ≤
⋃

A f1(A)

∧ p1
∏

A( f ′1(A) ∪ f2(A)) ∪ p′1
∏

A( f1(A) ∪ f2(A))

≤ p2 ≤ p1
⋃

A( f1(A) f2(A)) ∪ p′1
⋃

A( f ′1(A) f2(A))

. . .⋃
Ck−1∈{0,1}k−1 p1

c1 · · · pk−1
ck−1

∏
A( f c′1

1 (A) ∪ · · · ∪ f
c′k−1
k−1 (A) ∪ fk(A))

≤ pk ≤
⋃

Ck−1∈{0,1}k−1 p1
c1 · · · pck−1

k−1

⋃
A( f c1

1 (A) · · · f ck−1
k−1 (A) fk(A))),

where X = Φ(p1, . . . , pk,T) expresses the general solution of the equation

( f1(X) + p1) ∪ . . . ∪ ( fk(X) + pk) = 0.
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5. Systems of k Boolean inequations and a Boolean equation

In this section we shall consider the system

(2) 1(X) = 0 ∧ f1(X) , 0 ∧ · · · ∧ fk(X) , 0

where 1, f1, . . . , fk : Bn
→ B are Boolean functions. When k=1 then

(7) 1(X) = 0 ∧ f (X) , 0.

Schröder give the condition of the consistency of the system (7). This condition can be found in [6].

Theorem 5.1. (Proposition 10.1. in [6]) System (7) has solution if and only if

(8)
∏

A

1(A) = 0 ∧
⋃

A

f (A)1′(A) , 0.

Banković describe all solutions of the system (7) when the system is consistent.

Theorem 5.2. (Theorem 9 in [3]) Let 1, f : Bn
→ B be Boolean functions. Suppose that the system

1(X) = 0 ∧ f (X) , 0

has solution i.e. ∏
A

1(A) = 0 ∧
⋃

A

f (A)1′(A) , 0.

Let X = Φ(T, p) expresses the general solution of the equation

( f (X) + p) ∪ 1(X) = 0.

Then for every X ∈ Bn,
1(X) = 0 ∧ f (X) , 0⇔

(∃p)(∃T)(p , 0 ∧
∏

A

( f (A) ∪ 1(A)) ≤ p ≤
⋃

A

f (A)1′(A) ∧ X = Φ(T, p)).

Marriott and Odersky determinated satisfiability of system (2) in [8] . They applied this sistem for query
optimization in databases [9]. These results are presented in [6].

Theorem 5.3. (Proposition 5.5 in [6]) Suppose 1, f1 . . . fk are single Boolean fuctions and card(B) ≥ 2k−1. Then the
following conditions are equivalent:

1. 1(X) = 0 ∧ f1(X) , 0 ∧ · · · ∧ fk(X) , 0 is satisfiable;
2. each atomic GSBE 1(X) = 0 ∧ fi(X) , 0 (i = 1 . . . k) is satisfiable;
3. each negated Boolean equation fi(X) � 1(X) (i = 1 . . . k) is satisfiable;
4.

∨
A 1
′(A) fi(A) , 0 (i = 1 . . . k).

Lemma 5.4. Let 1, f1, . . . , fk : Bn
→ B be Boolean functions. Then

(9) 1(X) = 0 ∧ f1(X) , 0 ∧ · · · ∧ fk(X) , 0⇔

(∃p1) · · · (∃pk)(p1 , 0 ∧ · · · ∧ pk , 0 ∧ (1(X) ∪ ( f1(X) + p1) ∪ · · · ∪ ( fk(X) + pk)) = 0).

