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Convolution of two Harmonic Mappings in the Right-half Plane
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Abstract. This paper is to give a univalent criterion and a geometric property of the convolution of

two right half-plane harmonic mappings fo(z) and f(z), where f;(z) is canonical and the second complex

dilatation w(z) of f(z) is of the form w(z) = — == f_‘b”z.

1. Introduction

Let H be the class of complex-valued harmonic mappings f = u + iv defined in the unit disk D = {z :

|z| < 1} and normalized by f(0) = 0, f.(0) = 1, where u and v are real harmonic in ID. Such functions can be
expressed as f = h + g, where

h(z) =z + Z 1,2", g(z) = Z b,z", zeD.
n=2 n=1

A harmonic mapping f is locally univalent and sense-preserving in D if and only if J; = |- |g’|2 > 0in
D; or equivalently if i/ # 0 in D and the dilatation w = g’/h’ has the property that [w| < 1 in ID [10]. Let
Sy be the subclass of H consisting of univalent and sense-preserving functions. Let S be the subclass of
all f € Sy with f2(0) = 0 [2]. Furthermore, K be the subclass of 5%, mapping ID onto convex domains. A
domain Q is said to be convex in the direction y if for all a € C, the set Q N {a + te” : y,t € R} is either
connected or empty. In particular, a domain is convex in the direction of the real (or imaginary) axis if every
line parallel to the real (or imaginary) axis has a connected intersection with the domain.

For two analytic functions f = z+ ), ,4,z"inDand F = z+ ), A,z" in D, their convolution is defined
as f*F=z+ Y ,a,A,z" in D. For two harmonic functions f = h + § =z + Yjep a,2" + Y.peq byz" in D and
F=H+G=z+ Yo AnZ" + Yy B,z" in D, we define their harmonic convolution as

(o)

f*F:h*H+g*G:z+Za,,Anz”+anan_”, z € D.
n=2 n=1
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A harmonic function f = h + g € S, is called a right half-plane harmonic mapping, if f maps the unit
disk D onto R = {w : R(w) > —1/2}, such a mapping satisfies & + g = % in ID. We denote the class of right
half-plane harmonic mappings by R which satisfies R?, € KY..

The canonical harmonic right half-plane mapping, fo = o + g0 € RY, has a second complex dilatation
wy = —z. The technique of shear construction [5] yields

z—2%2/2 o 1+n 1 z z
h()(Z)= — =Z+Z Zn=—( +——ZZ)’ zeD

1-2)7 Li 2 21—z " (1-2)
and
222 o l-n, 1, z z
~’70(Z)‘(1—z)2‘n=2 R AP g R
If f=h+geH,then
fo*f:ho*h+go*g:h+22h +1=2, zep, (1)

Univalent criterions and geometric characterizations of the convolution of two harmonic mappings
have attracted one’s much attention [3,4,8,10-14]. Especially, when their dilations are specified, there are
some recent results. Among them, Dorff [3] proved

Theorem A. Let fi,f> € RY. If fi = f, is locally univalent and sense-preserving, then fi = f, € S% and is convex in
the direction of the real axis.

There were lots of works on concrete conditions determined locally univalence of their convolutions of
two harmonic mappings. Dorff, Nowak and Woloszkiewicz [4] proved the following lemma and theorems.

Lemma A. Let f = h+ § € R), with the dilatation w(z). Then the dilatation @ of fo + f is

W (2) + w(z) — 1z’ (2) + ' (z)

W(z) = -z

)

1+w(z) - dzw'(z) + 22w (z)

Theorem B. Let f = h+ g € R with h(z) + g(z) = 1% and w(z) = Z:—EZZ; =ef"neZtand 0 e R*. Ifn =1,2,

then fo+ f € S and is convex in the direction of the real axis.

Theorem C. Let f = h+ g € RY with h(z) + g(z) = % and w(z) = £ witha € (=1,1). Then fy+ f € S}, and is
convex in the direction of the real axis.

