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Available at: http://www.pmf.ni.ac.rs/filomat

Crossed Products of Hom-Hopf Algebras

Daowei Lua,b, Yizheng Lic, Shuangjian Guo c

aSchool of Mathematical Sciences, Qufu Normal University, Qufu, 273165, P. R. China
bDepartment of Mathematics, Jining University, Qufu, 273155, P.R. China

cSchool of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, 550025, P. R. China

Abstract. Let (H, α) be a Hom-Hopf algebra and (A, β) be a Hom-algebra. In this paper we will construct
the Hom-crossed product (A#σH, β⊗α), and prove that the extension A ⊆ A#σH is actually a Hom-type cleft
extension and vice versa. Then we will give the necessary and sufficient conditions to make (A#σH, β ⊗ α)
into a Hom-Hopf algebra. Finally we will study the lazy 2-cocycle on (H, α).

1. Introduction

The crossed products of algebras with Hopf algebras were independently introduced in [4] and [6].
Blattner and Montgomery showed in [5] that a crossed product with invertible 2-cocycle is a cleft extension.
In particular, crossed products provide examples of Hopf-Galois extensions. Conversely, a Hopf-Galois
extension with normal basis property is a crossed product, see [5]. In the paper [24], the authors gave the
necessary and sufficient conditions for a crossed product to form a bialgebra, even a Hopf algebra, which
is a more general structure than the Radford biproduct.

Algebraic deformation has been well developed recently, and its theory has been applied in modules
of quantum phenomena, as well as in analysis of complex systems. Hom-type algebras appeared first
in physical contexts, in connection with twisted, discretized or deformed derivatives and corresponding
generalizations, discretizations and deformations of vector fields and differential calculus (see [1, 2, 9–
12, 16]). Hom-type algebras have been introduced in the form of Hom-Lie algebras in [15], where the
Jacobi identity was twisted along a linear endomorphism. Meanwhile, Hom-associative algebras have
been suggested in [21] to give rise to a Hom-Lie algebra using the commutator bracket. Other Hom-type
structures such as Hom-coalgebras, Hom-bialgebras, Hom-Hopf algebras and their properties have been
considered in [22, 25]. The authors [19] introduced Hom-analogues of twisted tensor product and smash
product by twistin1 principle, and in [18] the Hom-type smash coproduct and Majid bicrossproduct was
constructed.
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Let H be a Hopf algebra. A left 2-cocycle σ : H ⊗H→ k is called lazy if it satisfies the condition

σ(h1, 11)h212 = h111σ(h2, 12),

for all h, 1 ∈ H. This kind of cocycles were used in [8] to compare the Brauer groups of Sweedler’s Hopf
algebra with respect to the different quasitriangular structures. Lazy 2-cocycle has been recently developed
in [3] which mainly stated that the set Z2

L(H) of all normalized and convolution invertible lazy 2-cocycles on
H form a group and defined the second lazy cohomology group H2

L(H) = Z2
L(H)/B2

L(H), where B2
L(H) is lazy

2-coboundary. This group generalizes the second Sweedler cohomology group of a cocommutative Hopf
algebra. Moreover the group H2

L(H) could be imbedded as a subgroup into Bi1al(H), the group of Bigalois
objects of H.

Motivated by these ideas, in this paper, firstly we will construct the Hom-crossed product, and prove the
equivalence between crossed products and cleft extensions. Then we will give the necessary and sufficient
conditions for a crossed product to form a Hom-Hopf algebra. Finally we will establish the lazy 2-cocycle
in the setting of Hom-Hopf algebra.

This paper is organized as follows:
In section 1, we will recall the basic definitions and results on Hom-Hopf algebra, such as Hom-module,

Hom-comodule, Hom-smash product and Hom-smash coproduct.
In section 2, we will construct the Hom-crossed product, and prove the equivalence between crossed

products and cleft extensions (see Theorem 2.10).
In section 3, We will give the necessary and sufficient conditions for a crossed product to form a

Hom-Hopf algebra (see Proposition 3.2 and 3.5).
In section 4, we will define the Hom-type lazy 2-cocycle and prove that all normalized and convolution

invertible lazy 2-cocycles form a group Z2
L(H). Then we will extend this kind of 2-cocycle to Drinfeld double

D(H) and Radford biproduct. In the end we will use the lazy 2-cocycle to construct the duals of the objects
in the more general Yetter-Drinfeld category (see Proposition 4.11).

Throughout this article, all the vector spaces, tensor product and homomorphisms are over a fixed
field k unless otherwise stated. We use the Sweedler’s notation for the terminologies on coalgebras. For a
coalgebra C, we write comultiplication ∆(c) =

∑
c1 ⊗ c2 for any c ∈ C.

2. Preliminary

In this section, we will recall the definitions in [20] on Hom-Hopf algebras, Hom-modules and Hom-
comodules.

A unital Hom-associative algebra is a triple (A, µ, α) where α : A −→ A and µ : A ⊗ A −→ A are linear
maps, with notation µ(a ⊗ b) = ab such that for any a, b, c ∈ A,

α(ab) = α(a)α(b), α(1A) = 1A,

1Aa = α(a) = a1A, α(a)(bc) = (ab)α(c).

A linear map f : (A, µA, αA) −→ (B, µB, αB) is called a morphism of Hom-associative algebra if αB◦ f = f ◦αA,
f (1A) = 1B and f ◦ µA = µB ◦ ( f ⊗ f ).

A counital Hom-coassociative coalgebra is a triple (C,∆, ε, α) where α : C −→ C, ε : C −→ k, and
∆ : C −→ C ⊗ C are linear maps such that

ε ◦ α = ε, (α ⊗ α) ◦ ∆ = ∆ ◦ α,

(ε ⊗ id) ◦ ∆ = α = (id ⊗ ε) ◦ ∆,

(∆ ⊗ α) ◦ ∆ = (α ⊗ ∆) ◦ ∆.

A linear map f : (C,∆C, αC) −→ (D,∆D, αD) is called a morphism of Hom-coassociative coalgebra if
αD ◦ f = f ◦ αC, εD ◦ f = εC and ∆D ◦ f = ( f ⊗ f ) ◦ ∆C.

In what follows, we will always assume all Hom-algebras are unital and Hom-coalgebras are counital.
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A Hom-bialgebra is a quadruple (H, µ,∆, α), where (H, µ, α) is a Hom-associative algebra and (H,∆, α)
is a Hom-coassociative coalgebra such that ∆ and ε are morphisms of Hom-associative algebra.

A Hom-Hopf algebra (H, µ,∆, α) is a Hom-bialgebra H with a linear map S : H −→ H(called antipode)
such that

S ◦ α = α ◦ S,
S(h1)h2 = h1S(h2) = ε(h)1,

for any h ∈ H. For S we have the following properties:

S(h)1 ⊗ S(h)2 = S(h2) ⊗ S(h1),
S(1h) = S(h)S(1), ε ◦ S = ε.

For any Hopf algebra H and any Hopf algebra endomorphism α of H, there exists a Hom-Hopf algebra
Hα = (H, α ◦ µ, 1H,∆ ◦ α, ε,S, α).

