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Abstract. By introducing the real inner product, this paper offers an modified conjugate gradient least
squares iterative algorithm (MCGLS)for solving the generalized Sylvester-conjugate matrix equation. The
properties of this algorithm are discussed and the finite convergence of this algorithm is proven. This new
iterative method can obtain the symmetric least squares Frobenius norm solution within finite iteration steps

in the absence of roundoff errors. Finally, two numerical examples are offered to illustrate the effectiveness
of the proposed algorithm.

1. Introduction

Matrix equations often arise from system theory, control theory, neural network, and stability analysis
[1-6]. How to solve these matrix equations become an important topic which have received much attention
[7-15]. Some different methods have been implemented for solving various linear matrix equations.

Recently, by applying the hierarchical identification principle, Ding etal introduced gradient based
iterative algorithms to solve (coupled) generalized Sylvester matrix equations, nonlinear systems [16-25].
For more references, one can refer to [26-32]. Furthermore, the least squares solution to the matrix equations
have been focused by many researchers [33-40]. For instance, the LSOR iterative algorithms are used to
solve the reflexive least squares solutions of the generalized Sylvester matrix equation A1X1B; + A, XoBs +
-+ A1 X;B; = C [34], reflexive least squares solutions of the general coupled matrix equations [37],(R,S)-
symmetric least squares solutions of the general coupled matrix equations [38], symmetric least squares
solutions of the matrix equation AXB + CYD = E [39]. Very recently, Hajarian [33, 35] extends the conjugate
gradient least squares iterative algorithm to solve the general coupled matrix equations and the generalized

Sylvester-transpose matrix equations.
Motivated by the above work, in this paper we denote a real inner product over complex field and

propose an modified CGLS iterative algorithm (MCGLS) for solving the generalized Sylvester-conjugate
matrix equation
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iA,‘XB,‘ + Z C]'XD]' =E, (1‘1)

i=1 j=1

This paper focuses on the following two problems.

Problem 1. For given A; € C™",B; € C™,C; e CP",D; e C™,E€ CP1,i=1,2,--- ,pand j = 1,2,--- ¢,
find symmetric matrix X* € C"™" such that

4 3 p t
I Z‘Aix*Bi + Z; CX'D;~Ell = min | Z‘AiXBi + Z{ C;XD; - E|. (1.2)
= = 1= j=

Problem 2. Let S, denote the solution set of Problem 1, for given symmetric matrix X, € C™", find the
matrix X € S,, such that
I = Xoll = min 1X - X,|L (13)

The remainder of the paper is organized as follows. Section 2 offers the symbols and the preliminaries.
Section 3 brings the modified CGLS iterative algorithm. It is shown that the proposed algorithm can
obtain the solution of Problem 1 for any initial matrix within a finite number of iterations in the absence
of roundoff errors. Two numerical examples are offered in Section 4 to illustrate the effectiveness of the
proposed algorithm. Finally, some concluding remarks are given in Section 5.

2. The symbols and preliminaries

Before starting this section, we first introduce the following notations which will be used in the rest of
this paper. C"*" denotes the set of m x n complex matrices. For a matrix A € C"*", we denote its transpose,
conjugate, conjugate transpose, trace, Frobenius norm and column space by AT, Z,AH ,tr(A), ||A|| and R(A),
respectively. Let I, and S, denote the n X n unit matrix and reverse unit matrix respectively. The symbol
vec(-) stands for the vec operator, i.e., for A = (a1,az,- -+ ,a,) € C"™", where 4;(i = 1,2 - -- ,n) denotes the ith
column of A, vec(A) = (af a3, ,ay)".

For X and Y two matrices in C"™*", we define real inner product as

(X,Y) = Re[tr(YEX)].

According this definition, the real inner product has the following properties.
(XX, Y) = (Y, X),

@UkX,Y) =KX, Y),keR,

BUX+Y,Z) =<X,Z) +{Y, Z),

(4){X,X) >0, forall X # 0,

(5)For matrices R, A, B and X with appropriate dimension, (R, AXB) = (AHRBY, X),

(6)For matrices R, A, B and X with appropriate dimension, (R, AXB) = (ZHREH, X),
(7)Two matrices X and Y are said to be orthogonal if (X, Y) = 0.
The induced-norm of a matrix A is defined by the following formula:

IAll = (A, Ay = \Re(tr[AHA]) = /tr[AHA]

The associated norm is the well-known Frobenius norm.