Recently, Li and Ponnusamy [12] generalized Theorem C, as follows

Theorem D. Let f =h+g € Rg[ with the dilatation w(z) = 12:;2' lal < 1. Then fo+ f € S?{ and is convex in the
direction of the real axis if and only if

(R@)* +9(J@)* <1and R(a) # +1.

Jiang, Rasila and Sun[8] considered Theorem D in a more general setting by allowing a rotation parameter
0 in the second complex dilation w(z) of f(z).

Theorem E. Let f = h+ g € RY with the dilatation w(z) = €' £, where a = |ale, a = arga, |a| < 1and 6 € R. If

C] 6 C] 0
[9sin(a + 5) + cos?(a + E)]Ial2 <1 and |a|cos(a + 5) * —COS(E),

then fo+ f € S, and is convex in the direction of the real axis.
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A Blaschke product is a product of the type

(an z)\an|
B

@== a0
where k is a nonnegative integer, the sequence a, satisfies that 0 < |a,| < 1 for each n, and the series
Yoe1(1 = lan]) converges. The function B(z) is bounded and analytic in ID. The zeros of B(z) are just the
numbers a, and 0 (if k > 0). Specially, if a Blaschke product is of the form

B(z) = cﬁ

n=1

QI

where ¢ € dD = {z : |z| = 1}, m is a nonnegative integers, then we say that B(z) is a finite Blaschke product
of degree m.

Blaschke products have been applied to many research fields, for instance, Kraus and Gorkin[1], Dal-
lakyan[6], Hamada[7], Akeroyd and Roth[9].

In [8,12,13], the authors studied the convolution of a canonical right half-plane harmonic mapping and
a right-plane harmonic mapping with a second complex dilation of a finite Blaschke product of degree one
or a Blaschke product of degree two with an 4, = 0. In this paper, we will consider the case of Blaschke

products of degree two with all |a,| # 0, that is, B(z) = —1= f_‘bbz, and obtain our main result.

Theorem 1.1. Let f =h+ge€ RO with the dilatation w(z) = —3=-1= hbz, where |al < 1,1b] <1, (a,b € R). If

0O<a+b-2ab<2, (3)

then fo+ f € S and is convex in the direction of the real axis.

2. Preliminary lemmas and their proofs

Lemma 2.1. Let f be the canonical harmonic right half plane mapping. If f = h+ g € RY, with the dilatation

w(z) = - 5 fis

@) = (1(;2r J;if))((f: lgz))((zlicgz) - Ztt*((zz))’ @
where

Hz) =2 + %(z —3a-3b)z> +(1—a—b+2ab)z - %(a +b —2ab), (5)
and

fz)=1+ %(2 —3a-3b)z+ (1 —a—b+2ab)z* - %(a +b—2ab)z>. (6)

Here —A,—B,—C are the three roots of the equation t(z) = 0, and A,B,C may be equal.

v o , —1+a?)(b- 1+b
Proof. Letw(z) = —&% 2L, then w'(z) = ((1_;)’225_;)) + g’_;;; . EZ))Z We obtain from Lemma A that

PE)
“0@)

W(z) = —
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where
P(z) =(a + b — 2ab — a*b — ab® + 2a°b*) — 2 —a — b + a®b + ab® — 2a°b*)z + (a
+ b+ 4ab — a®b — ab® — 4a*b*)z* — (3a + 3b — 3a®b — 3ab*)z® + (2 — 2ab)z*]
=—(ab—-1)(z - 1)[~(a+b—2ab) + 2(1 —a — b + 2ab)z + (2 — 3a — 3b)z>
+27°%]
and
Q(z) =(a + b — 2ab — a*b — ab® + 2a°b*)z* — 2 —a — b + a®b + ab* — 2a°b*)z°
+(a+b+4ab — a®b — ab® — 4a°b?)z% — (3a + 3b — 3a*b — 3ab?)z + (2 — 2ab)
=(ab-1)(z - D[—(a + b —2ab)z> + 2(1 —a — b + 2ab)z> + (2 — 3a — 3b)z + 2].