Let (A, αA) be a Hom-associative algebra, M a linear space and αM : M −→ M a linear map. A left
A-module structure on (M, αM) consists of a linear map A ⊗M −→M, a ⊗m 7→ a ·m, such that

1A ·m = αM(m),
αM(a ·m) = αA(a) · αM(m),
αA(a) · (b ·m) = (ab) · αM(m),

for any a, b ∈ A and m ∈M.
Similarly we can define the right (A, α)-modules. Let (M, µ) and (N, ν) be two left (A, α)-modules, then a

linear map f : M −→ N is a called left A-module map if f (am) = a f (m) for any a ∈ A, m ∈M and f ◦µ = ν◦ f .
Let (C, αC) be a Hom-coassociative coalgebra, M a linear space and αM : M −→ M a linear map. A right

C-comodule structure on (M, αM) consists a linear map ρ : M −→M ⊗ C such that

(id ⊗ εC) ◦ ρ = αM,

(αM ⊗ αC) ◦ ρ = ρ ◦ αM,

(ρ ⊗ αC) ◦ ρ = (αM ⊗ ∆) ◦ ρ.

Let (M, µ) and (N, ν) be two right (C, γ)-comodules, then a linear map 1 : M −→ N is a called right
C-comodule map if 1 ◦ µ = ν ◦ 1 and ρN ◦ 1 = (1 ⊗ id) ◦ ρM.

Let (H, µH,∆H, αH) be a Hom-bialgebra. A Hom-associative algebra (A, µA, αA) is called a left H-module
Hom-algebra if (A, αA) is a left H-module, with the action H ⊗ A −→ A, h ⊗ a 7→ h · a, such that

α2
H(h) · (ab) = (h1 · a)(h2 · b),

h · 1A = ε(h)1A,

for all h ∈ H and a, b ∈ A.
When A is a left H-module Hom-algebra, in [20] the Hom-smash product A#H is defined as follows:

(a#h)(b#k) = a(α−2
H (h1) · α−1

A (b))#α−1
H (h2)k,

for all a, b ∈ A and h, k ∈ H.
Recall from [18] that a Hom-coalgebra (C, γ) is Hom-comodule coalgebra if it is a left Hom-comdule

over the Hom-bialgebra (H, α) and satisfies the following relation:

α2(c(−1)) ⊗ c(0)1 ⊗ c(0)2 = c1(−1)c2(−1) ⊗ c1(0) ⊗ c2(0),

ε(c(−1))c(0) = ε(c)1.

Then we have the Hom-smash coproduct (C ×H, γ ⊗ α) with the comultiplication and counit

∆(c × h) = c1 × γ
−2(c2(−1))α−1(h1) ⊗ γ−1(c2(0)) × h2,

ε(c × h) = εC(c)εH(h).
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3. Hom-Crossed product

In this section we will construct the crossed product on the Hom-Hopf algebra and prove that Hom-
crossed product is equivalent to Hom-cleft extension.

Definition 3.1. Let (H, α) be a Hom-Hopf algebra and (A, β) a Hom-algebra. We say that H weakly acts on A from
the left if there is a linear map, given by · : H ⊗ A→ A, such that for all h ∈ H and a, b ∈ A

β(h · a) = α(h) · β(a)

and

α2(h) · (ab) = (h1 · a)(h2 · b), h · 1 = εH(h)1.

Proposition 3.2. Let (H, α) be a Hom-Hopf algebra and (A, β) a Hom-algebra. Assume that H weakly acts on A
from the left, then (A#σH, β ⊗ α) is a Hom-algebra under the following multiplication

(a#h)(b#1) = a[(α−4(h11) · β−2(b))σ(α−3(h12), α−2(11))]#α−1(h212),

for all a, b ∈ A and h, 1 ∈ H, if and only if

(1) A is a twisted Hom-H-module, that is, 1 · a = β(a) for all a ∈ A, and

(h1 · (α−1(l1) · a))σ(α(h2), α(l2)) = σ(α(h1), α(l1))(α−1(h2l2) · β(a)),

for all h, l ∈ H.

(2) σ is normal, namely for all h ∈ H,

σ(h, 1) = σ(1, h) = εH(h), σ ◦ (α ⊗ α) = β ◦ σ.

(3) For all h, l,m ∈ H,

(h1 · σ(l1,m1))σ(α(h2), l2m2) = σ(α(h1), α(l1)))σ(h2l2, α2(m)).

Proof. The direction (⇒) is a routine exercise and we only prove the other direction. For all a, b, c ∈ A and
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h, 1, l ∈ H,

[(a#h)(b#1)](β(c)#α(l))

={a[(α−4(h11) · β−2(b))σ(α−3(h12), α−2(11))]#α−1(h212)}(β(c)#α(l))

={[α−1(a)(α−4(h11) · β−2(b))][σ(α−3(h12), α−2(11))(α−6(h2111211) · β−2(c))]}

σ(α−3(h2121212), l1)#α−2(h22122)l2
(1)
={[α−1(a)(α−4(h11) · β−2(b))][(α−6(h1211) · (α−6(1111) · β−3(c)))σ(α−5(h1212), α−4(1112))]}

σ(α−3(h122)α−2(112), l1)#α−1(h212)l2
={[α−1(a)((α−5(h11) · β−3(b))(α−5(h12) · (α−7(1111) · β−4(c))))]σ(α−3(h211), α−3(1112))}

σ(α−3(h212)α−2(112), l1)#α−1(h212)l2
=[a(α−2(h1) · (β−2(b)(α−6(1111) · β−3(c)))][σ(α−3(h211), α−3(1112))

σ(α−4(h212)α−3(112), α−1(l1))]#α−1(h212)l2
=[a(α−2(h1) · (β−2(b)(α−4(11) · β−3(c)))][σ(α−3(h211), α−3(1211))

σ(α−4(h212)α−4(1212), α−1(l1))]#(α−1(h2)α−2(122))l2
(3)
=[a(α−2(h1) · (β−2(b)(α−4(11) · β−3(c)))][(α−4(h211) · σ(α−4(1211), α−3(l11)))

σ(α−3(h212), α−4(1212)α−3(l12))]#(α−1(h2)α−2(122))l2
={a[(α−3(h1) · (β−3(b)(α−5(11) · β−4(c))))(α−5(h211) · σ(α−5(1211), α−4(l11)))]}

σ(α−2(h212), α−3(1212)α−2(l12))#(α−1(h2)α−2(122))l2
={a[α−3(h11) · ((β−3(b)(α−5(11) · β−4(c)))σ(α−5(1211), α−4(l11)))]}

σ(α−1(h12), α−3(1212)α−2(l12))#h2(α−2(122)α−1(l2))

=β(a){[α−3(h11) · ((β−3(b)(α−5(11) · β−4(c)))σ(α−5(1211), α−4(l11)))]

σ(α−2(h12), α−4(1212)α−3(l12))}#h2(α−2(122)α−1(l2))

=β(a){[α−3(h11) · β−2((b(α−4(111) · β−2(c))σ(α−3(112), α−4(l1))))]

σ(α−2(h12), α−3(121)α−3(l21))}#h2(α−2(122)α−2(l22))
=(β(a)#α(h))[(b#1)(c#l)]

It is easy to see that 1#1 is the unit and (β ⊗ α)((a#h)(b#1)) = (β(a)#α(h))(β(b)#α(1)). The proof is completed.

Remark 3.3. The condition (3) in the above proposition is actually a generalized form of Hom-2-cocycle introduced
in [18], when taking A = k.

Example 3.4. (1) Consider the case when σ is trivial, that is, σ(h, 1) = εH(h)εH(1)1 for all h, 1 ∈ H. Then the
Hom-crossed product is reduced to Hom-smash product.

(2) Let H be a Hopf algebra, A an algebra and H weakly acts on A. Assume that α is a Hopf automorphism of
H and β is an algebra isomorphism of A. Then we have the Hom-Hopf algebra (Hα, α) and Hom-algebra (Aβ, β).
Furthermore assume that β(h · a) = α(h) · β(a), then define the action h . a = α(h) · β(a), then Hα weakly acts on Aβ.
If A#σH is a crossed product and σ ◦ (α ⊗ α) = β ◦ σ, Aβ#σHα is a Hom-crossed product.