Proof. Using (5) and formula (∃X)A(x) ∧ B⇔ (∃x)(A(x) ∧ B) (x is not free in B) we get

1(X) = 0 ∧ f1(X) , 0 ∧ · · · ∧ fk(X) , 0
⇔ 1(X) = 0 ∧ (∃p1)(p1 , 0 ∧ f1(X) = p1) ∧ · · · ∧ (∃pk)(pk , 0 ∧ fk(X) = pk)
⇔ (∃p1) · · · (∃pk)(1(X) = 0 ∧ p1 , 0 ∧ f1(X) = p1 ∧ · · · ∧ pk , 0 ∧ fk(X) = pk)
⇔ (∃p1) · · · (∃pk)(p1 , 0 ∧ · · · ∧ pk , 0 ∧ 1(X) = 0 ∧ f1(X) + p1 = 0 ∧ · · · ∧ fk(X) + pk = 0)
⇔ (∃p1) · · · (∃pk)(p1 , 0 ∧ · · · ∧ pk , 0 ∧ 1(X) ∪ ( f1(X) + p1) ∪ · · · ∪ ( fk(X) + pk) = 0

)
.
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Lemma 5.5. Let 1, f1, . . . , fk : Bn
→ B be Boolean functions and p1, . . . , pk ∈ B. Then

(10)
∏

A

(1(A) ∪ ( f1(A) + p1) ∪ · · · ∪ ( fk(A) + pk)) =

⋃
(c1,...,ck)∈{0,1}k

p1
c1 · · · pk

ck

∏
A

(1(A) ∪ f1c′1 (A) ∪ · · · ∪ fk
c′k (A)).

Proof. Let F be the Boolean function defined by

F(p1, . . . , pk) =
∏

A

(1(A) ∪ ( f1(A) + p1) ∪ · · · ∪ ( fk(A) + pk)).

Then, by Theorem 1.3,

F(p1, . . . , pk) =
⋃

(c1,...,ck)∈{0,1}k
p1

c1 · · · pk
ck F(c1, . . . , ck)

=
⋃

(c1,...,ck)∈{0,1}k
p1

c1 · · · pk
ck

∏
A

(1(A) ∪ ( f1(A) + c1) ∪ · · · ∪ ( fk(A) + ck)).

Since fi(A) + ci = fi(A) = fic
′

i (A) for ci = 0 and fi(A) + ci = f ′i (A) = fic
′

i (A) for ci = 1, for every i ∈ (1, . . . , k), it
follows that

F(p1, . . . , pk) =
⋃

(c1,...,ck)∈{0,1}k
p1

c1 · · · pk
ck

∏
A

(1(A) ∪ f1c′1 (A) ∪ · · · ∪ fk
c′k (A)).

Let Ci = (c1, . . . , ci).

Lemma 5.6. Let 1, f1, . . . , fk : Bn
→ B be Boolean functions. Then the equation

(11)
∏

A

(1(A) ∪ ( f1(A) + p1) ∪ · · · ∪ ( fk(A) + pk)) = 0

in p1,. . . , pk has a solution if 1(X) = 0 has a solution.

Proof. The equation (11) has a solution if and only if

(12)
∏

Ck∈{0,1}k

∏
A

(1(A) ∪ ( f1(A) + c1) ∪ · · · ∪ ( fk(A) + ck)) = 0

by Theorem 3.1. The equality (12) can be written as∏
Ck∈{0,1}k

∏
A

(1(A)) ∪
∏

Ck∈{0,1}k

∏
A

(( f1(A) + c1) ∪ · · · ∪ ( fk(A) + ck)) = 0.

Since equation (6) has solution, by Lemma 4.4, it follows that∏
Ck∈{0,1}k

∏
A

(( f1(A) + c1) ∪ · · · ∪ ( fk(A) + ck)) = 0

by Theorem 3.1. If the equation 1(X) = 0 has a solution then
∏

A(1(A)) = 0. Thus∏
Ck∈{0,1}k

∏
A

(1(A)) = 0.

Therefore (12) holds i.e. the equation (11) has a solution.
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Lemma 5.7. Let 1, f1, . . . , fk : Bn
→ B be Boolean functions and p1, . . . , pk ∈ B. Then∏

A

(1(A) ∪ ( f1(A) + p1) ∪ · · · ∪ ( fk(A) + pk)) = 0⇔

⋃
Ck−1∈{0,1}k−1

p1
c1 · · · pk−1

ck−1

∏
A

(1(A) ∪ f c′1
1 (A) ∪ · · · ∪ f

c′k−1
k−1 (A) ∪ fk(A))

≤ pk ≤
⋃

Ck−1∈{0,1}k−1

p1
c1 · · · pck−1

k−1

⋃
A

(1′(A) f c1
1 (A) · · · f ck−1

k−1 (A) fk(A))

∧

∏
A

(1(A) ∪ ( f1(A) + p1) ∪ · · · ∪ ( fk−1(A) + pk−1)) = 0.

