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Abstract. In this paper, we discussed the equivalent conditions for the boundedness and compactness

of several Volterra-type operators acting from general F(p, g, s) space to Bloch-Orlicz and Zygmund-Orlicz
spaces.

1. Introduction

Let ID be the unit disk in the complex plane C and H(ID) (or S(ID)) the collection of all analytic functions
(or all analytic self-maps) on ID. Given an analytic self-map ¢ : D — D, the composition operator
Cy : H(D) — H(ID) is defined by

Cof = fod, feHD).

The systematic study of composition operators acting on various spaces of analytic functions has been
very popular in recent years. In particular, the problems of relating operator-theoretic properties of C to
function-theoretic properties of ¢ are interesting and have been widely investigated. We refer the readers
to consult [1, 5,7, 12,19, 20] and so on.

In this paper, we fix our attention on the boundedness and compactness of some Volterra-type operators
defined below. Similarly, the mentioned questions and other operator theoretic properties of Volterra-type
operators expressed in terms of function theoretic conditions on symbols have been a subject of high interest,

which can be found in [6, 10, 11, 13-16] and their reference therein. Now we formulate four integral-type
operators.

(a) Given h € H(ID), the operator T" is defined by

T f(z) = f fhh(t)dt, f e HID), ze D.
0
(b) Given h € H(ID), the operator T}, is defined by

Tuf(2) = fo F(OW (B)dt, f € H(D), z € D.
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(c) Let ¢ € S(ID) and h € H(D), the operator P’fp is defined by

Pif(2) = f F(P()h(t)dt, f € H(D), z € D.
0

(d) Let ¢ € S(ID) and h € H(ID), the operator T},C, is defined by

TwCof(z) = fo flo()H' (H)dt, f e HID), ze D.

Indeed, these Volterra-type operators have close connections. On the one hand, when ¢ = id the identity
map, then
P! =T"and T)Ciy = Ty,

That means the operators T" and T, are special cases of PZ) and T},Cy, respectively. On the other hand, if

we let h = k' € H(D) in Pg, then P’q‘; = TxCy. Inspired by the above observations, we mainly provide the

investigations concerning Pg), then the analogous results for other Volterra-type operators follow immedi-
ately. Like composition operators, it is known that these type of operators are also appeared in the study
of operator theory on holomorphic function spaces. However, it seems that most of papers do not include
the estimate for these Volterra-type operators acting from general F(p, g, s) into Bloch (or Zygmund)-Orlicz
spaces even on the unit disk ID. Motivated by the works in [2, 4, 10, 16], we continue this line of research
and extend a number of results on Volterra-type operators.

For 0 < p,s < 00,2 < q < oo, a function f € H(D) is said to belong to the general function space

F(p,q,5) = F(p,q,5)(D) if
I = VO +sup [ 1P =PV 16, 2AG) <,
where ¢,(z) = (u —z)/(1 —uz), u € D. It is known that

(1= [P - 2P)

_ 2 _
1 |(Pu(z)| - |1 —{z, u>|2

The family of spaces F(p, q,5) was first introduced by Zhao [18]. It is called general function space,
which contains, as special cases, many classical holomorphic function spaces, such as BMOA space, Q,
space, Bergman space, Hardy space, Bloch space, if we take special parameters of p, g, s. Notice that F(p, g, s)
is the space of constant functions if 4 + s < —1. For the definition of these spaces described above, we
recommend the readers to [21].

Let u be a weight, which is a positive continuous function on ID. The u-Bloch space 8,, = 8,,(ID) consists
of all f € H(ID) such that

Iflls, = f(O) + sup p(@)|f"(2)| < eo,

zeD

and B, is a Banach space under the norm ||f lls,. In particular, if p(z) = (1 - )%, it leads to

B = (f e H(D), lIflls = 1f(0)] + sup(l - [z)*|f"(z)| < oo},

zeD

which degenerates the classical Bloch space 8 for a = 1. In the usual sense, the y-Zygmund space Z, =
Zu(D) includes all f € H(ID) verifying