(3) Let H4 be a vector space with a basis {1, 1, x, y}. Define the Hom-Hopf algebra structure on H4 as follows:
multiplication:

H4 1 1 x y
1 1 1 −x −y
1 1 1 −y −x
x −x y 0 0
y −y x 0 0
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comultipication, counit and antipode:

∆(1) = 1 ⊗ 1, ∆(1) = 1 ⊗ 1,

∆(x) = (−x) ⊗ 1 + 1 ⊗ (−x), ∆(y) = (−y) ⊗ 1 + 1 ⊗ (−y),
ε(1) = 1, ε(1) = 1, ε(x) = 0, ε(y) = 0,
S(1H) = 1H, S(1) = 1, S(x) = y, S(y) = −x.

The automorphism α : H4 → H4 is given by

α(1H) = 1H, α(1) = 1, α(x) = −x, α(y) = −y.

Let k[a] be the polynomial algebra with the indeterminant a and k[a]/(a2) be the quotient algebra. Consider the
Hom-algebra (k[a]/(a2), id) and define the action of H4 on k[a]/(a2) by

h · 1 = ε(h)1, 1 · a = a, 1 · a = a, x · a = 0, y · a = 0.

For any t ∈ k, define a linear map σ : H4 ⊗H4 → k[a]/(a2) by

σ 1 1 x y
1 1 1 0 0
1 1 1 0 0
x 0 0 t

2 −
t
2

y 0 0 t
2 −

t
2

Easy to see that σ satisfies the conditions in Proposition 2.2. Thus we have a crossed product k[a]/(a2)#σH with the
multiplication:

• 1#1 1#1 1#x 1#y a#1 a#1 a#x a#y
1#1 1#1 1#1 −1#x −1#y a#1 a#1 −a#x −a#y
1#1 1#1 1#1 −1#y −1#x a#1 a#1 −a#y −a#x
1#x −1#x 1#y 0 0 −a#x a#y −

t
2 a#1 −

t
2 a#1

1#y −1#y 1#x 0 0 −a#y a#x −
t
2 a#1 t

2 a#1
a#1 a#1 a#1 −a#x −a#y 0 0 0 0
a#1 a#1 a#1 −a#y −a#y 0 0 0 0
a#x −a#x a#y t

2 a#1 −
t
2 a#1 0 0 0 0

a#y a#y a#x t
2 a#1 −

t
2 a#1 0 0 0 0

Lemma 3.5. Especially we have the following identities:

(1) For all h, 1, l ∈ H,

(i) h · σ(1, l) =

[σ(α−3(h11), α−3(111))σ(α−4(h12l12), α−2(l1))]σ−1(α−1(h2), α−2(12l2)),
(ii) h · σ−1(1, l) =

σ(α−1(h1), α−2(11l1))[σ−1(α−4(h21121), α−2(l2))σ−1(α−3(h22), α−3(122))].

(2) For all a, b ∈ A and h, 1 ∈ H,

(i) (a#1)(b#1) = ab#1, (1#h)(1#1) = σ(h1, 11)#α−1(h212),
(ii) (1#h)(a#1) = α−1(h1) · a#h2, (a#1)(1#h) = β(a)#α(h).

Proof. Straightforward.

Let (H, α) be a Hom-bialgebra and (M, µ) a right Hom-H-comodule via ρ, then the coinvariant subco-
module McoH = {m ∈M|ρ(m) = µ(m) ⊗ 1}.
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Definition 3.6. Let (H, α) be a Hom-bialgebra, (B, β) a right Hom-H-comodule algebra and A = BcoH. We say A ⊆ B
is a cleft extension if there exists a right H-comodule map γ : H→ B which is convolution invertible.

Without generalization we can assume γ(1) = 1 in what follows.

Lemma 3.7. Assume that (B, β) is a right H-Hom-comodule algebra, via ρ : B → B ⊗ H, b 7→ b(0) ⊗ b(1), and that
A ⊂ B is a H-cleft extension via γ. Then

(1) ρ ◦ γ−1 = (γ−1
⊗ S) ◦ τ ◦ ∆

(2) b(0)γ−1(b(1)) ∈ A for any b ∈ B.

Proof. (1) Since ρ is an algebra map, ρ ◦ γ−1 is the inverse of ρ ◦ γ = (γ⊗ id)∆. Let λ = (γ−1
⊗ S) ◦ τ ◦∆. Then

for any h ∈ H

((ρ ◦ γ) ∗ λ)(h) = [(γ ⊗ id)∆(h1)][(γ−1
⊗ S) ◦ τ ◦ ∆(h2)]

= [γ(h11) ⊗ h12][γ−1(h22) ⊗ S(h21)]

= γ(h11)γ−1(h22) ⊗ h12S(h21)

= γ(α(h1))γ−1(h22) ⊗ εH(h21)1

= γ(α(h1))γ−1(α(h2)) ⊗ 1
= εH(h)1 ⊗ 1.

Thus λ = ρ ◦ γ−1 by the uniqueness of inverses.
(2) For any b ∈ B

ρ(b(0)γ
−1(b(1))) = ρ(b(0))ρ(γ−1(b(1)))

= (b(0)(0) ⊗ b(0)(1))(γ−1(b(1)2) ⊗ S(b(1)1))

= b(0)(0)γ
−1(b(1)2) ⊗ b(0)(1)S(b(1)1)

= β(b(0))γ−1(b(1)2) ⊗ εH(b(1)1)1

= β(b(0))γ−1(α(b(1))) ⊗ 1

= β(b(0)γ
−1(b(1))) ⊗ 1.

The proof is completed.

Proposition 3.8. Let A ⊂ B be right H-cleft extension via γ : H → B. Then there is a crossed product action of H
on A given by

h · a = (γ(α−2(h1))β−1(a))γ−1(α−1(h2)),

and a convolution inverse map σ : H ⊗H→ A given by

σ(h, 1) = (γ(α−3(h1))γ(α−3(11)))γ−1(α−3(h212)).

Then we have the crossed product A#σH. Moreover Φ : A#σH → B, a#h 7→ β−2(a)γ(α−2(h)) is a Hom-algebra
isomorphism. Moreover Φ is both a left A-module and right H-comodule map, where a · (b#h) = β(a)b#α(h) and
(a#h)(0) ⊗ (a#h)(1) = β(a)#h1 ⊗ α−1(h2).

Proof. Define the linear map Ψ : B→ A#σH by

b 7→ β−2(b(0)(0)γ
−1(b(0)(1)))#b(1).
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First of all we need to show h · a and σ(h, 1) belong to A for all a ∈ A, h, 1 ∈ H. Indeed

ρ(h · a) = ρ((γ(α−2(h1))β−1(a))γ−1(α−1(h2)))

= [ρ(γ(α−2(h1))ρ(β−1(a)))]ρ(γ−1(α−1(h2)))

= [(γ(α−2(h11)) ⊗ α−2(h12))(a ⊗ 1)](γ−1(α−1(h22)) ⊗ S(α−1(h21)))

= (γ(α−2(h11))a)(γ−1(α−1(h22))) ⊗ α−1(h12)S(α−1(h21))

= (γ(α−1(h1))a)β(γ−1(α−1(h22))) ⊗ ε(h21)1

= (γ(α−1(h1))a)γ−1(h2) ⊗ 1
= β(h · a) ⊗ 1,

Thus h · a ∈ A, and easy to see H weakly acts on A.
And

ρ(σ(h, 1)) = (ργ(α−3(h1))ργ(α−3(11)))ργ−1(α−3(h212))

= (β−3
⊗ α−3)[(γ(h11) ⊗ h12))(γ(111) ⊗ 112)][γ−1(h22122) ⊗ S(h21121)]

= (β−3
⊗ α−3)[(γ(h11)γ(111))γ−1(h22122) ⊗ (h12112)S(h21121)]

= (β−3
⊗ α−3)[(γ(α(h1))γ(α(11)))γ−1(α(h212)) ⊗ 1]

= β(σ(h, 1)) ⊗ 1.