Proof. Using (10) we have∏
A(1(A) ∪ ( f1(A) + p1) ∪ · · · ∪ ( fk(A) + pk))

=
⋃

Ck∈{0,1}k p1
c1 · · · pk

ck
∏

A(1(A) ∪ f c′1
1 (A) ∪ · · · ∪ f

c′k
k (A))

= pk(
⋃

Ck−1∈{0,1}k−1 p1
c1 · · · pk−1

ck−1
∏

A(1(A) ∪ f c′1
1 (A) ∪ · · · ∪ f

c′k−1
k−1 (A) ∪ f ′k (A)))

∪ p′k(
⋃

Ck−1∈{0,1}k−1 p1
c1 · · · pk−1

ck−1
∏

A(1(A) ∪ f c′1
1 (A) ∪ · · · ∪ f

c′k−1
k−1 (A) ∪ fk(A))).

Let us introduce the following notation

a =
⋃

Ck−1∈{0,1}k−1 p1
c1 · · · pk−1

ck−1
∏

A(1(A) ∪ f c′1
1 (A) ∪ · · · ∪ f

c′k−1
k−1 (A) ∪ f ′k (A))

b =
⋃

Ck−1∈{0,1}k−1 p1
c1 · · · pk−1

ck−1
∏

A(1(A) ∪ f c′1
1 (A) ∪ · · · ∪ f

c′k−1
k−1 (A) ∪ fk(A)).

Applying Theorem 1.5 we get

ab =
⋃

Ck−1∈{0,1}k−1 p1
c1 · · · pk−1

ck−1 (
∏

A(1(A) ∪ f c′1
1 (A) ∪ · · · ∪ f

c′k−1
k−1 (A) ∪ f ′k (A)))

(
∏

A(1(A) ∪ f c′1
1 (A) ∪ · · · ∪ f

c′k−1
k−1 (A) ∪ fk(A))).

Using the equality (x ∪ y)(x ∪ y′) = x, we get

(1(A) ∪ f c′1
1 (A) ∪ · · · ∪ f

c′k−1
k−1 (A) ∪ fk(A))(1(A) ∪ f c′1

1 (A) ∪ · · · ∪ f
c′k−1
k−1 (A) ∪ f ′k (A))

= 1(A) ∪ f c′1
1 (A) ∪ · · · ∪ f

c′k−1
k−1 (A).

Thus
ab =

⋃
Ck−1∈{0,1}k−1 p1

c1 · · · pk−1
ck−1 (

∏
A(1(A) ∪ f c′1

1 (A) ∪ · · · ∪ f
c′k−1
k−1 (A))).

In accordance with Lemma 5.5 we have

ab =
∏

A(1(A) ∪ ( f1(A) + p1) ∪ · · · ∪ ( fk−1(A) + pk−1)).

The equation apk ∪ bp′k = 0 has a solution if and only if ab = 0, by Lemma 3.4. The equality ab = 0 can be
written as ∏

A(1(A) ∪ ( f1(A) + p1) ∪ . . . ∪ ( fk−1(A) + pk−1)) = 0.

This equation has a solution, by Lemma 5.6 if 1(X) = 0 has a solution. In accordance with Lemma 3.4, the
equation apk ∪ bp′k = 0 is equivalent to b ≤ pk ≤ a′, i.e.⋃

Ck−1∈{0,1}k−1 p1
c1 · · · pk−1

ck−1
∏

A(1(A) ∪ f c′1
1 (A) ∪ · · · ∪ f

c′k−1
k−1 (A) ∪ fk(A))

≤ pk ≤
⋃

Ck−1∈{0,1}k−1 p1
c1 · · · pck−1

k−1

⋃
A(1′(A) f c1

1 (A) · · · f ck−1
k−1 (A) fk(A)).
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Theorem 5.8. Let 1, f1, . . . , fk : Bn
→ B be Boolean function. Then