Ifllz, = 1fO) +1f ()] + sup H@If ()] < oo,

which is a complete norm on Z i
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Recently, Ramos Ferndndez used Young’s functions to define the Bloch-Orlicz space in [8], which is a

generalization of the Bloch space (cf. [3, 16]). More precisely, let ¢ : [0, +o0) — [0, +o0) be an N-function,
that is, ¢ is a strictly increasing convex function with ¢(0) = 0, which implies that tlim @(t) = +oo. The

Bloch-Orlicz space related with the function ¢, denoted by B, is the calss of all f € H(ID) such that

SuHIDD(l ~2P)pAlf @)]) < o0

for some A > 0 depending on f. Suppose that ¢! is further continuously differentiable. If ¢! is not
differentiable everywhere, we set the function

t
Y(t) = fo P01 i,

x
then ¢ is differentiable, whence 1~! is differentiable everywhere on [0, ). Since ¢ is a strictly increasing,
convex function satisfying ¢(0) = 0, hence the function ¢(t)/t, t > 0, is increasing and

F () t
o) = Yt) = LZ de > (P(E) forall t > 0.

Hence 8% = BY. Due to the convexity of ¢, the Minkowski’s functional

I flly = inf{k >0: S, (%) < 1},
defines a seminorm for 87, which in this case is well-known as Luxemburg’s seminorm, where
So(f) = sup(1 = [zP)e(f@)).
zelD

It has been proved $¥ is a Banach space under the norm

Ifllse = 1O + 11 fllp-

S‘p(llffll;;w)S1’

Lemma 1.1. [8, Corollary 4] The Bloch-Orlicz space is isometrically equal to u1-Bloch space, where

Observing from the fact

it leads to the following Lemma.

pi(z) = ﬁ, zeD.

1=z
Whence for any f € B?,
Ifllge = [f(O) + sup p1(2)|f"(2)]-
zeD

As an apparent generalization, we recall the a-Bloch-Orlicz space 8% = BY(ID) (cf. [4]) for & > 0, which
is the class of all f € H(ID) satisfying

sup(1 — 2" (Al f'(2)]) < o0

zeD

for some A > 0 depending on f. And then B is also a Banach space endowed with the norm

Ifllge = 1F O + 1 fllg.ar
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where
Ifllp,e = inf{k >0: Spa (]%) < 1}
and
Spa(f) = sup(l - [zP) (I 2))). (1.1)
zelD
From a standard result
f )
Spal =<1, 1.2
v (||f||3;g 1)

the lemma below follows analogously.
Lemma 1.2. The a-Bloch-Orlicz space is isometrically equal to p,-Bloch space, where

1
fa(z) = —————, ze D.
¢ (ter)

Hence B, is also a Banach space under the norm

Ifllge = 1£O)] + sup pa(@)|f (2)I-

zeD

The Luxemburg seminorm together with (1.2) imply
S(p,a(f/) <le ”f”BZ‘, < 1/ (13)

for any f € Bf. Using that we can define the f-Zygmund-Orlicz space Z;f = .Z;f(]D) for B > 0, which
contains all f € H(D) satisfying

sup(1 — 2 (Alf" (2)]) < o,

zeD

for some A > 0 depending on f. Same as the a-Bloch-Orlicz space, since ¢ is convex, the Minkowski
functional

Ifllz; = inf{k >0 Sy (f?) < 1}

defines a seminorm for ng and S, 4 is given in (1.1). Moreover, ZE is a Banach space endowed with the
norm

Ifllzy = LFO) + £ O+ Ifll -

Lemma 1.3. Forany f € ZE \ {0}, the following relations hold

f/l
Spp|lm— <1,
"’ {nfnz;;
Sep(f)<le ||f||z;] <1 (1.4)

As a consequence of Lemma 1.3, the f-Zygmund-Orlicz space is isometrically equal to ug-Zygmund
space with

up(z) = _ !  eD

o (i)
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Furthermore, the equivalent norm

Iflizg = LFO)I+ 1O + sup up@)If” (2)|

makes Z' a Banach space.