Lemma 1([41]) Let U be an inner product space, V be a subspace of U, and V* be the orthogonal complement
subspace of V. For a given u € U, if there exists a vy € V such that ||u — v|| < |[u — v|| holds for any v € V,
then v is unique and vy € V is the unique minimization vector in V if and only if (u —vp) LV, i.e. (u—vg) € V*.
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Lemma 2 Supposed that R is the residual of Eq.(1.1) corresponding to the symmetric matrix X € C"", that

is, R=E - Y 3(AXB; + AX"B;) - ¥, 5(C;XD; + C;XMD;). If

p t
1 s 1 —
2 E(AlHRfI 2 EC RD +DjRAC)) = 0.
i=1 j=1

holds, then the symmetric matrix X is the symmetric least squares solution of Eq.(1.1).

Proof. Firstly, we define the linear subspace W = {FIF = YV 1(A;XB; + AiX"B; ) + Z] 1 1(C;XD; + C;X"D))
with A; € CP",B; € C™1,C; € CP",D; € C™1,E€ CP,and X € C"™",i = 1,2,--- ,p,j = 1,2,--- L. NOW 1f

v\{;e letF = Zle L(AXB; + AiX"B;) + Z§'=1 %(Cj§D]- + C;XHD;), then F € W. Hence, for any F € W,one can
obtain

|4

. 1

(E-E,F) =(E- ZE(AXB +AXTB)+§ (CXD +C;X"Dy),
i=1 ]1

p t

1 1, <
Z 5 (AiXB; + A X"B;) + Z 5(CXD; + C;X"Dj))
: =

P t
. 1 1, =
= (R, § E(AXB i+ AiXTB) + § E (C;XD; + C;X"Dy))

P t
1 o = 1 —hz—H
= (), 3(AIRB] + BRTA) + § 5C "RD;" + D,RIC)), X)

o — — Hx— .
Therefore, if we let Y./ 3(AFRB! + B,RTA;) + Zj‘:l 1(C; RD jH + DjRHC;) = 0, it is can be proved that the
above equation (E — E,F) = 0. It follows from Lemma 1 that(E — F) € W*. Therefore, the matrix X is the
symmetric least squares solution of Eq(1.1).

Lemma 3 Let X be a symmetric solution of Problem 1, then any symmetric solution X of Problem 1 can be
expressed as X + Z, where the matrix Z € C"" satisfies

| =

4 t
Y S(AZBi+ AZTB)+ ) L cZp; +c,zp) = 0. @1)
£ L2

Proof. Let X be any solution of Problem 1, if we define the matrix Z = X — X, then we have X = X+ Z. Now
it is showed that Eq.(2.1) holds. By applying Lemma 2, we can obtain

4 t

1 A o 1 .= A

I 2 5 (AiXB; +A;X"B;) + Z 5(CXD; + C;X"D;) - EIP
i=1 j=1

(A; XB; +AXTB)+Z (CXD +C;X"Dj) - EI

I\JIP—‘
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51 1
=1} SR+ 2)B; + AR+ 2)"Bi] + ) SICi(X +2)D; + C(X + 2)/'D;] - EIP
i= 1 j=1

_||Z ~(A;ZB; +AZTB)+Z ~(C,ZD; + C;Z"D;) - RIP
]1

= Z S(AZBi+ AZ'B) + Z 1(CZD; + C,Z' DR + IRIP
i=1 =

c C/'RD;" +D,RHC))

IS
N
1=
NI =
BN
e
%)
= I
°°|
[\’J~

i=1 j=1

p
1 — .
:||§ E(AiZBi+AiZTBi)+§ E(c]-ZD]-+c]-zHDj)||2+||R||2
i=1 j=1

This shows that the Eq.(2.1) holds.

3. Main results

In this section, the modified CGLS iterative algorithm (MCGLS) for solving the symmetric least squares
problem of Eq. (1.1) will be offered and some properties of this algorithm will be established.