1(X) = 0 ∧ f1(X) , 0 ∧ · · · ∧ fk(X) , 0⇔

(∃p1) · · · (∃pk)(∃T)(p1 , 0 ∧ · · · ∧ pk , 0 ∧ X = Φ(p1, . . . , pk,T)

∧
∏

A(1(A) ∪ f1(A)) ≤ p1 ≤
⋃

A(1′(A) f1(A))

∧ p1
∏

A(1(A) ∪ f ′1(A) ∪ f2(A)) ∪ p′1
∏

A(1(A) ∪ f1(A) ∪ f2(A))

≤ p2 ≤ p1
⋃

A(1′(A) f1(A) f2(A)) ∪ p′1
⋃

A(1′(A) f ′1(A) f2(A))

. . .⋃
Ck−1∈{0,1}k−1 p1

c1 · · · pk−1
ck−1

∏
A(1(A) ∪ f c′1

1 (A) ∪ · · · ∪ f
c′k−1
k−1 (A) ∪ fk(A))

≤ pk ≤
⋃

Ck−1∈{0,1}k−1 p1
c1 · · · pck−1

k−1

⋃
A(1′(A) f c1

1 (A) · · · f ck−1
k−1 (A) fk(A)),

where X = Φ(p1, . . . , pk,T) expresses the general solution of the equation

1(X) ∪ ( f1(X) + p1) ∪ . . . ∪ ( fk(X) + pk) = 0.

Proof. By Lemma 5.4 equivalence (9) holds. Let X = Φ(p1, . . . , pk,T) be a general solution of the equation

(13) 1(X) ∪ ( f1(X) + p1) ∪ · · · ∪ ( fk(X) + pk) = 0.

Then, by Definition 3.3,

(14) 1(X) ∪ ( f1(X) + p1) ∪ · · · ∪ ( fk(X) + pk) = 0⇔∏
A(1(A) ∪ ( f1(A) + p1) ∪ · · · ∪ ( fk(A) + pk)) = 0 ∧ (∃T)X = Φ(p1, . . . , pk,T).

The condition ∏
A

(1(A) ∪ ( f1(A) + p1) ∪ · · · ∪ ( fk(A) + pk)) = 0

is an equation in p1, . . . pk, which has a solution, by Lemma 5.6. According to Lemma 5.7, this equation is
equivalent to ⋃

Ck−1∈{0,1}k−1 p1
c1 · · · pk−1

ck−1
∏

A(1(A) ∪ f c′1
1 (A) ∪ · · · ∪ f

c′k−1
k−1 (A) ∪ fk(A))

≤ pk ≤
⋃

Ck−1∈{0,1}k−1 p1
c1 · · · pck−1

k−1

⋃
A(1′(A) f c1

1 (A) · · · f ck−1
k−1 (A) fk(A))

∧
∏

A(1(A) ∪ ( f1(A) + p1) ∪ · · · ∪ ( fk−1(A) + pk−1)) = 0.

Similarly, according to Lemma 5.7 it follows that∏
A(1(A) ∪ ( f1(A) + p1) ∪ · · · ∪ ( fk−1(A) + pk−1)) = 0⇔⋃

Ck−2∈{0,1}k−2 p1
c1 · · · pk−2

ck−2
∏

A(1(A) ∪ f c′1
1 (A) ∪ · · · ∪ f

c′k−2
k−1 (A) ∪ fk−1(A))

≤ pk−1 ≤
⋃

Ck−2∈{0,1}k−2 p1
c1 · · · pck−2

k−2

⋃
A(1′(A) f c1

1 (A) · · · f ck−2
k−1 (A) fk−1(A))

∧
∏

A(1(A) ∪ ( f1(A) + p1) ∪ · · · ∪ ( fk−2(A) + pk−2)) = 0.

Applying Lemma 5.7 k times we get
∏

A(1(A) ∪ ( f1(A) + p1)) = 0, which can be written as

(15)
∏

A

(1(A) ∪ f ′1(A))p1 ∪

∏
A

(1(A) ∪ f1(A))p′1 = 0.