There have been many significant developments in the study of the bounded and compact Volterra-type
operators acting on various spaces of analytic functions. However, there is no treatment considering these
operators acting on a-Bloch-Orlicz spaces and f-Zygmund-Orlicz spaces even on the unit disk. At present
we mainly deal with the boundedness and compactness of several Volterra-type operators defined from
the general space F(p, g, s) to the a-Bloch-Orlicz space or f-Zygmund-Orlicz space. The organization of this
paper is as follows, we collect some lemmas in Section 2 for later use. After that we provide the necessary
and sufficient conditions for the boundedness and compactness of Pg’) acting from F(p, g,s) to 85 or Zé
in Section 3 and Section 4, respectively. Finally we deduce some corollaries for remaining Volterra-type
operators.

Besides, note the notation A < B will be used for two nonnegative quantities A and B if A < CB for an

unimportant constant C > 0. For simplicity, we always suppose 0 < p, s < o0, =2 < g < o, g+5 > —1 and
a, >0.

2. some Lemmas

Lemma 2.1. If f € F(p,q,s), then f € B*D/P and
“f”B(Z*ﬂ)/V < “f”F(p,q,s)- (21)

Lemma 2.2. [11, Lemma 2.2] For 0 < a < oo, if f € B°, then for every z € D, there exists a constant C; > 0
fulfilling

Cillflls, O<a<l,
f@) <! Cllfllslog =z, a=1; .
Gillfllga g1

TP/

The lemma below can be deduced by the standard arguments in [1, Proposition 3.11], consequently we
omit the details.

Lemma 2.3. Let ¢ : [0,00) — [0, c0) be an N-function and Y stand for the a-Bloch-Orlicz space B, (or B-Zygmund-
Orlicz space .Z;f). Then PZE) : F(p,q,s) = Y is compact if and only if P;f) : F(p,q,5) — Y is bounded and, for any

bounded sequence {f,}new in F(p, q,s) which converges to zero uniformly on ID as n — oo, one has ||P’(; fally = 0as
n — oo.

3. P’; from F(p, g, s) to a-Bloch-Orlicz space

In this section, we exhibit the sufficient and necessary conditions ensuring the boundedness and com-
pactness of the operator Pi’h : F(p,q,s) > BY.

Theorem 3.1. Let ¢ : [0, 00) — [0, ) be an N-function, ¢ € S(D) and h € H(D). Then PI:b : F(p,q,s) = BY is
bounded if and only if
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2
M, —sup&<00, for 0< 220 g, 3.1)
L p
b ¢~ (1 ERE )
Ih(2)| log =2=p 2
M, :=sup 1—11|¢()| oo, for £*q =1 and s>2; (3.2)
“b g ((1—|z|2>ﬂ)
2+
Mj3 = sup In(z) < oo, for 151 (3.3)

D o7 (e ) (1 - 1p@P) 7

Proof. Sufficiency. (i) For the case 0 < q < 1, we suppose (3.1) is true. For any f € F(p, q,s), by Lemma 2.2
and (2.1) we conclude

(P’(’pf)’(z)

Spa|l =7

P MiCallfllrgr,q,s)

Py ( |f(p(2)h(z)]
Mlclnf”F(pqs)

|
o[ zzw;cf(fifils))
|

<sup(l - |z[? ) ( ( — ||f||3<2+q>/p)

=sup(l -
zeD

< sup(1 - [z*)*p
zeD

zeD “f”F(pqs)

<sup(l -z ¢ |~ ( mEDE )
which implies that
I
Pof

zeD
| Mi1Cill fllr,q9) o

That means ||P" f ||53a < MiCillfllr,qs) for any f € F(p, q,5), which yields the boundedness of Ph :F(p,q,5) =
BY in this case.

