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The Convex Properties and Norm Bounds for Operator Matrices
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Abstract. In this note, the norm bounds and convex properties of special operator matrices H™ and
S are investigated. When Hilbert space K is infinite dimensional, we firstly show that H

= ﬁfl"i)l and
S¥ = 8" for mn = 1,2,---. Then we get that H|" is a convex and compact set in the " topology.
Moreover, some norm bounds for H"” and S|’ are given.

1. Introduction

Let H be an infinite dimensional complex Hilbert space and B(H) be the set of all bounded linear
operators on H. For an operator A € B(H), the adjoint of A is denoted by A*. We write A € B(H)",if Aisa
positive operator, meaning (Ax, x) > 0 for all x € H. As usual, denote by R(A), m and |A] := (A*A)%, the
range of A, the closed linear span of R(A), and the absolute value of A, respectively. Also, P(H) is the set of
all orthogonal projections on H and x ® y denotes the one rank linear operator x ® y(z) := (z, y)x, (z € H),
where x € H and y € K. An operator A is called a contraction ( strict contraction ) if ||Al| < 1 (|A]| < 1). Let
K be Hilbert space (finite or infinite dimensional) and K" := K& K & --- ® K. For convenience, we write

| —

A € B1(H,K) if and only if ||A|| < 1. For A;; € B(H,K), where i,j = 1,2,---m, we denote m X m operator
matrices (Aij)T].:l € B(H™, K™) by

Au A - A
(Aij)iy = A
Aml AmZ e Amm
Form,n =1,2---, we define the following operator matrices of H™ and §1(1m) by

m
HY = (= AA) L 2 Ay A € BOHL KD, 1Y Al <1, M
i=1
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and

S = A= ASAD < A, A € BEH K, (ATADY, € PEH™)). 2)

ij=1
Clearly, forn=1,2,---,

H" c B(H™) and S € BEH™).
Also, set

H™ = Uﬁﬁ,m) and S = Ugnm). (3)

n=1 n=1
It is well known that contractions and their dilations are important and useful for operator and matrix
theory. Many interesting results for contractions and their applications have been obtained in [2, 5, 10].

One speciality of our definition H™ and S is involved contractions. Another is that H™ is related to
the Hua-type operator matrices ([4]). For strict contractions A; and A;, 2 X 2 operator matrices H(A;, A2) =
(= A;Ai)‘l)l%].:l and its cousin G(A1, A) = ((I - AiA;)‘l)l.z,].:1 are well defined and they are called Hua-type
operator matrices ([4]).

In more recent papers [7, 8, 11], the positivity and the norm estimation of Hua type operator matrices
are studied. In particular, [8, Theorem 2.2 and Theorem 2.3] gives the equations

min{|[H(A1, A2l - |A1ll < 1, [|A2ll < 1} =2

and
min{[|G(A1, Al : |A1]l < 1, [|A2ll < 1} = 2.

The above two equations might hint naturally to two problems

I-A"A I-BA
Sup{”(l_A*B I_B*B)“ :A/B 681(7{)} =? (4)
and
I-A"A I-A"B
SuP{II(I_ aa - B*B)u : A,B € By(H)) =2 ©)

Indeed, the second problem is easily characterized (Corollary 2.2). However, the first problem is difficult.
The following Example 2.1 show that the upper bound is different between (4) and (5). More generally, for
Aq, - Ay € B1(H,K), how to characterize the norm bound or other properties of m X m operator matrices
(I- A;Ai);fj:l and (I - A;Aj)zgzl? N

In this note, we mainly investigate some convex properties and norm bound for operator matrices H™

and §§Im), which are based on m X m operator matrices (I — A;Ai) When K be an infinite dimensional

m
ij=1"

Hilbert space, we firstly show that H™ = ﬁfz)l = H™, forn,m=1,2,--- . Then we get that H™ ¢ B(H™)is

a convex and compact set in the w* topology. Moreover, some norm estimations for H™ and 5™ are given.

2. Main results

In this note, we always assume that H is a separable complex Hilbert space. To show our main results,
we need the following lemmas.