Algorithm 1. Step 1. Input matrices A; € C"™"",B; € C"™1,C; € C™",D; € C™,E € CP*7 and X(1) € C™" for
i= 1/2/”' /P/jz 1r27'” /t/
Step 2. Compute
p t
R(1)=E - (A X(1)B; + A; X(1)"B)) - Z ~(C;X(1)D; + C;X()"D;);

i=1 j=1
p
SOEDY
i=1

P(1) = 5(1), y(1) =ISI

Fork=1,2,3,--- repeat the following;:

Step 3. If [|R(k)|| = 0, then stop and X(k) is the solution of Eq.(1.6), break;
else if ||R(k)|| # 0 but ||S(k)|| = 0, then stop and X(k) is the solution of Problem 1, break;
elsek:=k+1;

Step 4. Compute
P

t

Q) = Y, 2 AP®B; + APKTB) + Y 2 (C
i=1 j=1

509 = YRR

X(k+1) = X(k) + 6(k)P(k);

R(k+1)= R(k) o(k)Q(k);

(AHR(l)BH +BiR(1) TA + Z (C; R(l)D +D;R()HC));

NI —

| =

2 P(k)D; + C;P(k)"D));

Stk+1) = Z ; (ATR(c + 1)BI + BiR(k + 1)TA;) +Z (C Rk+1D;"
i=1 1
+ D]'R(k + 1)HC]'),' -
P
= S(k) — 6(k)[2 ! (AHQ(k)BH +BiQ(k)TA;) + )
i=1 ]
y(k+1) = ISk + DI%
Ak) = y(k+1)/y(k);
P(k +1) = S(k + 1) + A()P(k).

(C QWD; +D;QWMC)];

NI

1l
—_



C. Song, Q. Wang / Filomat 34:4 (2020), 1329-1346 1333

Step 5. Go to Step 3.
Some basic properties of Algorithm 1 are listed in the following lemmas.

Lemma 4. For the sequences S(k), P(k) and Q(k) which are generated by Algorithm 1, if there exists a
positive number 7, such that [|S(u)|| # 0 and [|Q(w)|| # 0,Vu = 1,2, - -+ , 7, then the following statements hold
foru,v=1,2,--- ,rand u # v.

(1){5(w), 5(v)) = 0,
(2XQw), Q) =0,
B)P(w), 5(v)) = 0.

Proof. Step 1: We prove the conclusion by induction. Because the real inner product is commutative, it is
enough to prove three statements for 1 <u <v <r.

For u =1,v = 2, by Algorithm 1, one can obtain
(5(1),52)
P t
= (5(1),5(1) - (LY. (AF QB! +B.OWA) + Y 3G TMD; + D, C)D
-1 =1
P t
= ISIP - 50, Y, SATQMBY + BOAYA) + Y 3T QWD +D,0W"C) 3
P =1

P t

= ISP - 61)CY S(AS(B; + AS()B) + Y 2(CEMD; + C;SWD;), Q)
P =

= ISIP - 51%QM), Q) =0,

| —

p t
Q) Q@) = (QW), Y 5(AP@B: + APQTB) + Y 3 (CP@D; + C;PR)'D))
i=1 j=1
= (M), Z 5[A(S@) + AVP()B; + A(S(2) + ADPL)TB)

t
+Y %(c (5@ + AMPM)D; +C1(S(2) + AP D)

P (3.2)
ADIQM)I? +(Q(1), Zp: % AiS(2)B; + AiS(2)'B;) + Z (C;S@)D; + C;S(2)"D)))
= =
= ADIQIP + <Z S(ATQMBY + B QM)A + 2 2@ WD, + QY C), @)
- ADIQIR - (s - S@, s =0,
and
(P(1),5(2)) = (S(1), 5@)) = 0. (3.3)

Step 2: In this case, for u < w < r we assume that

(S(u), Sw)) =0,  (Qu), Qw)) =0,  (P(u),S5w)) = 0.
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Therefore, one can obtain
(S(u), S(w + 1))

P t
= (500, 5(w) ~ 5@)[Y., 5 (AL QB + BQW'A) + Y 5 "T@D; "+ DiQw)" ¢y
i=1 j=1

4 t
= ~5()Sw), Y 5(ATQW@B!! + B.Q@)A) + Y 2(C QwID; " + D Q@) Cy)
i=1 j=1
4 t
= —5(w) 2 A:Su)B: + AiSu)TB:) + Z % C;S@)D; + C;Su)"Dj), Q(w)) (3.4)
j=1