(if) For the case 2 = 1, we suppose (3.2) holds. For any f € F(p,q,s), by Lemma 2.2 and (2.1) we deduce

that
(PLfY(2)
’ M2C1||f||F(p,q,s)

_ e [ _f(@@)AG) )
- ilelug(l l2F) (p(M2cll|f”F(p,q,s)

< Sup(l _ |Z|2)a(p qo—l ( 1 ) |f(¢(z))|

Sup (1= R)*) Cilog =2 1 fllras

1
S 1_2201 _1(—))S1/
sup(l ~l2F)p ((P (1 - [zP)e
which accounts for
h

RS
MaCallfllr.q9 3
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By similar arguments, we verify that PZ) :F(p,q,s) = Bg is bounded for ZP# =1.

iii) For the case =4 > 1, suppose (3.3) is true. For any f € F(p, g,s), by Lemma 2.2 and (2.1) we derive
v PP y p.q y

(PLf) (@)
S al3r —~ ..
@ M3C1||f||F(p,q,S)

_ _ -2\
= sup(l —[z") ‘P(M3c1||f||F<p,q,s>

zeD
_ o2\ -1 1 _ 2y 501 If (@)
< sup(l 'Z')‘P((P ((1—|z|2)a)(1 @ i

1

zeD
which means that
i
RS
M3C1||f||F(p,q,s)

B
Hence the operator P’:,) : F(p,q,8) — BY% is bounded for ? > 1.

Necessity. Assume the operator P’;) : F(p,q,5) = B is bounded, consequently, there exists C > 0 such
that

1P} fllgs < Clifllrgas, forany f € F(p,q,s).
That is to say
h
_Fof
C”f”F(p,q,s)

In light of (1.3), the above inequality reveals that

P ’ o
Sp [[LJ ] = Spa (ﬂ) <1, forany f €F(p,q,s). (3.4)

<1, forany f € F(p,q,s).

¢
B{!

Cllflle,g.9 Cll fllE,q,9

Replacing f by the test function fy(z) = 1 € F(p, g, s) in (3.4) shows that

sup(1l — Izlz)ago(M) <1=sup ﬂ < oo, (3.5)
zeD C zeD (p_1 <—(1—|£|2)“)

(i) For the case 0 < 2]’# < 1, the desired formula (3.1) can be deduced from the boundedness of
P’; : F(p,q,8) — B% and (3.5).

(i) For the case 2% =1ands > 2, letting a € ID, define the function

2
2(z) = log ———, D. 3.6
fa(z) = log I z€ (3.6)

Applying [9, Proposition 1.4.10] with s > 2, we verify that

fa € F(p, q,5) satisfying sup || fallr,qs) < 1.
aelD
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Indeed, by a direct calculations, it holds

—
p $(a) (1= 2P = ufy
Vellg s = ilel]]g)f 1-z¢(a) e O
1—|z 2\s-2
< sup(l- [ul?) f (-] l—)zs dA(z)
ueD |
_ 2\s
< sup (A=l <G

ueD (1= [uly
withp = g+ 2 and s > 2. In view of (3.4), it follows that

(lfa@(z»h(zn) -

_ 1.2\
sup(l —[z]")"p Cll fallEw,g,

zeD
Then

o (b@)h@) o (b@)h@)
(1- Ia|2)“(p(—) <1 o LG@H@L
Cllfalrra ¢~ (er)

Since a € ID is arbitrary, thus we say that

log Wﬁlh(a)l
sup —————

1
b 97! (i)
That is the formula (3.2) holds for s > 2.

(iii) For the case 2% > 1, letting a € ID, define the function

fi = 0O e

(1-2p(@) 7

1366

(3.7)

By a direct calculation and [9, Proposition 1.4.10], it holds f, € F(p, g, s) satisfying sup || fallrp,qs) < 1. At this
aeD

time, the formula (3.7) implies that
(@)l

sup =, < %%

24 _
D ! () (1= [p@P) 7
and then the desire result (3.3) is valid. This concludes the proof. [J

Remark 3.2. The above results could also be directly deduced from Lemma 1.2.

Theorem 3.3. Let ¢ : [0,00) — [0, 00) be an N-function, ¢ € S(D) and h € H(ID). Then Ph :

compact if and only if PZE) : F(p,q,5) — B is bounded and

|h(z)| 2+q

———— =0, for 0<—<1;
—1 -1 1
e @ ((1—|z|2>a)
lh(z)|log == 24
I%iﬁnll—llu)(z)lzo, for _q:1 and s > 2;
o ¢ ((1—|z|2>w) P
Ih(z)|

. 2+q
hrn1 =0, for — >1.
l(z)|— o ((1 L )(1 _ |¢(Z)|2) A p

F(p,q,s) — B is

(3.8)

(3.9)

(3.10)
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Proof. Sufficiency. Suppose Pi’p : F(p,q,s) — BY is bounded and (3.8)-(3.10) hold. By Lemma 1.2, choosing

fo(z) =1 € F(p,q,5) and applying the boundedness of P’(; : F(p,q,5) — B, we verify (3.5), that is, M; < 0.