Lemma 2.1. For any operator matrix A= (A,-]-)?;:l, where A;; € B(H), fori,j=1,2---m, we have

m=1
AN < 11(1A Dl < Z(giﬁ{llflmmll}),
k=0

m, i+k|m

where[i+k]:{ i+kmodm, i+ktm.
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Proof. The first inequality is a direct calculation ([5, Theorem 1.1]).
Clearly,

lAnll O .- 0 0 Al 0
age_g = g O w0 S
ijll); iz = . . . + - : ) +
v : Do 0 0 1A -1l
0 0 “Amm“ Aml 0 0
0 U 0 “Alm”
lIA2ll --- 0 0
Rl - : : I
0 e ||Amm—1” 0
and
lAull O .o 0
0 A2l -
I . . I < max [|A;ll = max{||Ajitxll, where k=0.
: : .. : 1<i<m 1<i<m
0 0 ”Amm”
Also,
0 1Al --- 0
- : N : Il = max{||Aji+xll, for k=1,
0 0 oo Al 1<i<m
Azl 0 0
and
0 0 A1l
lA2l] -~ 0
. ) . Il = max{l|Aji+xll, for k=m—1
: .. : : 1<i<m
0 ”Amm—lll 0
So
_ m—1
IA]l < ||(||Aij||)31j:1|| < ;(&%Hlt‘hmﬂ”})-
[

1273

For n X n operator matrices, some interesting results such as the estimation of operator norm and
numerical radius have been obtained in [1, 5] and their references. The following lemma which gives
a characterization of n X n positive operator matrices seems to be known. However, we can’t find the
references. As a corollary of this lemma, we might get a simpler proof of [5, Theorem 2.7]( see Remark 2.1

(b)).

Lemma 2.2. Let H; be Hilbert spaces fori =1,2---m and Ae 8(69:.117-&)*. Then there exist Hilbert space

% and operators A; € B(H;, ’]~() such that
N AlAL AlAy - AlAn
a=| - . :

A AL ALAy e AL A

Proof. As Ac B(@!,H;)*, then we conclude A = CC for some C € B(@! H;). Without loss of generality,

we suppose that
Cu Ciz -+ Cip
C=|: - . i
Cm1 sz s Cmm
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Cii
— Coi — ‘
Denote‘KzéBl’.’ll?-(i and A;=| . |€ B(H;,K), fori=1,2,---m. Thus

Cmi
A . . *
o LA AA, - AA,

A=CC=| (A4 A - An)=| : S
- AAL ALAy e ALA

O

Lemma 2.3. (1) Let A; € B1(H) be a net of contractions, where 7 is in a directed index set. If w*lim; A; =
A, then A € B,(H).
(b) Let B; € B(H), C,D € B(H). If w*lim, B; = B, then

w'limB; =B* and «'limCB.D = CBD.
T T

Proof. (a) As w*lim; A; = A, then for any X € T(H), we have lim, tr(A.X) = tr(AX). It is clear that for any
index t
ltr(A-X)| < [|ANNX]l < 1XI]s.

So for all X € T(H), we get that |fr(AX)| < ||X]|l;, which implies ||A|| < 1.
(b) For any X € T(H), we have

ltr[(B; — B)X]| = |tr[(B. - B)X']| — 0

and
tr([CB.D — CBD]X) = tr[C(B; — B)DX] = tr[(B; — B)DXC] — 0,

So w*lim; B; = B* and w*lim; CB.D = CBD. O

Lemma 2.4. ([3]) The set of all positive contractions (B(H)*NB1(H)) is convex. And the extreme points
of B(H)*NB1(H) is P(H).
Lemma 2.5. If M € B(H)*NB1(H), then ||M — M?|| < %.

Proof. Using the spectral resolution of M ([6, Theorem 5.2.2]), we conclude that M = fol AdE), where E,
satisfy A e Ex = 0and Vo1 Ex = I. Thus M? = fol A2dE,, which yields

1
M- M?= f (A = A®)E,.
0
For any unit vector x € H, we have

1
(@1 M0 = [ (0= (B 0) < maxicond =10 =
0

which implies

IM — M?|| = sup{{(M ~ M?)x, x) : |lxll = 1} <

I

[
Lemma 2.6. sup{llgfll ‘A esS?)< 2.



Y. Li et al. / Filomat 34:4 (2020), 1271-1281 1275

Proof. Let A € S@. Without loss of generality, we assume that

T_(I-AA I-BA
“\r-aB 1-BB)

A A'B

where (B*A BB

) e P(HeH)and A, B € B(H,K"). Then

Ax-

AA* + BB = (A B)(B*

) € P(K™).