Hence σ(h, 1) ∈ A.
Next we show that Φ and Ψ are mutual inverses. First for all b ∈ B,

ΦΨ(b) = Φ(β−2(b(0)(0)γ
−1(b(0)(1)))#b(1))

= β−4(b(0)(0)γ
−1(b(0)(1))γ(α−2(b(1)))

= β−2(b(0))[β−4(γ−1(b(1)1))γ(α−4(b(1)2))]
= b,

and for all a ∈ A, h ∈ H,

ΨΦ(a#h) = Ψ(β−2(a)γ(α−2(h)))

= β−2[(aγ(α−2(h11)))γ−1(α−1(h12))]#α−1(h2)

= β−2[β(a)(γ(α−2(h11))γ−1(α−2(h12)))]#α−1(h2)
= a#h.

Thus Φ and Ψ are mutual inverses. Moreover for all a, b ∈ A and h, 1 ∈ H, by a direct computation

(α−4(h1) · β−2(b))σ(α−3(h2), α−2(1))
= [γ(α−4(h1))β−2(b)][γ(α−4(11))γ−1(α−5(h212))], (2.1)

then
Φ((a#h)(b#1))

= β−2
{a[(α−4(h11) · β−2(b))σ(α−3(h12), α−2(11))]}γ(α−3(h212))

(2.1)
= β−2

{a[[γ(α−4(h11))β−2(b)][γ(α−4(111))γ−1(α−5(h12112))]]}γ(α−3(h212))

= β−2
{a[[(γ(α−5(h11))β−3(b))γ(α−4(111))][γ−1(α−4(h12112))]]}γ(α−3(h212))

= {β−2(a)[(γ(α−6(h11))β−4(b))γ(α−5(111))]}{γ−1(α−5(h12112))γ(α−4(h212))}

= β−1(a)[(γ(α−3(h))β−3(b))γ(α−2(1))]

= [β−2(a)γ(α−2(h))][β−2(b)γ(α−2(1))]
= Φ(a#h)Φ(b#1).
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Finally we need to check that Φ is both a left A-module and right H-comodule map. For all h ∈ H and
a, b ∈ A,

Φ(a · b#h) = (β−1(a)β−2(b))γ(α−1(h)) = a(β−2(b)γ(α−2(h))) = a ·Φ(b#h),
and

Φ(a#h)(0) ⊗Φ(a#h)(1) = β−1(a)γ(α−2(h1)) ⊗ α−1(h2)

= Φ(β(a)#h1) ⊗ α−1(h2)
= Φ((a#h)(0)) ⊗ (a#h)(1).

The proof is completed.

Proposition 3.9. Let (A#σH, β ⊗ α) be a Hom-crossed product. Define the map γ : H → A#σH by γ(h) = 1#α(h).
Then γ is convolution invertible right H-comodule map.

Proof. First of all for all h ∈ H, γ ◦ α = (β ⊗ α) ◦ γ and

γ(h)(0) ⊗ γ(h)1 = 1#α(h1) ⊗ h2 = γ(h1) ⊗ h2,

which means that γ is right H-comodule map.
Define a linear map ł : H→ A#σH by

ł(h) = σ−1(Sα−1(h21), α−1(h22))#S(h1).

Now we verify that ł is the convolution inverse of γ.
For all h ∈ H,

(ł ∗ γ)(h) = (σ−1(Sα−1(h121), α−1(h122))#S(h11))(1#α(h2))

= σ−1(Sα−1(h121), α−1(h122))σ(Sα−1(h112), h21)#Sα−1(h111)h22

= ε(h21)ε(h221)1#Sα(h1)α−1(h222)
= ε(h)1#1,

and
(γ ∗ ł)(h)

=(1#α(h1))(σ−1(Sα−1(h221), α−1(h222))#S(h22))

=[α−2(h111) · σ−1(Sα−2(h221), α−2(h222))]σ(α−1(h12),Sα−1(h212))#h12Sα−1(h211)

=[α−1(h11) · σ−1(Sα−2(h221), α−2(h222))]σ(h12,S(h21))#1

=[σ(α−2(h111), α−4(S(h2212)h2221))(σ−1(α−5(h1121)Sα−6(h22112), α−4(h2222))

σ−1(α−4(h1122),Sα−5(h22111)))]σ(h12,S(h21))#1

=[σ(α−2(h111), α−5(S(h22211)h22212))σ−1(α−4(h1121)Sα−4(h2212), α−3(h2222))]

[σ−1(α−3(h1122),Sα−3(h2211))σ(α−1(h12),Sα−1(h21))]#1

=σ−1(α−2(h111)Sα−3(h2212), α−1(h222))

[σ−1(α−2(h112),Sα−3(h2211))σ(α−1(h12),Sα−1(h21))]#1

=σ−1(α−1(h11)Sα−2(h212), h22)ε(h12)ε(h211)

=σ−1(h1Sα−1(h21), h22)#1
=ε(h)1#1,

where the fourth identity is obtained by using Lemma 2.5 (1). The proof is completed.

Note that if σ is trivial the crossed product A#σH is reduced to smash product A#H. Then γ is invertible
with γ−1(h) = 1#Sα(h).

By the above two propositions, we have the main theorem of this section.

Theorem 3.10. If the extension A ⊆ B is cleft if and only if B ' A#σH.
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4. Hom-Hopf algebra structure on A#σH

In this section we will give the necessary and sufficient conditions which make the Hom-crossed product
into a Hom-Hopf algebra.

Definition 4.1. Let (A ×σ H, β ⊗ α) be a Hom-crossed product, then σ is called a twisted comodule cocycle if

β(a1) ⊗ α−1(a2(−1))α(1) ⊗ a2(0) = a1σ(α−2(a2(−1)1), 11) ⊗ α−2(a2(−1)2)12 ⊗ a2(0) (3.1)

for all a ∈ A and 1 ∈ H.

Note that when σ is trivial, the definition is natural. Then we give the main result of this section.

Proposition 4.2. Let (H, α) be a Hom-bialgebra and (A, β) a Hom-algebra and Hom-coalgebra. Suppose that H weakly
acts on A and A is a left H-Hom-comodule coalgebra with the comodule structure map ρ : A→ H⊗A, a 7→ a(−1)⊗a(0).
Suppose that (A#σH, β ⊗ α) is a Hom-crossed product with σ being a twisted comodule cocycle, and (A#σH, β ⊗ α) is
a Hom-smash coproduct, then the following conditions are equivalent:

(1) (A#σH, β ⊗ α) is a Hom-bialgebra.

(2) The conditions:

A1. εA is an Hom-algebra map,
A2. εA(h · a) = εH(h)εA(a),
A3. σ is a Hom-coalgebra map.
A4. ∆A(h · a) = (α−2(h11) · β−1(a1))σ(α−1(h12), α−1(a2(−1))) ⊗ h2 · β−1(b2(0)),
A5. (α−1(h1) · a)(−1)α(h2) ⊗ (α−1(h1) · a)(0) = α(h1a(−1)) ⊗ h2 · b(0),
A6. ∆A(ab) = a1[(α−4(a2(−1)1) · β−2(b1))σ(α−3(a2(−1)2), α−2(b2(−1)))] ⊗ β−1(a2(0)b2(0)),
A7. σ(h1, 11)(−1)(h212) ⊗ σ(h1, 11)(0) = α(h111) ⊗ σ(α(h2), α(12)),
A8. ∆A(1) = 1 ⊗ 1,

A9. ρ(ab) = ρ(a)ρ(b), ρ(1) = 1 ⊗ 1.