= —o(){, [Ai(P(u) = Au — 1)P(u ~ 1))B; + AiS(u)" Bi]

Mﬁa N
NIH NI>—\

Il
—_

+Z [Ci(P(u) — A(u = 1)P(u — 1))D; + C;(P(u) — A(u — 1)P(u — 1))HD i1, Q(w))

—5(w)<Q(u) A =1Q(u = 1), Q(w)) = 0,

(Qw), Q(w +1))

—(Q(u)Z (A:P(w + 1)B; +AP(w+1)TB)+Z (C;Pw + 1)D; + C;P(w + 1)"D;))
11 j=1

Q) Y M+ 1)+ AP B+ ASC + 1)+ A@P)TB]
i=1

t
+ 2 L 1C/B@+ D A@P@)D; + C;(S(w + 1) + Aw)Pw)" Di])
j=1

= (Qu), Z (AiS(w + 1)B; + AiS(w + 1)TB;) + Z (C;5@ + 1)D;
+C; S(w +1)1D;) + A(w)Qw)) "
4

) (3.5)
= (Q), Z L A+ 1)B; + AS@w + 1)TB) + Z 1(c:jS(w +1)D; + C;S(w +1)"D;))
i=1 j=1
p
=0 % (AHQ)BY + B;Qu)"Ay) + Z (G Q)D; + D;Qw)'C;), S(w + 1))
i=1 1
= — 55 (S(u + 1) = S(u), S(w + 1)) = 0,
and
(P(w), S(w + 1))
4 t
= (P, @) - 5@, 3 (ATQWB! + BQw@)'A) + Y 2T Q@D; ' + D, Q@) C))
i1 =1
P t
= ~0KP), ) S(AFQBY + BQW@)A) + Z 5@ Q@D;" + DA Cy) (36)

<Z 5 (AiP(u)B; + AiP)"B; + ]Z;‘ ~(C;P(u)D; + C;P(w)"'D;), Qw))
(W)<Q(u) Qw)) =



C. Song, Q. Wang / Filomat 34:4 (2020), 1329-1346 1335

For u = w, one has

(S(@w), S0 + 1)
p t

= (5(w), S() - 6@)(Y. 5 (ATQ)BY + BQw)A) + )
i=1

=1

| =

5T QD]+ DRwW'C))

t

p
= ISCIP - a)ste), Y, 547 QB! +BQw@A) + ), 56
j=1

E(C Q(W)D +D;Q(w)"C)))

= lIS@)IP - 6(w)<ZA S()B; +Zc S@)D;, Q)
j=1
= IS@)IP - 6<w)<z, | HAS@B: + AS@)TB) + Li; (C;5@)D; + CjS@)"D;), Q@)

(3.7)

= IS@)I* - 6(w)(Z 5 [AiP@) = Aw - DP(w - 1))B; + Ai(P(w) - AMw - )P(w — 1)"B;)

t
+Y %(cj(P(w) — A - DP(w — 1))D; + Cj(P(w) — A(w — 1)P(w — 1))"'D;), Q(w))
j=1

= IS@)IP = d@)Qw) - Aw - 1)Q(w - 1), Qw)) = 0,

(Qw), QA
= (Q(w),

S

+1))

t
(AiP(w + 1)B; + A;P(w)"B;) + Z %(cjp(w)D i + CjP(w)'D;))
j=1

- L‘Mv

N = N~

= (Q(w), [Ai(S(w + 1) + A(w)P(w))B; + Ai(S(w + 1) + A(w)P(w))" B

+i

Jj=1

1l
—_

i

[C;(S(w + 1) + A(@)P@))D; + Cj(S(w + 1) + A(w)P(w))"D;))

I\Jl’—‘
H

p t
Z 5 (AiS(w + 1)B; + A;S(w + 1)"B;) + Z %(C]S(w +1)D; + CjS(w + 1) D) + A(w)Q(w)))
i=1 j=1 (3.8)

p
= Aw)||Q(w)|* + (Q(w), Z %(A,S(w +1)B; + A;S(w + 1)"B))

t
Z %(c S(w + 1)D; + CjS(w + 1)'D;))
j=1

t
= A@IQE)IE + <Z SAFQIBY + BQW@'A) + Y 2T 0@y, + D@ C), S + 1)
j=1
 A@IQEIP - (56w + 1) - S(w), S + 1

= A@IQ@)IP ~ 55 1IS(w + DIP =



C. Song, Q. Wang / Filomat 34:4 (2020), 1329-1346 1336

and
(P(w), S(w + 1))