Denoting P := AA" + BB*, then P is an orthogonal projection, so we have

M 0
0 0

I-M 0

AA:( o o

) :R(P)®R(P)* and BB = ( ) :R(P)®R(P),

where M € B(R(P))* and ||[M]|| < 1.
Using the polar decomposition theorem, we conclude that A = (AA*)2V, where V is a partial isometry

from initial space R(A*) onto final space R(A). Thus

V= (‘61) :H — R(P) & R(P)*,

since R(A) = R(AA*) € R(P), which implies

_ wiv, (M
A_(AA)zV_(0 0

(NI
o
~_~——
—_
o =
~———
I
=
o M=
=
~————

Similarly,

_prndyy o ([-M): 0\ (Ui) _ (@-M)iu
p-wmu-(10 5]

where U] is a partial isometry. Then

T (I-AA I-BA)_ [-ViMV; [-Wi(I-M):M2V,
[-A'B I-BB) \[-viMi(I-M)*U;  [-U(I-MU;
So Lemma 2.5 yields
~ - V:MV; 0
1
Al < ||( ) z—u;a—M)ul)”
M 0 [-Ui(I-M):M:V; |
[-ViM:(I-M):U, 0
< 1+ =W - M)zM3 V||
< 241 -M):M:||

2+ (- M)M]|2
5

5.

O

The following Krein-Milman theorem is well known.

Lemma 2.7. ([9]) Let C be a non-empty convex compact set in a Hausdorff locally convex space X. Then
the set & of extreme points of C is non-empty and C = co(E).

Proposition 2.1. Let K be an infinite dimensional Hilbert space. Then ﬁ,‘;") = ﬁfﬂ)l = ﬁ(’“), for
nm=1,2,---.
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Proof. Let A € H™. Then

m
A=(I-AA),, where Ay, Ay Ay € B(H,K") and || ZAiAﬂl <1.

ij=1/
i=1
Setting
B; = (Igi):H—ﬂK”@?(, fori=1,2---m,
then
B:B; = (A 0) A aea,
it (1 A
Thus _
A=(I-AA)] =T-BB) .
Obviously,
e _[Ai (4 o) (A4 0).
BiB; —(o)( : 0)—( 0 0)'7(n@7<’
SO

m m
1Y BBl =1) AAll < 1.
i=1 i=1

Hence H™ ¢ H™ .
ntl”
Suppose that C € H}S’ﬁ)l and

C=(~-CC),, where Ci,Cp---Cp € B(H, K").

As the Hilbert space K is infinite dimensional, there exists the unitary operator U from K"*! onto K™. Let
D; =UC; € B(H,K"), fori=1,2---m. Then D:D; = C;U"UC; = CCi, so
C=(-DD)y,

where D1, D, -+ - Dy, € B(H,K"), and

m m
1Y DDl =1 GGl <1.
i=1 i=1

which implies ﬁfx)l C ﬁ,(qm). O

By a similar proof, we have the following corollary.

Corollary 2.1. Let K be an infinite dimensional Hilbert space. Then Si,m) = Sf:?l =S forn,m=1,2,--- .

Remark 2.1. (a) If Hilbert space K is finite dimensional, then H™ ¢ ﬁi"i)l ¢ H™ and gfqm) C g;"j_)l c Sim,
Also, the following proof of Theorem 2.1 (a) implies that H™ and S are convex sets.

—_~ —_— m

(b) By Lemma 2.2, we can conclude the positivity A = (A;)}"_, € B(®]. | Hi)* implies [|A| < E,l llA;ill which
has been obtained in [5, Theorem 2.7]. _ _

Indeed, we conclude from Lemma 2.2 that A = (A,‘j):,”].:1 = (C;.*Cj)l’."j:l, for some C; € B(H;, K), where
i=1,2,---m. Thus A;; = C;C;, fori =1,2,---m, so

AN = G Ccall = 1Y GGl < Y IICC = ) Al
i=1 i=1 i=1

Proposition 2.2. Let A;(i = 1,2,...,m) be contractions. Then ||(I — A;.‘Aj);.”j:lll <m.
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Proof. Obviously

I I - T
(I- A;A]-)le=1 <|: + - i< diag(ml, ml,---ml). (6)
I I - I
Since ||Aill < 1fori=1,2,---m, we get that
I(AFAD ol = 1ALAT + A2AS + -+ Ap ALl < m.

ll

So

1 1
N : : ... : > diag(—ml, —ml,- - - — ml). (7)
I I - I AnA ALA - ALAN

r 1 --- 1 AlA AlAy - AlAn

Thus above two inequalities (6) and (7) imply the desired conclusion. [
Corollary 2.2. max{||(I - A;Aj);.”j:lll :A € BI(H,K), fori=1,2---m} = m.
For another problem (4), we only have the following result.
Proposition 2.3. Let A;(i = 1,2,...,m) be contractions. Then ||(I — A;Ai);”jzlll <2m-1.