Thus,
5(2) P(z) 2 +3(2-3a-3b)z* + (1 —a—b+2ab)z — 3(a + b — 2ab)
W(z) = —z =z
Q@) 1+3Q2-31-3b)z+ (1 —a—b+2ab)z2 - i(a+b-2ab)z? @)
_ 12
“ ey

Suppose that —A,—B,—C are the three roots of t(z) = 0. Then it follows
t(z) = (z+ A)z+ B)(z+ C)

and

t=24(1/2) =2°1/z + A)1/z + B)1/z + C) = (1 + Az)(1 + B2)(1 + C2).
O

Lemma2.2. (1) Letla| <1,|b|<1,anda,beR. Then -4 <a+b—2ab < 2.
Q) Let W ={(a,b))—-1<a<0,-1<b<0},Q={@abl0<a+b—-2ab<2,|al <1,|b| <1},a,beR. Then
YNQ=da¢.

Proof. (1) Let f(a,b) = a + b — 2ab, we have a stable point (%, %), and f (%, %) = % Furthermore, the values of
f(a, b) on the boundary as following

f@A,b)=1-b,f(-1,b) =-1+3b,f(a,1)=1-a, f(a,-1) = -1+ 3a.

Using the assumption that |a| < 1 and [b| < 1, we get f(a, b)yax = 2, f(a, D)pin = —4.
(2) Suppose (a,b) € ¥, then -1 <a <0, -1 < b < 0. Since f(a,b) = a+b—2ab = a(1 -b) + b(1 —a), it shows
that f(a,b) < 0. If (a,b) € Q then 0 < f(a,b) < 2, a contradiction with f(a,b) < 0. Hence W (1 Q =¢. O

Lemma23. Let0<a+b—-2ab<2,lal<1,|b|<1,a,beR. Then
—4 +a + 2a* + b+ 2ab — 5a%b + 2b* — 5ab® + 2a°b* < 0. (8)

Proof. Let Q ={(a,b)I0 <a+b—-2ab<2,]al <1,|b| <1}, and
dQ ={(a,b)la+b—-2ab=0,a+b—-2ab=2,al =1,|b| =1},

f(a,b) = —4 +a +2a* + b + 2ab — 5a%b + 2b* — 5ab® + 2a*1?,
then f(a, b) has a maximum and a minimum on the Q J Q. The system

fo =1+ 4a+2b—10ab - 5b* + dab* = 0
fo=1+2a—5a*+4b—10ab + 4a*b = 0
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yields stable points P;(-1, %), Pz(%, —1) and the value of f(a, b) at stable points f(-1, %) = f(%, -1)=-4. We
will discuss below cases on the boundary

(1)Ifa =1, then -1 < b < 1. Hence,
f(1,b)=-1-2b-1*=—(1+b)?> <0,

equality holds if and only if b = —1.
(2)Ifa = -1, then ; <b < 1. Thus,

f(=1,b) = =3 - 6b+9b* = 3(3b+ 1)(b - 1) < 0,

equality holds if and only if b = 1.
B3)Ifb=1,then-1<a<1. So

fla,1)=-1-2a-a*>=—-(1+a)*<0,

equality holds if and only if a = —1.
(4)If b = -1, then 1 < a < 1. Therefore,

fla,-1)=-3-6a+9a*>=33a+1)@a—1) <0,

equality holds if and only ifa = 1.
(5) If a + b —2ab = 0, then

f(a,b) = =4 +a +2a* + b + 2ab — 5a°b + 2b* — 5ab* + 2a°b*
=—4+(1+2a+2b—ab)a+b-2ab)<0.