Let {f.} be a sequence in F(p, q,s) with sup || fullrqs < K and f, converging to zero uniformly on compact
nelN

subsets of ID as n — co. By Lemma 2.3, it suffices to show that ||P(’j)fn||8§ — 0asn — oo.Forany 0 <r <1,
we claim that

1P fullg

1P £,(0)] + suap ————— (P £,) @)

=D ¢~ (g

b))
(==
1

- @)
[zeDszlljbI()Z)lﬂ} (p_1 (m) f ¢ e
+ sup L 6

(zeD: [p(2)l>r} @1 (ﬂ—llw)

IA

M; sup |fu(w)|+ sup — fn(@@)h()]-
{weD: |wl|<r} {z€D: |p(z)|>} (P_l (m)

() For the case 0 < 2% <1, by (3.8), for every € > 0, there exists 0 < r; < 1 such that

h(z)|
o~ (iter)

< €, whenever |p(z)| > 1.

Due to Lemma 2.2 we obtain that

|h(z)|
||PZ>f"”BZ’f < M; sup |fu(w)|+KCy sup (—)1
{weD: [w|<r) {zeD: [§(z)|>r1} (P_l (W)
< M; sup |fu(w)|+ KCie.
{weD: [w|<r}

Since f, converges to zero uniformly on compact subsets of ID as n — oo, we conclude that

lim 1P fullgy < KCre.

2+

(i) For the case pq =1, by (3.9), for every € > 0, there is 0 < r, < 1 satisfying

Ih2)|log 27
— 1
¢! ((l—|z|2)ﬂ )

< €, whenever |¢p(z)| > 1.

Analogously, we show that

, Ih@)log r—mr
IPofullgy < My sup  |fu(w)|+KCy  sup  —————
{weD: |w|<r,) {z€D: |p(z)|>72} (P_l (m)

< M; sup |fu(w)|+ KCie.

{weD: |w|<r,}

Furthermore, we arrive at lim ||PZ, fallgr < KCqe.
n—o0 @
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(1ii) For AN 1, by (3.10), for every € > 0, there exists 0 < r3 < 1 such that
] y y

e
o () L - o@D 7!

<€, for |p(z)| > 3.

By the similar arguments, it yields that

1P fullge < M sup  |fuw)l
{weD: [w|<r3}
h
+ KCi  sup Inz)l

24 _
B0 1 (i) (- @) 7
< M; sup |fu(w)|+ KCie.

{weD: |w|<rs}

We also derive that lim “PI(; fullge < KCye.
n—oo x

L. . . 2 2 2
Considering € is arbitrary, ||P" f,|lz» — 0 as n — oo holds for the cases 0 < =1 <1, =¥ =1 and =4 > 1,
& Yo I Jnllgg r p P

respectively. Combining with Lemma 2.3, it follows P} : F(p,q,5) — B is compact.
Necessity. Assume PZ) : F(p,q,5) — B is compact. The boundedness clearly follows. Let {zi}ren be a
sequence in ID such that I}im |p(zi)| = 1. Set

1- o3 2
fix(z) = M, for 0< % <1

(1 —z(z)) 7

Fox(z) =1 2 2(1 2 )_1 for 277 _1 and s> 2
=|log ——| [log———=| , for — = ;
2 S o) \ BT IpGP p

_ 2
f3,k(z) = ! |(P(Zk)|2+q s for 2+ 1 > 1.
(1 —z¢p(zx) 7 P

By [9, Proposition 1.4.10], it is trivial to verify that fix, fox (wWith s > 2) and f3; € F(p,q,s) for k € N and
fix = O uniformly on compact subsets of D ask — oo fori = 1,2,3. By Lemma 2.3, it yields ]}im ||P$ f,',kllgg =0

fori=1,2,3, which offers that

P iy = 1Pl + sup —— |2

<> ¢~ (k)

L @) (3.11)

-1 1
4 ((1—|zk\2)a)
Putting fi1x, fox and f3x into (3.11), we check that
-1 1 24q o
nGolle™ (i) 0<2l<;
2

2 -1 1 24 _ .
1P, firllgy = § VEIIl08 Trese /¢ (s p =1and s>2

et o7 () L= looP) |, 22> 1.