Proof. (1)⇒ (2) follows from the similar calculations to those of [23, Theorem 1]. So we need only to show
(2)⇒ (1). Assume (2) holds, then by A1 and A2, ε is a Hom-algebra map. By A8 and A9, ∆(1#1) = 1#1⊗ 1#1.
In order to prove ∆((a ⊗ h)(b ⊗ 1)) = ∆(a ⊗ h)∆(b ⊗ 1), it is enough to verify the following relations:

(i) ∆((a ⊗ 1)(b ⊗ 1)) = ∆(a ⊗ 1)∆(b ⊗ 1),
(ii) ∆((a ⊗ 1)(1 ⊗ 1)) = ∆(a ⊗ 1)∆(1 ⊗ 1),
(iii) ∆((1 ⊗ h)(b ⊗ 1)) = ∆(1 ⊗ h)∆(b ⊗ 1),
(iv) ∆((1 ⊗ h)(1 ⊗ 1)) = ∆(1 ⊗ h)∆(1 ⊗ 1).

In fact
∆(a ⊗ 1)∆(b ⊗ 1)

=[a1 × α
−1(a2(−1)) ⊗ β−1(a2(0)) × 1][b1 × α

−1(b2(−1)) ⊗ β−1(b2(0)) × 1]

=a1[(α−5(a2(−1)11) · β−2(b1))σ(α−4(a2(−1)12), α−3(b2(−1)1))]#α−2(a2(−1)2b2(−1)2)

⊗ β−1(a2(0)b2(0))#1

=a1[(α−4(a2(−1)1) · β−2(b1))σ(α−3(a2(−1)2), α−2(b2(−1)))]#α−2(a2(0)(−1)b2(0)(−1))

⊗ β−2(a2(0)(0)b2(0)(0))#1
A6
=(ab)1#α−1((ab)2(−1)) ⊗ β−1((ab)2(0))#1
=∆(ab#1),
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and (i) is proved.

∆(a ⊗ 1)∆(1 ⊗ 1) =a1σ(α−2(a2(−1)1), α−1(111))#α−2(a2(−1)2)α−1(112) ⊗ a2(0)#α(12)
(3.1)
= β(a1)#α−1(a2(−1))11 ⊗ a2(0)#α(12)
=∆((a#1)(1#1)),

and (ii) is proved.

∆((1 ⊗ h)(b ⊗ 1))

=(α−1(h1) · b)1#α−2((α−1(h1) · b)2(−1))α−1(h21) ⊗ β−1((α−1(h1) · b)2(0))#h22

A4
=(α−3(h111) · β−1(b1))σ(α−2(h112), α−1(b2(−1)))#α−2[(α−1(h12) · β−1(b2(0)))(−1)α(h21)]

⊗ β−1((α−1(h12) · β−1(b2(0)))(0))#h22

=(α−2(h11) · β−1(b1))σ(α−1(h12), α−1(b2(−1)))#α−2[(α−2(h211) · β−1(b2(0)))(−1)h212]

⊗ β−1((α−2(h211) · β−1(b2(0)))(0))#h22

A5
=(α−2(h11) · β−1(b1))σ(α−1(h12), α−2(b2(−1)1))#α−2(h211b2(−1)2)

⊗ β−1(α−1(h212) · b2(0))#h22

=(α−3(h111) · β−1(b1))σ(α−2(h112), α−2(b2(−1)1))#α−1(h12)α−2(b2(−1)2)

⊗ β−1(h21 · b2(0))#h22

=∆(1 ⊗ h)∆(b ⊗ 1),

and (iii) is proved.

∆(1 ⊗ h)∆(1 ⊗ 1)
=(1#h1)(1#11) ⊗ (1#h2)(1#12)

=σ(h11, 111)#α−1(h12112) ⊗ σ(h21, 121)#α−1(h22122)

=σ(h11, 111)#α−2(σ(h12, 112)(−1))α−2(h21121) ⊗ β−1(σ(h12, 112)(0))#α−1(h22122)
A3
=∆((1#h)(1#1)),

and (iv) is proved.
The proof is completed.

Definition 4.3. Let (H, α) be a Hom-bialgebra, (A, β) a Hom-algebra and σ : H ⊗ H → A and S : H → H a linear
map. S is called a σ-antipode of H if

(i) α ◦ S = S ◦ α,

(ii) (σ ⊗mH)∆H⊗H(id ⊗ S)∆H(h) = εH(h)1 ⊗ 1,

(iii) (σ ⊗mH)∆H⊗H(S ⊗ id)∆H(h) = εH(h)1 ⊗ 1.

In this case H is called a σ-Hom Hopf algebra.

Example 4.4. Let (H, α) be a Hom-Hopf algebra. Consider the case when σ is trivial, then we can regard SH as
σ-antipode of H.

Proposition 4.5. (A#σH, β ⊗ α) be a Hom-bialgebra. If (H, α) is a σ-Hom Hopf algebra with the σ-antipode SH and
SA ∈ Hom(A,A) is a convolution invertible element of idA with β ◦ SA = SA ◦ β. Then (A#σH, β ⊗ α) is a Hom-Hopf
algebra with the antipode given by

S(a#h) = (1#SH(α−3(a(−1))α−2(h)))(SA(β−2(a(0)))#1)
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Proof. Firstly for all a ∈ A and h ∈ H,

S ◦ (β ⊗ α)(a#h) = (β ⊗ α) ◦ S(a#h).

And
S(a1#α−2(a2(−1))α−1(h1))(β−1(a2(0))#h2)

=(1#SH(α−2(a1(−1))(α−3(a2(−1))α−2(h1))))[(SA(β−2(a1(0)))#1)(β−2(a2(0))#α−1(h2))]

=[1#SH(α−3(a1(−1)a2(−1))α−1(h1))][SA(β−2(a1(0)))β−2(a2(0))#h2]

=[1#SH(α−1(a(−1))α−1(h1))][SA(β−2(a(0)1))β−2(a(0)2)#h2]
=ε(a)[1#SH(h1)][1#h2]

=ε(a)σ(SH(h1)1, h21)#α−1(SH(h1)2h22)
=ε(a)ε(h)1#1.

Similarly we can verify that (a1#α−2(a2(−1))α−1(h1))S(β−1(a2(0))#h2) = ε(a)ε(h)1#1. Hence S is the convolution
inverse of id.

The proof is completed.

Corollary 4.6. With the above notations, if σ is trivial, we have the Radford biproduct (A×H, β⊗α). At this moment
we call (H,A) is an admissible pair.

Remark 4.7. If H is a Hopf algebra, and (H,A) is an admissible pair, it is well known that A is a Hopf algebra in the
Yetter-Drinfeld category HYD(H)H. However to our disappointment in the case of Hom-Hopf algebra, this conclusion
does not hold unless α2 = idH.

Example 4.8. In the Example 3.4 (3), consider the crossed product k#σH and taking t = 0, then k#σH is a Hom-Hopf
algebra and k#σH = H as a Hom-Hopf algebra.

5. Lazy 2-cocycle

In this section we will generalize the theory of lazy 2-cocycle to Hom-Hopf algebras. Recall from [18]
that a left 2-cocycle on a Hom-bialgebra (H, α) is a linear map σ : H ⊗H→ k satisfying

σ ◦ (α ⊗ α) = σ,

σ(l1, k1)σ(α2(h), l2k2) = σ(h1, l1)σ(h2l2, α2(k)),

for all h, k, l ∈ H.
σ is a right Hom-2-cocycle if

σ ◦ (α ⊗ α) = σ,

σ(α2(h), l1k1)σ(l2, k2) = σ(h1l1, α2(k))σ(h2, l2).