(6)Ifa+b—2ab=2,thena= % Since |a| = I%I < 1, it shows that
2-b?-(1-20>=31-b)(1+b) <0,
yieldsb=1,a=-1orb=-1,a=1. Thus f(a,b) = f(-1,1) = f(1,-1) = 0.
In summary, fux =0, fuin = —4. It's easy to see that the function f(a, b) takes maximum only at points
(1,-1), (-1,1). Thus f(a,b) < 0Oonthe Q. O
In order to establish our main results, we need the following Cohn’s Rule[15,p.375].
Lemma B. For a given polynomial
Hz) = ag + mz + a2 + -+ - + a,2"
of degree n, let
F(2) = 2"H1/Z) = T + Gnaz + AnaZ? + - - + @o2"
Denote by r and s the number of zeros of t(z) inside and on the unit circle |z| = 1, respectively. If lag| < |ay|, then

ayt(z) — aot'(z)

ti(z) = -

is of degree n — 1 and has r1 = v — 1 and sy = s number of zeros inside and on the unit circle |z| = 1, respectively.

We also need the following Schur-Cohn algorithm [15,p.383].
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Lemma C. For a given polynomial
r(z) = ag +mz + Bz + o+ a,z"

of degree n, let

—T
My = det ET Ak
Ax By

(k: 1/2 rn)r

where Ay and By are the triangular matrices

ap a4 o G-l ay  p-1 An—k+1
ap - k-2 ay = Ap—k+2
Ak = . . 7 Bk =
ag ﬁn

Then the polynomial r(z) has all its zeros inside the unit circle |z| = 1 if and only if the determinants M1, M, - -+ , M,
are all positive.

3. Proof of Theorem 1.1 and a corollary

Proof. Let us consider two special cases of the second complex dilation w(z). The case that b = 1 has already
been proved by Dorff et al [5]. If b = —1, then w(z) = —£%, 1 <4 < 1. Thus, Lemma 2.1 yields

T 1-az’

[w(z)| = lz——==—| < |zl < 1.
1+ 1‘%2

Suppose that —A,—B,—C are the three roots of #(z) = 0. We have form (2.2) that
3 1 2 1
t(z)=z"+ 5(2—351—317)2 +(1—a-0b+2ab)z - E(a+b—2ab)
=(z+A)(z+B)@z+ ().

Thus |[ABC| = | — %(a + b —2ab)| < 1. Therefore, at lease one of —A, —B, —C lies in ID. Applying the formula
(2.2) and (2.3), we can establish the following formula

Hz) + 2(a + b — 2ab)t*(z)

ti(z) = -
=- 31[(—4 +a® + 2ab — 4a°b + b* — dab® + 4a*V?)z* — 2(2 — 20 — a® — 2b — 4ab
+4a%b — b? + 4ab® — 4a*Vb*)z — (4 — 2a — 3a® — 2b — 2ab + 6a*b — 3b* + 6ab?)].
Denote by

J(a,b) = —411(—4 +a® + 2ab — 4a*b + b? — 4ab? + 4a*1?)
and

K(a,b) = }L(—4 +2a + 3a* + 2b + 2ab — 6a°b + 3b* — 6ab?).
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After direct calculation, we have

K?(a,b) — J*(a, b) =i(l +a)(1+b)a+b—2ab)(—4+a+2a°+b+2ab
— 5a%b + 2b* — 5ab* + 2a%b?).

Since0 <a+b—2ab<2,al <1,|b| <1, then Lemma 2.3 shows that the formula (3.1) is negative.
We can use #1(z) to construct

J(a, b)t1(2) — K(a, bt (z)
z

tr(z) =
=- 31(1 +a)(1 +b)(a +b—2ab)[(—4 + a + 2a* + b + 2ab — 5a°b + 2b* — 5ab?
+20%b%)z + (=2 + 2a + a* + 2b + 4ab — 4a%b + b? — 4ab? + 4a*1%)].
So t2(z) = 0 has one zero at

_ —2+2a+a*+2b + 4ab — 4a?b + b — 4ab? + 4a°b?
" —4+a+2a2+b+2ab—5a%b + 2b2 — 5ab? + 2a2b?