4 t
= (P(w) (@) - o) SAF QB! + BQW)A) + Z 1<€,4H<2<w>z>]-H + DjO@)"C)
= (S(w) + A(w — 1)S(w D+ A = DA@ - 25(@ - Nt A1), AD)SQ), Sw)

- 6(w)P(w) Z SAF QB! + BQw)'A) + Z ' Q@)D; + DjQw)"C)) 39)

= IS@)I - 6<w><2 5 (AiP()B; + APw)B) + 2 S(CPGID; + CP@)D;), Q@)
i=1 j=1

= IS@)I? = () Q(w), Qw)) = 0.

By the principle of induction, we draw the conclusion.

Theorem 1. For algorithm 1, if there exists a positive number ! such that 5(/) = 0 or 6(I) = oo, then X(I) is a
solution of Problem 1.

Proof. If 5(I) = 0, we have ||S(])|[> = 0; If 5(]) = oo, we have [|Q(])||> = 0. Hence, one can obtain
ISOIP = (S + A =1)SI—=1) + A= DAI =2)S(I —2) +---+ Al = 1)...A(1)S(1), S(]))
= (P(), S(l)>

= (P(l), Z 2(AHR(Z)BH +BiR()TA;) + Z 2(c "ROD;,, + DiR(C,))
— j=1

| —_

p t
=) %(AiP(l)Bi + AP()'B) + ) S(CPOD; + CiPO"D;), R()
, ~

Thus, for 6(I) = 0 or 6(I) = co one has

p t

1 — — 1 —H———H )
= Z S (ATROBY + BiR(A) + Z 5 ROD; +DjRAYC)) = 0.

i=1 =1
So by Lemma 2 we can conclude that X(/) is the solution of Problem 1.
Theorem 2. If the matrix equation (1.1) is consistent, then, for any arbitrary initial matrix X(I), the solution
X" of the Problem 1 can be obtained by using Algorithm 1 within a finite number of iterations in the absence
of roundoff errors.
Proof. By Lemma 4, the set 5(i),i = 1,2,3,--- ,m X n is an orthogonal basis of the real inner product space
C"™" with dimension m X n. Therefore, we can obtain ||S(m X n + 1)|| = 0. It is also showed that X(m x n + 1)
is the solution of Problem 1 in the absence of roundoff errors.
Theorem 3. Let the initial matrix be Y./_| 1(APF()B + BFF()TA) + X}, %(C_jHF(l)D jH +DjF(1)'C;), in which
F(1) € C"™" is an arbitrary symmetric matrix, or especially X(1) = 0, then the solution X* generated by

Algorithm 1 is the symmetric least norm solution of Problem 1.

Proof. Supposed that the initial matrix is

t
1—
Z S (ATE()BY + BF() )TA;) + Z; 5 (G 'EDOD;  + DJF1)C),
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then by Algorithm 1 the generated matrix X(k) can be easily expressed as
51 - — N1 —H——H
X(k) = Z E(AfIP(k)BfI +BiF(k)TA;) + Z E(Cf F(k)D; + D;F(k)"'C;),
i=1 =1
for certain matrices F(k) € C"™" for k = 2,3,.... It is showed that there exists a matrix F* € C"*" such that
51 — — N1 —H—H
X = Z E(AfiF*B,H +Bi(F)TA) + Z z(cj FD; +Dj(F)"C)).
i=1 j=1

Now if let X* is an arbitrary solution of Problem 1, then it is followed from Lemma 3 that there exists the
matrix Z* € C"™" such that

X =X"+7Z,
and

p t
1 * * ]' 7% *
§ 5 (AZ'Bi + A(Z )'B;) + 2 5(CiZ'D;+Ci(Z )¥D)) = 0.

i=1 =1
Thus, we have
(X*,Z7)
] — — N1 —H——n
= <Z SATF'B + Bi(F) A + Z 5(C FD; +Di(F)'C), 2
i=1 =1 (3.10)
P t
_ % 1 * *\T 1 % \ H _
—(F, E(AiZ B,‘+Ai(Z ) Bj)+Z§(CjZ D]‘+C]‘(Z) D]‘)> =0.
i=1 =1

Therefore, according to the above Eq.(3.10), it is showed that
IXIP = 11X+ Z'1P = IXIP + 12107 + 20X, Z7) = IXIP + 12717 = X1
This can be showed that the solution X is the symmetric least Frobenius norm solution of Problem 1.