Letting k — oo in the above inequalities, we conclude (3.8)—(3.10). The proof is finished. [
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4. P;’) from F(p, g, s) to B-Zygmund-Orlicz space
In this section, the properties of Pf; :F(p,q,5) = Zg are discussed in details.

Theorem 4.1. Let ¢ : [0,00) — [0, 00) be an N-function, ¢ € S(D) and h € H(ID). Then the operator PZ) :
F(p,q,5) — Zj is bounded if and only i

— QU W)
D -1 (m) 1 -lp@P) 7
and
Ly :=sup i (Zil < oo, for0< ﬂ <1 (4.2)
< ¢~ (=iry) P
W (2)|log 1=5ar
Ly := sup (Z)Lilq)(z)l oo, for Zﬂ =1 and s>2; (4.3)
b ¢ (i) P
L3 := sup ) —— < oo, for 2+a > 1. (4.4)
D o7 () A= @R 7! p
Proof. Sufficiency. Suppose (4.1)—(4.4) hold. For any f € F(p,q,s), observe that
. (e
P\ Clllra
= sup(1 - [zP)’p ( lf'(qb(z))ez»'((zjl)'h(z) + f(qb(z))h'(zn)
zeD fllEpas)
< sup(l - Yo ( I (6@)¢ @h@)] + 1f @)k <z)|), ws)
2eD CllifllE,q,9)

where the constant C will be determined later.

(i) For 0 < 2]’# <1, by Lemma 2.2, we reformulate (4.5) into

S (PLf)" (@)
P Cllfllrgra0
_ 2 2% / ’ ,
< sup(1 - 2| L2 12@P) IJ;EcP(Z))cP (Z)h(z)|+C1|hC (z)|]
P (1=16@PR) 7 Cllfllrggs
< sup(1 - g @A G |hc'(z>|]
=D C1-p@P) 7

@I ClG) ]
ca-ipepr  ©

_ 1 L+CL
< sup(1 — |z|2)5g0((p 1((1 — |Z|2)ﬁ) Cl 1). (4.6)

zelD

o (ep)
= sup(l — lzP)Pe
b o ()
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(i1) For Ea 1, by Lemma 2.2, (4.5) becomes into
v y

(PLf)"(2)
S -
PP\ Cll il

< sup(l - |z|2)/3(p[

zeD

@@ il @)los 1—<§<z>|2]
- lp@P) T ¢

o (=) [ 1 ene)
= sup(1 - |z|2)ﬁ<p[ —Ih’( )log ———>
2eD -1 ((Hﬁ) ca - |(;Z)(Z)|2) 4 C 1- |¢( z)]?
> 1 1 L+ C1L2
= SZESG ~F )%(‘P ((1 - |z|2>ﬁ) C ) @7

(iii) For 27 > 1, by Lemma 2.2, we rewrite (4.5) into

] (Pf})f)”(z)
PP Cllfllrgas)

< sup(l Y @[ (AGTCTR =1/ ]
<D CA-Ip@P)T  CU-Ip@P) T
_ 1 L+C1L3
C12)8 1
<suptt - aolo™ (i) <) @

In (4.6)—(4.8), C; is given in Lemma 2.2. We choose the constant C large enough satisfying L + C;L; < C for
i=1,2,3. Hence (4.6)—(4.8) were transformed into

(Pf;, 1) (2) ) 1
" _ B Y
o0s [C”f”F(Pr%S)] : ilellg(l 2F) qo(qo ((1 — [z?)P )) =1