Zo (10)

Denote by
M(a,b) = =2 + 2a + a* + 2b + 4ab — 4a*b + b* — 4ab” + 4a°V?
and
N(a,b) = —4 + a + 2a* + b + 2ab — 5a°b + 2b* — 5ab* + 2a°b>.
Some calculation gives
M?(a,b) — N*(a,b) = 3(-=1 + a*)(-=1 + b*)(-2 —a — b+ 2ab)(2 —a — b + 2ab). (11)

Furthermore, the fact that 0 < a + b —2ab < 2, |a| < 1, |b| < 1 implies that the formula (3.3) is negative and
|Zo| <1
Therefore, by Lemma B, the roots of #(z) are all in D, thatis A, B, C€ D and |w(z)| < 1 forallze D. O

We note that if the case b = 4 in Theorem 1.1 is the following corollary.

Corollary 3.1. Let fy be the canonical harmonic right half-plane mapping. If f = h + § € RY, with the dilatation

w(z) = —(5% )?, where 0 < a < 1. Then fy * f is convex in the direction of the real axis.

Proof. By the second result of Lemma 2.2 we have that 4, b are not negative at the same time, that is, if
we take a = b, then the condition (1.3) degenerates to the inequality 0 < a < 1. Then Theorem 1.1 implies
Corollary 3.1.

Here, we will give another method to prove this corollary.

By the formula (2.4), we have

22+ (1 -3a)z> + (1 — 2a + 2a%)z + (—a + a?)
1+ (1-3a)z+ (1 -2a+2a%)z% + (—a + a?)z3
_ (a-2z)[1-a+ (1 -2a)z+ 2%
(1-az2)[1-a)z2 + (1 -2a)z+1]
(a-2) r(2)
(1-az) @
_ (@-z) (z+D)z+E)
(1-az) (1+Dz)(1 + Ez)’

W(z) =z

= -z
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where —D, —E is the two roots of the 7(z) = 1 —a + (1 — 2a)z + 2%, (z) = (1 —a)z? + (1 — 2a)z + 1. Furthermore,

t"=2’t(1/2) = z2(1/z + D)(1/z + E) = (1 + Dz)(1 + Ez).

We will show that D, E € ID. By Lemma C, we only need to show that the determinants M;, M, are all
positive for a € (0, 1). In fact,

1 1-a
Ml—det(l_a 1 )—a(Z—a)>0,
1 0 1-a 1-2a
1-2a 1 0 1-a
Mp=det| 4 0 1 1-2
1-2a 1-a 0 1

=3a%*(1 —a?) > 0.

Therefore, D, E € ID and I%l < 1. Aswe all know |{=%] < 1, for 0 <a < 1. Thus lw(z)] < 1forallz € D. In
addition, when a=0, the dilatation w(z) = —z2, which is a special case of n =2, 0 = wat Theorem B. [

4. Auxiliary examples

Example 4.1. Let f = h + g € R, with the dilatation w(z) = —(=%)?, where 0 < a < 1. Then

—a
az

’

_ oz g _ _a-z,
h+g_1—z' n (1—az)'
We obtain
, (1 - az)?

T 1-a)1+2)1-27
1 1+a? @+a)? 2(1+2a-3a%) 4(1-a)?

“Si-® vz T 1oz T a-zr a2

. (a-27
T =0T +2)1-2p
1 (1 +a)? N (1 +a)? +2(a2+2a—3) 4(1 - a)?

=T i-® 1z T 1=z 1-27 =29

1.

Integration from 0 to z gives

1 l+z. 2(1+2a-3a%) 2(1—a?. 1
ha) = g g lA+ i)+ =+ oyl -5
! 14z, 2@ +2a-3) 2(1-ap, 1
9@ =g gl r G+ = — + T xl- 7

Let F= fy+ f = hg+h+ go* g = H + G. By the definition of convolution and the formula (1.1), we have

h+zh g—zg

> ,G:go*gz > .