Similar to [34], the minimization property of the proposed algorithm is stated as follows. This property
shows that Algorithm 1 converges smoothly.

Theorem 3. For any initial symmetric matrix X(1) € C"™", we have

4 t

1 1
I Z 5 (AX(k+ DB, + AX(k+1)By) + Z 5(CX(k+DD; +CiX(k+1)"D)) ~ EIP
a0 1 » =1 (3.11)
- mi Z(A:XB: xTR. ~(C:XD: XHD .Y — EI?
- I}g{ﬁ”; 5(AXB; + AX'B) + ]Z_; 5(CXD;j +CX"D)) ~ EIP,
where X(k+1) is generated by Algorithm 1 at the k + 1-th iteration and ¢x presents an affine subspace which

has the following form
Y = X(1) + span(P(1), P(2), ..., P(k)). (3.12)

Proof. For any matrix X € i, it follows from Eq.(3.12) that there exist numbers a1, @y, ..., a; such that

k
X =X(1) + Z aP(l). (3.13)
=1
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Now we define the continuous and differentiable function f with respect to the variable ay, ay, ..., ax as
f(O(l,Ozz, e ,ak)

P k k
= 1Y A + Y aP@)B:+ A(X(1) + Y aiP(D)'Bi]
=1 =1 =1

t 1 k k
+ ; S1CX) + ; aP()D; + C;(X(1) + ; aP()PD;] - EI2.

According to Lemma 4, we have
flar,an,...,0) = ||Zl 1 F(AX(1)B; + AiX(1)TBy) + Z] 13(C; X(l)D +CX(1)"D;) -
+ X o |2, HAPOB; + AP()B) + Xy 1(CPOD; + CiP()D; )] &
= IRMIP + Ly a2IQIP - 2a(Q(D), R(1)).
Now we consider the problem of minimizing the function f(a1, ay, ..., ax). It is obvious that
min f(a1,az,...., ) = min| Z ~(A;XB; + A:XTB;) + Z ~(C;XD; + C;X"D;) - E|I>.
j=1

For this function, the minimum occurs when

df(ay, a,...,ax)
(90(1

=0 forl=1,2,---,k.

Thus, we can get
_ Q0), RO
— ook
By Algorithm 1, one can obtain

R1)=RD+6(I-1)QU-1)+06(-2)QU-2)+---+6(1)Q(1).
Therefore, it follows from Lemma 4 that

a = QORD) _ (P(),XV, LATROBIBROTA)Y!., 1T ROD; +DjRAVIC))
L= Tieor ~ IR

— PO,SM) _ SO+AI-DP(-1),50))
RO I

_ lIsoir _
o o(h)-

Thus, the proof has been completed.
By Theorem 1, the solution generalized by Algorithm 1 at the k + 1—th iteration for any initial matrix
minimizes the residual norm in the affine subspace ;. Also one has

||Z (A:X(k + )B; +AX(k+l)TB)+Z (C;X(k+D)D; + CiX(k + )"D;) - E|]

i=1 =

P t (3.14)

(A X(K)B; + A X(K)B;) + Z X(k)D; + C;X(k)"'D;) - EI,
j=1

I\JIP—‘
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which shows that the sequence of the norm of residuals [[R(1)]], [[R(2)]],--- is monotonically decreasing.
This decent property of the norm of the residuals shows that the Algorithm 1 processes fast and smoothly
convergence.