Proof. By Lemma 2.1,

m—=1

I = AGA) 1l < Z(fn&ﬁ“” — ApigAill})-
k=0 —

Clearly,
11212)?’(1{”1 _A[i+k]Ai||} S 1, for k = 0
and
max{|ll - Ay All} <2, for k=1,2,---m—1,
1<i<m
SO 1
e
I = 454Dl < ) (max (I = Af g Aill) < 2m ~ 1.
k=0
O

Remark 2.2. If Hilbert space K is finite dimensional, then using the fact that the essential norm is less
than the norm for operators, we conclude that

min{l|(I - AJA)] il : A1, Az - Aw € Bi(H, K)} = m.

The following example shows that equation (4) does not hold, in general.

Example 2.1. Let {¢;}°, and {f;}}, be orthonormal bases of H and K, respectively. Define one rank
operators A and Bby A = —f; ® e; and B = f; ® e;, respectively. Then it is easy to see that A"A = e; ® e,
A'B =—-e,®¢eq,and B'B = ¢; ® ¢1. Thus

100110
0 00O0T1O0
~ (I-A"A I-BA\_[0 0 1 00 I
AZ(I_A*B I_B*B): 1 0 0 0 O 0 ~7_{1®7_{2€B7_(3@7_{]®7-{2®7-{3,
110010
0 0TI 0011
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where 7'{1 = V{€1}, 7‘{2 = V{el}, 7'{3 = V{e,‘ > 3}
Denoting a unit vector x = (\%61, 0,0,0, \irzez, 0), we conclude that

IA]l = |Ax]| = [I( V2ey, —e1, V2e,,0)| = V5 > 2.

\F”’ / «/’

Theorem 2.1. Let K be an infinite dimensional Hilbert space. Then
(a) Hm™ ¢ B(H™) is a convex set.

(b) H™ is a compact subset in the w* topology.

(¢) H™ is a compact subset in the weak operator topology.

Proof. (a) For any A, B € H™, we assume that

= (- AA)}'-, and B=(I-BB)'.,,

where A; € B(H,K*) and B; € B(H,K') satisfy || Y, AAY<1land || X BBl < 1. Thenfor 0 <t <1,itis
i=1 i=1
clear that _ _
tA+(1-HB=(1I- (tA’;A,f +(1- t)B;B,«))lezl.

Defining C; € B(H, K**) as the following operator matrices for j = 1,2,---m

\/_A S !
Cj= (\/_B TH - KoK,
we have
- («/ZA* Vi- B) ViA; ) _ = tA'A; + (1 - B'B;
- ] '\/_B ] 1 ] 17
SO _ _
tA+(1-t)B=(1- CC)” 1°
Moreover,
I ;CiC;” = ICGCHl
= ItEATA; + (1 = (BBl
< AN+ (- t>||(B By
= tIIZAAI|+(1—f)IIZBBII
< 1.
Thus

tA+(1-8B = (I-CC)r"_, € H™,

which says that H™ is a convex set.

(b) By Proposition 2.3, we conclude that Hm™ ¢ (2m —1)B1(H™). It is well known that Alaoglu’s theorem
implies that B;(H™) is a compact set in the w* topology. So (2m — 1)B;(H™) is also a compact set in the w*

topology. Thus, it is enough to show that H™ is a closed subset in the w* topology. Let A, be a net of H™
with o* lim, AT = A. We may assume that for all index 7, K; = K, as K is infinite dimensional and

Ac = (1= AL AW, where Ay € B(H, K).