H=hy+h=
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So
1 1 o, A4z 2(1+2a-3a%) 2(1-a)?
BAr T GO Cpued e g a=2z
N z(1 — az)? _ 1}
1-2)(1+z)(1-27 2"
1 1 , 14z, 2@+2a-3) 2(1-a)
_5{_—8(1 )[(1+tl) ln( ) 1> 1=27 ]

1

z(z — a)? _ L
A+ -27 2"

The real and imaginary parts of F(z) = H + G can be written as follows

(@® +1)z% -
2(1 —a2)(1+2z)(1 - 2)3

—4az + a? +1 1 1
2(1—2) 2

R(F(z)) = R(H+G) = K[ I

1+z, 2(1-a) 2(1-a)?
I(Fz)=3(H-G) =93 1+a)*ln +
(@) =3(H - G) = Sl )« DI - T
z
- 2(1 - z)? )1
Images of the unit disk ID under f and fy + f (right) for a = 0.3 are drawn in Figurel.
5L " T T T ' T . ]5 T T T T T
- Lof
] 05F
0.0
1 -0.5 -
-10F
To4 02 00 02 04 06 o8 10 o5 o0 Tos
FIGURE 1. Images of f and fy » f (right) fora = 0.3
Images of the unit disk ID under f and fy + f (right) for a = 0.7 are drawn in Figure2.
6f " ! ! ! ! ! e
b 3 [
4 .
2 -
— — 1 —
ol
L = — 1-1 —
: 4 _2 -
_4j -
-3k
] P R PR S SR SV S P i - L " sl I
-04 -02 0.0 0.2 0.4 0.6 0.8 1.0 -15 =10 —0.5 0.0 0.5 1.0

FIGURE 2. Images of f and fy + f (right) fora = 0.7

1323
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Example 4.2. Let f = h+ g € R, with the dilatation w(z) = —( 1%:;)3. Then
h _ _Z g _ 3+z 3
TIETy ﬁ__(1+%z).
We obtain
, 2+ 23 1 2 14z + 13

= = + + i
1-2B3(7+13z+722) (-2 27(1-2) 27(7z22+13z+7)

, —(1+22)° -1t o1 2 142413
7= (1-2P37+132+722) (1-2z® (1-22 27(1-z) 27(722+13z2+7)

Integration from 0 to z gives

3 1 2 1 »n 1 In7

h(z)_Z(l—z)Z 27ln(z 1)+271n(7+132+7z) 5~ 57
-1 1 2 1 1 In7
=  +—+—Inz-1) - =In(7 722) = = + —.
9(z) 2(1—z)2+1—z+27 n(z—-1) 27ln( + 13z + 7z%) 2+ 7

Let F= fo* f = hg+h+ o * g = H + G. By the definition of convolution and the formula (1.1), we have

H:ho*h:#, G:goaeg:g_zzg
Thus,
H z N 1 +l[ 2z N 1422 + 13z Jrn7+13z+7zz_1n7]_1
T 21-z)P® 4(1-z? 54'1-z 7+13z+72 (z—-1)? 4’
Co_ 2 _ Z+3 122427 1422 + 13z _n7+13z+722+1n7]_1
C2(1-2)3 2(1-2)? 54 1-z @ 7+13z+7z2 (z—-1)2 4’

and

4

_ (2+2)2(28+752+902% +502°%) _,  z(1 + 22)%(50 + 90z + 752% + 282°)
B z-1*7+13z+7222 = (z = DX7 + 13z + 722)2

Therefore, the dilatation w of the convolution F = fy = f is

=_G _ Z(l +22)? (50 + 90z + 752% + 282°%)
T H T (2+2)? (5023 + 9022 + 75z + 28)

When z = —0.8, the two formulas 50z° + 90z% + 75z + 28 = 0, 50 + 90z + 75z + 28z° = 11.664. Thus, the dilatation
[w| of the convolution F = fy = f tends to infinity. Hence, F is not sense-preserving.
The real and imaginary parts of F(z) = H + G can be written as follows

[ 2z z N 4z + 27 2(13z + 14z?) _
1-2P3 @A-22% 271-2) 27(7+13z+722)

R(F@) = R(H + G) = %9& 1],

2
S(F(Z))=Im(H—G)=%S[i 12 7+132+72

-z 1z 7" o1 |
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and
z  2(1-32+32-2)  z-3zP +31z2PZ + |2PF
(1-zp 11—z - 11—zl '
z z(1-22+7)  z-2zP +2Z
1-22 [1-zF -z