In the following, we will solve Problem 2. For a given matrix Xy, one has

. T H _
Xrencl&nz (A:XB; + A;X B)+; (C;XD; +C;x""D)) - E|

:x?ciﬁnnz_[’q (X — Xo)B; + Ai(X - Xo TB]+Z—[C (X = Xo)D; + Ci(X - Xo)"D;] (3.15)
= j=1

F’ I
1 J—
—(E- ) 5(AXoB; + AX]B) - Z 5(CXoD; + CiX{ D)l
i=1 j=1
If we denote the set

p t
Z Z(AXoB; + AiXIB;) — Z %(cjx_oDj +C;XiD;)
i=1 j=1

and let
X =X = Xo,

then Problem 2 is equivalent to find the least Frobenius norm solution Xj of
t
min_ | Z (AiX1B; + A;XTB;) + Z % CiX:Dj + C;X!'D;) - El|, (3.16)
j=1
which can be computed by using Algorithm 1 with the initial matrix
4 t
xm=Y %(A?FB? +BFA)+ Y %(c_jHF_D]-H + DFRC)),

i=1 =1

where F € C"™" is an arbitrary matrix, or especially X;(1) = 0. Thus the solution of Problem 2 can be stated

as
X = X; + Xo. (3.17)

4. Numerical examples

In this section, two numerical examples are presented to illustrate the efficiency of Algorithm 1.
Example 4.1. Find the symmetric least Frobenius norm solution of the following generalized sylvester-
conjugate matrix equation

AXB+CXD =M, (4.1)
where
142 13—-i 6+i 4+3i 2 3-12i 4+6i 9+8i
Ao| 2+i 0 12 10 po| %6 11 12 9+18i
54+46i 2-3i 11-2i i |’ 0 12 15 18 |
1 12 0 9i 2 -9 12 11
i 9 1-5 2i 942 2—i 2 6+8i
co| 1 o2-18 12 1| | 4 19 20 11
Tl 1+8 11-2i 21 i "7 23 26+3 9% 9 |
9+8 11 i 8+i 23 0 16  8i
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104 +7572i 9059 — 11260 7465 + 32371 6522 + 76071
M = 6409 — 816 11016 —10231; 11011 —833: 9606 + 5155i
7700 + 91991 12752 —4698i 13886 + 1860: 9900 + 7479i
7484 + 6793i 13561 +3984i 5700 +4557i 6483 + 7741i

It can be verified that the generalized Sylvester-conjugate matrix equation (4.1) are consistent and have the

solution
4+3i 2+1i 11 6

2+i 11+2i 9+6i O
11 9+ 6i 2i 7
6 0 7 12i

Applying Algorithm 1, if we let the initial matrix X(0) = zeros(4, 4),X(0) = 10xI4 and X(0) = 10xones(4, 4)
respectively, we have the solution to the equation (4.1)

X =

4.0000 + 3.0000:  2.0000 + 1.0000: 11.0000 5.9999
X(35) = 2.0000 + 1.0000: 11.0000 + 2.000Qi 9.0000 + 6.QOOOi 0.0000
11.0000 9.0000 + 6.0000: 2.0000: 7.0000

5.9999 0.0000 7.0000 12.0000:

with corresponding residual
r(35) = 1.3684 x 10712,  err(35) = 4.7075 x 1071,
The residual of solution are presented in figure 1 and figure 2, where
r(k) = logsollM — AX(k)B — CX(K)DI.
The relative errors of solution are presented in figure 3 and figure 4, where

[1X(k) — X]|

err(k) = ]

Example 4.2. Find the symmetric least Frobenius norm solution of the following matrix equation

AXB + CXD + EXF = M, 4.2)
where
112i  13-79i 6+34i 43+31i 255 35—152i 45+ 65i 95+ 85i
g A+2i 110 12 10 po| 46 151 152 95+ 58i
T 5+6i 2-23i 113-2i i 710 512 155 185 |’
13 152 0 59i 2i —95i 125 118
16i  4+9i 2+123i 69i 2-9i 111 3 1-78i
co| “28+9i 2+8i 6 178 | o _| 4 3+20 2 6+90i
- 31 228 1-i 6+9 |"7 7| 4 2 390 1 ’
2 3 15 29i 1 22 1300 0
34i 9-9i 13-54i  21i 96+2i 26—i 26i 66+ 84i
po| 118 27-13i 572 11-78i | . _| 446i 169 260 116
T 188  110-2i 21— 96i i T 23 26+63i 97i 97 ’
9% +8i 11 i 86 + i 237 0 17-9i 8 —56i
—42399 + 44932i 509238 +263601i  —932917 — 126204i  —504532 + 106117i
A= | 8055258 +5.601465i  46181711.463378i 5333871 - 931642i 3762681 — 1447052