Also, set _
A= (Mij)?szl, where M;; € B(H), for i,j=1,2,---m
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From Lemma 2.3 (b), it is easy to observe that w* lim, :4: A implies that
w lim(I - A, Ay) =M
T j

S0
w" lim(I — A7,Aqj) = M
T
Using Lemma 2.3 (b) again, we get
" im(I = A7 Aqj) = M;
T
Thus M;; = M;.‘]. and
W' li?‘l(A* T]),] == Mji)m

ij=1/

which yields

(I = M)y € B(H™),
since || Z AGALI < 1 implies (I - T])z] _; € B(H™)" for all . Applying Lemma 2.2, we get that C; €
B(H, 7-{'") such that

(I Mﬂ)zjl (Cc)t] 1’
Hence

(Ml])zj 1~ (I C* 1] 17

As two Hilbert spaces H and K are infinite dimensional, there exists the unitary operator U from H" onto
K.LetD; = UC; fori=1,2---m. Then D; € B(H,K) and

(M1])1]1 (I- CC)I]l (- DD)I]l

Furthermore, Lemma 2.3 (a) implies
m m
1Y DD}l = 1), GGl = Gl = I = M)y < 1,
i=1 i=1

since
||(Af[iATj):-1f]-:1|| <1, forallindex .

So A € H™, which says that H™ is a w*—closed set.
(c) follows from (b) and the fact that the w* topology is equivalent to the weak operator topology on the
closed ball 2m — 1)B1(H™). O

Theorem 2.2. Let K be an infinite dimensional Hilbert space. Then the set of all extreme points of H™
is S0,
Proof. Firstly, we show that A € S is an extreme point of H™). Let A € St satisfy
AVZ i’gl + (1 - t)gz,

where A}, Ay € H™ and 0 < t < 1. By the definitions of H™ and S, we assume that

A=(-AA)

f Z}:(I—B;B)’"]l and A, = (I - CiCy!

ij=1"
Then

(AFA) =1

m m
€ P(H™), IIZB,-B}‘II <1 and ||ch-c;|| <1.
i=1 i=1
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Obviously,
(L= AA), = (- (BB, + (1 - OCC)) L,
which implies
(AiA)]y = tB;B)) iy + (1 = (CC) .
Moreover,
m m
BBl = 1Y BiB;ll < Land IC;CpYoill =11Y . CCll < 1.
i=1 i=1
Using lemma 2.4, we get
(AA) o = BBy = (CC) i,
which induces A = Zl = gz. Thus A is an extreme point of am.
In the following, we shall show that E € H™ () St is not the extreme point of H™, where S is the

complement set of 5t Without loss of generality, we assume that

E=(-EE), (®)

SO )
IEE Il =11 EEN<1,
i=1
which implies from Lemma 2.4 that

(E{Ej)}'ey = tC+ (1 =)D, )

where C,D € Bi(H™) N B(H™*,0<t <1and C#D,as (E;I-Z]-);.ﬂj:1 ¢ P(H™). Using again Lemma 2.2 and
the fact that H and K are infinite dimensional, we can get that

C=(CCpy, and D = (D;D; iy (10)

where C;, D; € B(H,K), fori=1,2,---m.

pu— —_— m m
Furthermore, using inequalities ||C|| < 1 and ||D|| < 1, we conclude that || Z CCll<Tand|l Z DDl <1,
so N N i=1 i=1
(I-CiCi)iy € H™ and (I- DiD))"_, € H™.

According to equations (8),(9) and (10), we get
E=HI-CC)l'ey + (1= (I = DD, (11)

Clearly, C#D implies
(I-CC)iy # (- DDy
Thus equation (11) yields E isn’t an extreme point of H™. O

Proposition 2.4. Let K be an infinite dimensional Hilbert space. Then
— —" — 1 I —
H™ = co(Sm) , where co(S") = {Z tixiin >1,t; >0, Z ti=1,x € ™).
i=1 i=1
Proof. By Theorem 2.1, H™ is convex and compact in the w* topology. Then Theorem 2.2 and Krein-Milman

theorem imply H®™ = co(S™) . [
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Theorem 2.3. Let K be an infinite dimensional Hilbert space. Then sup{llgll ‘Ae ﬁ(z)} < g

Proof. For A € co(S@), we can write A = Y, t;A;, where A; € 5@, so Lemma 2.5 yields that

AN =11) Al < ) HIA <
i=1 i=1

N Ol

— _ — —_—w"
Using again Lemma 2.3 (a), we conclude that ||B| < 3, for any B € H® = co(S®) . 0O

Remark 2.3. If Hilbert space K is infinite dimensional, then we conjecture
T Aeao 2
supf{||All : A e HY} = 5
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