σ is called normal if σ(1, h) = σ(h, 1) = ε(h).
If σ is normalized and convolution invertible, then σ is a left Hom-2-cocycle if and only if σ−1 is a right

Hom-2-cocycle.
Given a linear map σ : H ⊗H→ k, define a new multiplication on H by

h ·σ 1 = σ(h1, 11)α−1(h212).

Then ·σ is Hom-associative if and only if σ is a left Hom-2-cocycle.
If we define the multiplication by

h σ · 1 = α−1(h111)σ(h2, 12).
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Then σ· is Hom-associative if and only if σ is a right Hom-2-cocycle.
A left Hom-2-cocycle σ is called lazy if for all h, 1 ∈ H

σ(h1, 11)h212 = h111σ(h2, 12).

A lazy left Hom-2-cocycle is also a right Hom-2-cocycle.

Example 5.1. Note that σ defined in Example 3.4 (3) is a lazy 2-cocycle on H4.

Lemma 5.2. Let γ : H → k be a normalized and convolution invertible linear map such that γ ◦ α = γ, define
D1(γ) : H ⊗H→ k by

D1(γ)(h, 1) = γ(h1)γ(11)γ−1(h212),

for all h, 1 ∈ H. Then D1(γ) is a normalized and convolution invertible left 2-cocycle.

Proof. This is an easy consequence of Proposition 2.8.

γ is lazy if for all h ∈ H, γ(h1)h2 = h1γ(h2).
The set of all normalized and convolution invertible linear maps γ : H → k satisfying γ ◦ α = γ is

denoted by Re11
L(H), which is a group under convolution.

Lemma 5.3. The set of convolution invertible lazy Hom-2-cocycle denoted by Z2
L(H) is a group.

Proof. Suppose that σ1, σ2 ∈ Z2
L(H), and for all h, 1, l ∈ H,

(σ1 ∗ σ2)(11, l1)(σ1 ∗ σ2)(α2(h), 12l2)

=σ1(111, l11)σ2(112, l12)σ1(α2(h1), 121l21)σ2(α2(h2), 122l22)

=σ1(111, l11)σ1(α2(h1), 112l12)σ2(121, l21)σ2(α2(h2), 122l22)

=σ1(h11, 111)σ1(h12112, α
2(l1))σ2(h21, 121)σ2(h22122, α

2(l2))

=(σ1 ∗ σ2)(h1, 11)(σ1 ∗ σ2)(h212, α
2(l)),

thus σ1 ∗ σ2 is a left 2-cocycle on H, and it is easy to see that σ1 ∗ σ2 is lazy. The proof is completed.

Proposition 5.4. The map D1 : Re11
L(H) → Z2

L(H) is a group homomorphism, whose image denoted by B2
L(H),

is contained in the center of Z2
L(H). Thus we call quotient group H2

L(H, α) := Z2
L(H, α)/B2

L(H, α) the second lazy
cohomology group of H.

Proof. For all γ1, γ2 ∈ Re11
L(H) and h, 1 ∈ H,

D1(γ1 ∗ γ2)(h, 1) =γ1(h11)γ2(h12)γ1(111)γ2(112)γ−1
2 (h21121)γ−1

1 (h22122)

=γ1(h1)γ1(11)γ−1
1 (h22122)γ2(h211)γ2(1211)γ−1

2 (h2121212)

=γ1(h1)γ1(11)γ−1
1 (h22122)D1(γ2)(h21, 121)

=γ(h1)γ1(11)γ−1
1 (h21121)D1(γ2)(h22, 122)

=γ1(h11)γ1(111)γ−1
1 (h12112)D1(γ2)(h2, 12)

=(D1(γ1) ∗D1(γ2))(h, 1),

and D1(εH) = εH ⊗ εH. Thus D1 is a group homomorphism.
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For all γ ∈ Re11
L(H) and σ ∈ Z2

L(H),

(σ ∗D1(γ))(h, 1) =σ(h1, 11)γ(h21)γ(121)γ−1(h22122)

=σ(h12, 112)γ(h2)γ(12)γ−1(h11111)

=σ(h21, 121)γ(h22)γ(122)γ−1(h111)

=σ(h22, 122)γ(h21)γ(121)γ−1(h111)

=γ(h11)γ(111)γ−1(h12112)σ(h2, 12)

=(D1(γ) ∗ σ)(h, 1).

The proof is completed.

Lemma 5.5. Let σ : H ⊗H → k be a normalized and convolution invertible left (respectively right) Hom-2-cocycle,
Hσ (respectively σH) is right (respectively left) H-comodule algebra via ∆. If σ is lazy, Hσ = σH as algebras and we
denote it by H(σ). Moreover H(σ) is an H-bicomodule algebra.

Proof. Straightforward.

In the following lemma, we will list the formulae useful in our computations.

Lemma 5.6. (1) Let σ be a normalized and convolution invertible left Hom-2-cocycle. For all h ∈ H

σ(h11,S(h12))σ−1(S(h21), h22) = ε(h), (4.1)
σ(S−1(h12), h11)σ−1(h22,S−1(h21)) = ε(h), (4.2)
σ(h11, 111)σ(h12112,S(α(h212)))

= σ(111,S(112))σ(h11,S(h12))σ−1(S(12),S(h2)). (4.3)

(2) If σ is lazy, we have the following relations:

σ(h1,S(h2)) = σ(S(h1), h2), (4.4)
σ(S−1(h2), h1) = σ−1(h2,S−1(h1)), (4.5)
σ−1(h21,S−1(h12))h22S−1(h11) = σ−1(h2,S−1(h1))1, (4.6)
σ−1(S−1(h21), h12)S−1(h22)h11 = σ−1(S−1(h2), h1)1, (4.7)
σ−1(S(h12), h21)S(h11)h22 = σ−1(S(h1), h2)1, (4.8)
σ−1(S(h21), h22)S(h1) = σ−1(S(h11), h12)S(h2), (4.9)
σ−1(h12,S(h21))h11S(h22) = σ−1(h1,S(h2))1, (4.10)
σ−1(S(h12), h21)h22S−1(h11) = σ−1(S(h1), h2)1. (4.11)

Proof. For the proof we could refer to [13].

Proposition 5.7. Define the linear maps S1,S2 : H→ H by

S1(h) = σ−1(S(h21), h22)S(α−1(h1)),
S2(h) = σ−1(h22,S−1(h21))S−1(α−1(h1)).

If σ is lazy then S1,S2 : H(σ−1)→ H(σ) are Hom-algebra anti-isomorphisms, and for all h ∈ H,

S1(h1) ·σ h2 = ε(h)1 = h1 ·σ S1(h2), (4.12)
S2(h2) ·σ h1 = ε(h)1 = h2 ·σ S2(h1), (4.13)
∆(S1(h)) = S1(h2) ⊗ S(h1), (4.14)
∆(S2(h)) = S2(h2) ⊗ S−1(h1). (4.15)
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Proof. Define a linear map φσ : H(σ)→ H(σ−1) by

φσ(h) = σ(h11,S(h12))S(α−1(h2)).

Then by (4.2) and (4.3) we know S2 and φσ are mutual inverses. If σ is lazy, by (4.10) S1 = φσ−1 . Hence S1 is
invertible. Finally by (4.4) we obtain that S1 and S2 are anti-isomorphisms.

The rest of the proof is an easy exercise.