This equation in p1 has a solution if and only if
∏

A(1(A) ∪ f ′1(A))
∏

A(1(A) ∪ f1(A)) = 0, by Theorem 3.1.
Since 1(X) = 0 is consistent we have

∏
A(1(A) ∪ f ′1(A))

∏
A(1(A) ∪ f1(A)) =

∏
A(1(A) = 0. Thus the equation

(15) is consistent and its solutions are∏
A(1(A) ∪ f1(A)) ≤ p1 ≤

⋃
A(1′(A) f1(A))
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by Lemma 3.4.
From (9), (14) and the previous conditions for p1, . . . , pk we get Theorem 5.8.

Let m = 2n
− 1 and h(X, p1, . . . , pk) = 1(X) ∪ ( f1(X) + p1) ∪ · · · ∪ ( fk(X) + pk). According to Theorem 3.5 the

general solution of the equation (13) can be obtained as follows:

(16) Φ(p1, . . . , pk,T)) =

m⋃
i=0

(h(Ai, p1, . . . , pk)′Ai∪

h(Ai, p1, . . . , pk)h(Ai1 , p1, . . . , pk)′Ai1 ∪ · · · ∪

h(Ai, p1, . . . , pk)h(Ai1 , p1, . . . , pk) · · · h(Aim , p1, . . . , pk)′Aim )TAi

where for every i ∈ {0, . . . ,m}, (Ai,Ai1 , . . . ,Aim ) is a permutation of {0, 1}n.

Example 1. Let a, b, c, d, e, f ∈ B.Solve the system

ax ∪ bx′ = 0 ∧ cx ∪ dx′ , 0 ∧ ex ∪ f x′ , 0.

Using Theorem 5.8 and (16) for n = 1 we get

ax ∪ bx′ = 0 ∧ cx ∪ dx′ , 0 ∧ ex ∪ f x′ , 0⇔

(∃p)(∃q)(∃t)(p , 0 ∧ q , 0 ∧ (a ∪ c)(b ∪ d) ≤ p ≤ a′c ∪ b′d∧

p((a ∪ c′ ∪ e)(b ∪ d′ ∪ f )) ∪ p′((a ∪ c ∪ e)(b ∪ d ∪ f ))) ≤ q ≤

p((a′ce) ∪ (b′d f )) ∪ p′((a′c′e) ∪ (b′d′ f ))∧

x = (a ∪ (c + p) ∪ (e + q))′t ∪ (b ∪ (d + p) ∪ ( f + q))t).

Example 2. Let B = {0, 1,m, l, k,m′, l′, k′}. Solve the system

m′x′ = 0 ∧ m′x , 0 ∧ kx ∪ lx′ , 0.

Using Example 1, where a = 0, b = m′, c = m′, d = 0, e = k, f = l, we get

m′x′ = 0 ∧ m′x , 0 ∧ kx ∪ lx′ , 0⇔
(∃p)(∃q)(∃t)

(
p , 0 ∧ q , 0 ∧ p = m′ ∧ q = k∧

x = ((m′ + p) ∪ (k + q))′t ∪ (m′ ∪ p ∪ (l + q))t).
Thus x = t ∪m′t′. Taking t ∈ {0, 1,m, l, k,m′, l′, k′}we get x ∈ {m′, 1}.

Example 3. Let B = {0, 1,m, l, k,m′, l′, k′}. Solve the system

mx ∪ lx′ = 0 ∧ kx ∪ lx′ , 0 ∧ m′x′ , 0.

Using Example 1, where a = m, b = l, c = k, d = l, e = 0, f = m′, we get

mx ∪ lx′ = 0 ∧ kx ∪ lx′ , 0 ∧ m′x′ , 0⇔
(∃p)(∃q)(∃t)

(
p , 0 ∧ q , 0 ∧ p = k ∧ q = 0∧

x = (m ∪ (k + p) ∪ q)′t ∪ (l ∪ (l + p) ∪ (m′ + q))t).
We get a contradiction 1 , 0 ∧ q = 0 and hence the system has no solution.



U. Marovac, D. Banković / Filomat 34:4 (2020), 1261–1270 1270

Acknowledgment

This paper is partially supported by the Ministry of Education, Science and Technological Development
Republic of Serbia, Projects No. III44007

References
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