13z + 1422 91z + 1691z + 91|z1*z + 98|z|* + 182[z*z + 98z|*
741324722 |7 + 13z + 722]2 ’

241 @+1D)A-22+72) z-2P + 22 +1-22+7

(1-22 11—z 11— zf*
Letz =€, 0< 0 <27 then
z cos —3+3cosB —cos26
%[ 3]: -2
(1-2) [(1 = cos 0)2 + sin® O3
_4cosO—2cos’0 -2
- (2 -2cos 6)3
_ —2(1 — cos 0)?
~ (2-2cos0)3
S S
41 -cos0)’
R z = cosf@—2+cos§  2cosf -2 _ 1
(1-22" [1-cosB)?+sin’0)2 (2—2cos0)? 2(1 - cos 0)’
R z = cosO —1 _cosO-1 __1
1-z" [(1-cosB)?+sin?0]2 2-2cos0 2’
R 1 = 1—-cosBO _ 1-cos® _1
1-z° [(1-cosO)?+sin?0]2 2-2cos6 2’
R 13z + 1422 _ 91cos 6 + 169 + 91 cos 0 + 98 cos 26 + 182 cos 6 + 98

7+13z 4722  (7+13c0s0 + 7c0s260)2 + (13sin 6 + 7 sin 20)2
: 364 cos O + 196 cos® 0 + 169
"~ (13 cos O + 14 cos? 0)2 + (13 sin O + 14 sin O cos 6)?
364 cos 0 + 196 cos® O + 169
B (13 + 14 cos 6)2

=1

Thus

11 1 a1 2
4(cos6—-1) 2(cos60-1) 2 27 2 27

%(F):%X[ZX
1

1
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Furthermore
9 z+1 = 2sin @ — sin 260 _ sin 6
(1-2%" [(1-cosB)?+sin?6]2 2(1-cos0)’
1 1-z sin 0 sin 0
S — 1 =Im = = ,
[1—21 [|1—Z|2] (1-cos6)? +sin?0  2(1—cos0)

I[in(z - 1)] = arg(z — 1), J[In(7 + 13z + 7z%)] = arg(7 + 13z + 72%)

and
z—1=cosB—-1+isinf
= —2sin’ g +2isin g cosg
.0, .0 . 0
—251n§(—s1n5+zcos§)
= 2sin gei(%Jrg),
7+13z +72* = (7 + 13 cos 0 + 7 cos 20) + i(13 sin O + 7 sin 26)
= cos 6(13 + 14 cos 0) + isin O(13 + 14 cos O)
= (13 + 14 cos O)(cos O + i sin O)
= (13 + 14 cos 6)e”,
g4z 0<0<nmn
—_1) = 2T =
arg(z—1) {g—%”, (m<O<2m) ’
0 0<6<n)
2y _ ’
arg(7+13z+7z)—{ 0-om, (m<6<2m) -
Thus

_1 o 2
JF) = > arg(7 + 13z + 7z°) > arg(z — 1)

_ —75, 0<8<nmn
(m<O<2n)

7
Images of the T9 = {|z] = 1\{1}, z = 1 under fo * f is drawn two points (—}1, +75), d(fo * f)= {the boundary of
the image domain of function fy* f }\{(—1, £ L)} respectively.
Images of the unit disk ID under f and fy + f (right) are drawn as follows in Figure3.
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FIGURE 3. Images of f and fq = f (right)

Remark 4.3. In Example 4.1, the convolution for a right plane harmonic mapping f(z) with the second complex
dilation w(z) = —{=- f_‘lf’z and the the canonical harmonic right half-plane mapping belongs to S), and is convex in
the direction of the real axis. Example 4.2 says that when the second complex dilation of f(z) is w(z) = —(£%)?,
it is a different result. Thus, it is interesting to determine which condition to make the convolution of fy and a
right half-plane mapping with a Blaschke product of degree three as its second complex dilation. Furthermore, which

condition should be made is satisfy for the general case w(z) = c [T,y 1255 (m 2 3).
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