Let (H, α) be a Hom-Hopf algebra. An H-bicomodule (A, β) is both a left and right H-comodule with
comodule structures A→ A ⊗H, a 7→ a(0) ⊗ a(1) and A→ H ⊗ A, a 7→ a[−1] ⊗ a[0] such that for all a ∈ A,

α(a[−1]) ⊗ a[0](0) ⊗ a[0](1) = a(0)[−1] ⊗ a(0)[0] ⊗ α(a(1)).

Recall from [20] that the diagonal crossed product H∗ ./ A is equal to H∗ ⊗ A as vector space with the
multiplication

(p ./ a)(q ./ b) = p[(α−3(a[−1]) ⇀ α∗2(q)) ↼ α−3(S−1(a[0](1)))] ./ α−2(a[0](0))b,

for all p, q ∈ H∗ and a, b ∈ A.
Furthermore the space H∗ ./ A becomes a D(H)-bicomodule algebra with the following structures:

H∗ ./ A→ H∗ ./ A ⊗D(H), p ./ a 7→ (p2 ./ a(0))(p1 ⊗ a(1)),
H∗ ./ A→ D(H) ⊗H∗ ./ A, p ./ a 7→ (p2 ./ a[−1])(p1 ⊗ a[0]).

Let σ : H ⊗ H → k be a normalized and convolution invertible left lazy Hom-2-cocycle, then σ̄ :
D(H) ⊗D(H)→ k given by

σ̄(p ⊗ h, q ⊗ 1) = p(1)q(S−1(α−2(h22))α−1(h))σ(h21, α
2(1))

is a normalized and convolution invertible lazy Hom-2-cocycle with the convolution inverse

σ̄−1(h, 1) = p(1)q(S−1(α−2(h22))α−1(h))σ−1(h21, α
2(1)).

Proposition 5.8. Let σ : H ⊗H → k be a normalized and convolution invertible left lazy Hom-2-cocycle. Consider
the H-bicomodule algebra H(σ). Then H∗ ./ H(σ) = D(H)(σ̄) as D(H)-bicomodule algebras. Moreover σ̄ is unique
with this property.

Proof. For all h, 1 ∈ H and p, q ∈ H∗,

(p ./ h)(q ./ 1)

=p[(α−3(h1) ⇀ α∗2(q)) ↼ α−3(S−1(h22))] ./ α−2(h21) ·σ 1

=p[(α−3(h1) ⇀ α∗2(q)) ↼ α−3(S−1(h22))] ./ σ(α−2(h211), 11)α−3(h212)α−1(12)

=p[(α−6(h21)S−1(α−7(h122))α−5(h11) ⇀ α∗2(q)) ↼ α−4(S−1(h222))]

./ σ(α−2(h121), 11)α−3(h221)α−1(12)

=p[(α−4(h21) ⇀ (S−1(α−7(h122))α−6(h11)) ⇀ α∗3(q)) ↼ α−4(S−1(h222))]

./ σ(α−2(h121), 11)α−3(h221)α−1(12)

=q2(S−1(α−2(h122))α−1(h11))p[(α−4(h21) ⇀ α∗3(q1)) ↼ α−4(S−1(h222))]

./ σ(α−2(h121), 11)α−3(h221)α−1(12)

=p1(1)q2(S−1(α−2(h122))α−1(h11))σ(α−2(h121), 11)

α∗(p2)[(α−4(h21) ⇀ α∗3(q1)) ↼ α−4(S−1(h222))] ./ α−3(h221)α−1(12)

=p1(1)q2(S−1(α−2(h122))α−1(h11))σ(α−2(h121), 11)

α∗(p2)[(α−4(h21) ⇀ α∗3(q1)) ↼ α−4(S−1(h222))] ./ α−3(h221)α−1(12)

=σ̄(p2 ⊗ h1, q2 ⊗ 12)(α∗(p1) ⊗ α−1(h2))(α∗(q1) ⊗ α−1(12))
=(p ⊗ h) ·σ̄ (q ⊗ 1).
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Thus H∗ ./ H(σ) and D(H)(σ̄) have the same multiplication as well as the D(H)-bicomodule structure. For
the uniqueness of σ̄, applying 1 ⊗ ε to the above equation.

The proof is completed.

Lemma 5.9. Let (H, α) be a Hom-Hopf algebra, (B, β) a left H-module algebra (with action h · b) and (A, γ) a left
H-comodule algebra (with coaction a 7→ a(−1) ⊗ a(0)). Define multiplication on B ⊗ A by

(b ⊗ a)(b′ ⊗ a′) = b(α−2(a(−1)) · β−1(b′)) ⊗ γ−1(a(0))a′,

for all b, b′ ∈ B and a, a′ ∈ A. Then (B ⊗ A, β ⊗ γ) is a Hom-algebra, which is denoted by B n A.

Proof. The proof is straightforward.

Proposition 5.10. Let (H, α) be a Hom-Hopf algebra, (B, β) a left H-module algebra and (A, γ) a left H-comodule
algebra. Suppose that (H,B) is an admissible pair, then B n A becomes a left B × A-comodule algebra, with coaction

ρ̄ : B n A→ (B ×H) ⊗ (B n A), b n a 7→ (b1 × α
−2(b2(−1))α−1(a(−1))) ⊗ (β−1(b2(0)) n a(0)),

for all a ∈ A, b ∈ B.

Proof. Firstly for all a ∈ A, b ∈ B,

((β ⊗ α) ⊗ ρ̄)ρ̄(b n a)

=(β(b1) × α−1(b2(−1))a(−1)) ⊗ (β−1(b2(0)1) × α−3((b2(0)2(−1)))α−1(a(0)(−1)))

⊗ (β−2(b2(0)2) ⊗ a(0)(0))

=(β(b1) × α−3(b21(−1)b22(−1))a(−1)) ⊗ (β−1(b21(0)) × α−3(b22(0)(−1))α−1(a(0)(−1)))

⊗ (β−2(b22(0)) ⊗ a(0)(0))

=(β(b1) × α−2(b21(−1))(α−3(b22(−1))α−1(a(−1))))

⊗ (β−1(b21(0)) × α−3(b22(0)(−1))α−1(a(0)(−1))) ⊗ (β−2(b22(0)(0)) n a(0)(0))

=(b11 × α
−2(b12(−1))(α−3(b2(−1)1)α−2(a(−1)1))) ⊗ (β−1(b12(0)) × α−2(b2(−1)2)α−1(a(−1)2))

⊗ (b2(0) n γ(a(0)))
=(∆ ⊗ (β ⊗ γ))ρ̄(b n a),
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and the counit is easy to check. Then for all a, a′ ∈ A and b, b′ ∈ B,

ρ̄((b n a)(b′ n a′))

=ρ̄(b(α−2(a(−1)) · β−1(b′)) n γ−1(a(0))a′)

=(b(α−2(a(−1))) · β−1(b′))1

× α−2((b(α−2(a(−1))) · β−1(b′))2(−1))(α−2(a(0)(−1))α−1(a′
−1))

β−1((b(α−2(a(−1))) · β−1(b′))2(0)) n γ−1(a(0)(0))a′(0)

=b1(α−2(b2(−1)) · (α−4(a(−1)11) · β−2(b′1)))

× α−2(α−1(b2(0)(−1))(α−3(a(−1)12) · β−1(b′2))(−1))

(α−2(a(−1)2)α−1(a′(−1))) ⊗ β
−2(b2(0)(0))β−1((α−3(a(−1)12) · β−1(b′2))(0)) n a(0)a′(0)

=b1(α−2(b2(−1)) · (α−4(a(−1)11) · β−2(b′1)))