54811 + 1167795i 1932883 + 6847851 —549837 + 3173627 839701 + 914561
1207735+ 1390280i 2929188 + 1517478i 1866528 + 1291000: 1926580 + 1468563
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—x—x(0)=10x1,

—— x(0)=zeros(4,4)

RO,

5 10 15 20 25 30
iterative number k

Figure 1: The residual of solution for Example 4.1

35

40

—+—x(0)=10 x ones(4,4)

x(0)=zeros(4,4)

5 10 15 20 25 30
iterative number k

Figure 2: The residual of solution for Example 4.1
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6 -
8k -
o0k ]
—%—x(0)=10x1,
12 — — x(0)=zeros(4,4)
4k
-16
0 5 10 15 20 25 30 35 40
iterative number k
Figure 3: The relative error of solution for Example 4.1
0
2l ]
4l ]
6 -
8k -
10 —+—x(0)=10 xones(4,4)
— — x(0)=zeros(4,4)
2t
14t
-
-16 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

itrtative number k

Figure 4: The relative error of solution for Example 4.1
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—— x(0)=zeros(4,4)

——x(0)=10x1,

1og 41

0 10 20 30 40 50 60 70
iterative number k

Figure 5: The residual of solution for Example 4.2

It can be verified that the generalized Sylvester-conjugate matrix equation (4.2) are consistent and have the

solution
24 +13i 22+ 11i 6

2241 2142 19+416i 10
11i 19 + 161 2i 17
6 10 17 12i

Let the initial matrix X(0) = zeros(4, 4),X(0) = 10 x I and X(0) = 10 X ones(4, 4) respectively, by applying
Algorithm 1 we obtain the solution.
The residual of solution are presented in figure 5 and figure 6, where

X =

r(k) = log1olM — AX(k)B — CX(k)D]|.

The relative errors of solution are presented in figure 7 and figure 8, where

IX(K) — X]|
err(k) = ——
® =
24.0000 + 12.9999; 22.0000 + 0.99991 11.0000: 5.9999
X(32) = 22.0000 + 1.0000i  21.0000 + 1.9999; 19.0000 + 16.0000 10.0000
- 11.0000: 19.0000 + 16.0000: 2.00001 17.0000
5.9999 9.9999 17.0000 12.0000i

with corresponding residual
7(32) = 1.3075 x 107°.

err(32) = 8.1374 x 107€.

Remark 1. From the two examples above, it is showed that the Algorithm 1 is very efficient for any initial
symmetric matrices. Our proposed iterative method can obtain the symmetric least squares Frobenius norm
solution within finite iteration steps in the absence of roundoff errors for any initial symmetric matrices.
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——x(0)=zeros(4,4)

—+—x(0)=10 x ones(4,4)

10 20 30 40 50 60 70
iterative number k
Figure 6: The residual of solution for Example 4.2
——x(0)=zeros(4,4) B
—s— x(0)=10x I4
1 1 1 1 1 1
10 20 30 40 50 60 70

iterative number k

Figure 7: The relative error of solution for Example 4.2
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x(0)=zeros(4,4)

—+—x())=10 xones(4,4)

Iogmek

0 10 20 30 40 50 60 70
iterative number k

Figure 8: The relative error of solution for Example 4.2

5. Conclusions

In this paper, by extending the CGLS iterative algorithm, we propose the modified CGLS iterative al-
gorithm (MCGLS) to solve the symmetric least squares solution of generalized Sylvester-conjugate matrix
equation (1.1). For any initial symmetric matrix X(1), by the proposed MCGLS iterative algorithm, symmet-
ric least Frobenius norm solution X* can be obtained in finite iteration steps in the absence of roundoff errors.
Moreover, by using this MCGLS iterative method, the optimal approximation solution X to a given matrix
Xo can be derived by first finding the symmetric least Frobenius norm solution of a new corresponding
matrix equation. This iterative algorithm can be adapted to solve different classes linear matrix equations.
Two numerical examples are offered to illustrate the effectiveness of the proposed algorithm.
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