× [α−3(b2(0)(−1))α−3((α−3(a(−1)12) · β−1(b′2))(−1)a(−1)2)]a′(−1)

⊗ β−2(b2(0)(0))β−1((α−3(a(−1)12) · β−1(b′2))(0)) n a(0)a′(0)

=b1(α−2(b2(−1)) · (α−3(a(−1)1) · β−2(b′1))) × α−3[b2(0)(−1)(α−1(a(−1)21)b′2(−1))]a
′

(−1)

⊗ β−2(b2(0)(0))(α−3(a(−1)22) · β−2(b′2(0))) n a(0)a′(0)

=b1((α−4(b2(−1)1)α−3(a(−1)1)) · β−1(b′1)))

× [α−3(b2(−1)2)α−3(a(−1)21)][α−2(b′2(−1))α
−1(a′(−1))]

⊗ β−1(b2(0))(α−3(a(−1)22) · β−2(b′2(0))) n a(0)a′(0)

=b1(α−4(b2(−1)1)α−3(a(−1)1)) · β−1(b′1)))

× [α−3(b2(−1)2)α−2(a(−1)2)][α−2(b′2(−1))α
−1(a′(−1))]

⊗ β−1(b2(0))(α−2(a(0)(−1)) · β−2(b′2(0))) n γ
−1(a(0)(0))a′(0)

=ρ̄(b n a)ρ̄(b′ n a′).

The proof is completed.

Proposition 5.11. Let (H, α) be a Hom-Hopf algebra, (B, β) a Hom algebra and Hom coalgebra, and (H,B) an
admissible pair. Suppose that σ be a normalized and convolution invertible right Hom-2-cocycle on H and consider
the left H-comodule algebra Hσ. Then the map σ̃ : (B ×H) ⊗ (B ×H)→ k given by

σ̃(b × h, b′ × h′) = εB(b)εB(b′)σ(h, h′),

is a normalized and convolution invertible right Hom-2-cocycle on B×H, and (B×H)σ̃ = BnHσ as left B×H-comodule
algebra. Moreover σ̃ is unique with this property.

Proof. For all b, b′ ∈ B and h, h′ ∈ H,

(b × h) ·σ̃ (b′ × h′)

=(β−1
⊗ α−1)(b1 × α

−2(b2(−1))α−1(h1))(β−1
⊗ α−1)(b′1 × α

−2(b′2(−1))α
−1(h′1))

εB(b2(0))εB(b′2(0))σ(h2, h′2)

=(b × α−1(h1))(b′ × α−1(h′1))σ(h2, h′2)

=b(α−3(h11) · β−1(b′)) × α−2(h12)α−1(h′1)σ(h2, h′2)

=b(α−2(h1) · β−1(b′)) n α−2(h21)α−1(h′1)σ(α−1(h22), h′2)

=b(α−2(h1) · β−1(b′) n α−1(h1) ·σ h′

=(b n h)(b′ n h′),
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thus the multiplication in (B×H)σ̃ coincides with the one in BnHσ which is associative, so σ̃ is a right 2-cocycle,
and we have (B × H)σ̃ = B nHσ as algebras. Obviously they have the same left B ×H-comodule structure,
and easy to prove that σ̃ is normalized and convolution invertible with the inverse σ̃−1(b × h, b′ × h′) =
εB(b)εB(b′)σ−1(h, h′). For the uniqueness of σ̃, apply εB ⊗ εH to both sides of

(b × h) ·σ̃ (b′ × h′) = (b n h)(b′ n h′).

The proof is completed.

Definition 5.12. Let (H, α) be a Hom-Hopf algebra and (A, β) an H-bicomodule algebra with comodule structures
A→ A⊗H, a 7→ a<0>⊗a<1> and A→ H⊗A, a 7→ a[−1]⊗a[0]. (M, µ) is called a left-right Yetter-Drinfeld module over
(H,A,H) if M is a left A-module (action denoted by ·) and a right H-comodule (coaction denoted by m 7→ m(0) ⊗m(1))
such that

β(a<0>) ·m(0) ⊗ α
2(a<1>)α(m(1)) = (a[0] ·m)(0) ⊗ (a[0] ·m)(1)α

2(a[−1]), (4.16)

for all a ∈ A, h ∈ H and m ∈M. The category of Yetter-Drinfeld modules is denoted by AYD(H)H.

Remark 5.13. Note that when A = H the above definition coincides with the Hom Yetter-Drinfeld module introduced
in [20]

Let now σ be a normalized and convolution invertible lazy Hom-2-cocycle on H. Consider the H-
bimodule algebra H(σ) and the associated category H(σ)YD(H)H. For an object (M, µ) in this category, the
compatibility (4.16) becomes

α(h1) ·m(0) ⊗ α
2(h2)α(m(1)) = (h2 ·m)(0) ⊗ (h2 ·m)(1)α

2(h1), (4.17)

which is the very compatible condition in the category HYD(H)H. It is easy to see that 4.17 is equivalent to

(h ·m)(0) ⊗ (h ·m)(1) = α−1(h21) ·m(0) ⊗ [α−2(h22)α−1(m(1))]S−1(h1). (4.18)

Proposition 5.14. Let σ be a normalized and convolution invertible lazy Hom-2-cocycle on H. Let (M, µ) be a finite
dimensional object in H(σ)YD(H)H. Then

(1) (M∗, (µ−1)∗) is an object in H(σ−1)YD(H)H with the following structures:

< h · f ,m >=< f ,S1(h) · µ−2(m) > (4.19)
f(0)(m) f(1) = f (µ−2(m(0)))S−1(α−2(m(1))), (4.20)

for all h ∈ H,m ∈M and f ∈M∗.

(2) (M∗, (µ−1)∗) is an object in H(σ−1)YD(H)H with the following structures:

< h · f ,m >=< f ,S2(h) · µ−2(m) > (4.21)
f(0)(m) f(1) = f (µ−2(m(0)))S(α−2(m(1))), (4.22)

for all h ∈ H,m ∈M and f ∈M∗.

Proof. We only prove (1) while (2) could be proven similarly. First M∗ is a right H-comodule with the
structure (4.20), and since S1 is an algebra anti-isomorphism, M∗ is a left H(σ−1)-module. We only need to
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verify the compatible condition. For all h ∈ H,m ∈M and f ∈M∗,

(α(h1) · f )(0))α2(h2)α( f(1))

= f(0)(S1α(h1)) · µ−2(m))α2(h2)α( f(1))

= f (µ−2(S1α(h1) · µ−2(m))(0)))α2(h2)S−1(α−1((S1α(h1) · µ−2(m))(1)))

= f (µ−2(α−1((S1α(h1))21) · µ−2(m(0))))

α2(h2)S−1(α−3((S1α(h1))22)α−4(m(1)))S−1α−1(((S1α(h1))1))
(4.15)
= f (Sα−2(h112) · µ−4(m(0)))α2(h2)S−1((Sα−2(h111))α−4(m(1)))S−1(S1(h12))

= f (Sα−2(h112) · µ−4(m(0)))

σ−1(S(h1221), h1222)(α(h2)α−1(h121))[S−1(α−3(m(1)))α−1(h111)]

= f (Sα−1(h12) · µ−4(m(0)))σ−1(S(h212), h221)α−1(h222h211)[S−1(α−3(m(1)))h11]
(4.12)
= f (Sα−1(h12) · µ−4(m(0)))σ−1(S(h21), h22)[S−1(α−2(m(1)))α(h11)]

=(h2 · f )(0)(m)(h2 · f )(1)α
2(h1)

Remark 5.15. In the above proposition, when σ is trivial, M ∈ HYD(H)H and these are the usual left and right duals
of M in HYD(H)H.
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