The above formula and (1.4) imply that ||P" f [ z0 < Cllfllrp,q,)- Apparently, Ph :F(p,q,5) = Z‘P is bounded.
Necessity. Suppose that Ph :F(p,q,5) — Zq is bounded. Hence there is a Constant C > 0 such that

IP fllzo < Clifllegs forall f € F(p,q,s).
/1Ly

By (1.4), we conclude that

] (PLf)" (@) .
PP\ Clfllrgas |~

More precisely, it is

wup -y LED O+ SN O) wo)
2D CllfllE,q5

Put fo(z) = 1 or fo(z) = z into (4.9), which yields (4.2) and
sup WO + 0 (@.10)

N (==
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Hence L, < oo for 0 < Eat 1, then (4.2) together with (4.10) indicate
] g

5 . " @h@E)I

Li:=su (4.11)
<D ¢ (i)
For a € D, define
_ 2 1+¥ _ 2
PR S E
(1-zp@) 7 (1-z¢@) "
belonging to F(p, q,s) with sup ||fllre,qs < 1 by [9, Proposition 1.4.10] . Furthermore,
aeD
) S
fi(6(@) = 0and f(p(a) = 1@ __
P -lp@Pp)?
Putting f, into (4.9), we show that
|fa (P(@))¢’ (@)h(a)| )
— lal})B
4o (’)( Cllillpas
_ 2 (fa(@@)g’ @h(a) + fa(Pa))l' (@)l
=@k )ﬁgo( Cll fallrp,q. )
< supi1 -y [ LED IO o)
zeD C”fa”F(p,q,s)
Hence
fa(@@)¢"@h@l _ ( 1 )
C”fa”F(p,q,s) - (1 - |a|2)ﬁ ’
which is equivalent to saying that
249 @@kl _ ( 1 )
P Cllillpan (- lp@p) 7~ A=Y
Then L
"(a)h
@I
¢ () A - l9@P) 7
In general
lp@)I¢" (2)h(2)] 4.12)

D -1 (m) 1- |¢(Z)|2)2pﬂ

Now we split into two cases to show (4.1).
(Case — 1) If [p(z)| < 1/2, by (4.11) we get that

¢’ (z)h(2)| ¢’ (z)h(2)|
sup P < sup 1—1 <
{zeD: |p(z)|<1/2} (P_l (m) (1 _ |(P(Z)|2) 7 zelD (p_ (m)
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(Case —2) If |p(z)| > 1/2, by (4.12) we obtain that
¢’ (2)h(2)|
Sup 2+q
(zeD: [p(2)>1/2) -1 (m) 1-lp@PR)7
- [Pl (2)h(z)]
D -1 (m) 1-1p@)PR)7

Combining the above two cases, we prove (4.1) is valid.

(i) For 0 < 2]’# <1, take a € D and define

21q 21q
A-lp@P’7 (- Ip@P) 7
—— 524 — 2y
(1-20@)°7  (1-z¢@)7
which is in F(p, g, s) with sup || fullFp.q¢ =< 1 from [9, Proposition 1.4.10]. And it holds
p.q 1113) (D) p
ae.

fa2) =

,zeD,

fa(@(@)) = =1 and f;(¢(@)) = 0.

By (4.9), it yields that
W (a)|
1 —|al?)f ('—) <1,
= T

which implies

K@l _1( 1 )
Tlflrwas — 0 \a=upF)
ClIfllF@.q5) (1 - lal?)

Hence the desired formula (4.2) follows.

(i1) For 2% =1lands > 2, givena € D, set the function

,zeD,

2
2(2) = log ——
fa(2) 08 -

—2(a)

belonging to F(p, q,s) with sup || fullr,gs < 1 from [9, Proposition 1.4.10]. By a direct calculation,
aeD

()

fi6@) = log 2 and f1(p(@) = T lo@r

lp(a)l?
Hence replacing f by f, in (4.9), we arrive at

[p@)d’ @h(@)/(1 - p(@)P) + log H;Wh'(a»]

Cl Ifa | |F(p,q,s)

|f2(@(@)@’ (@)h(a) + fa(P@)H (a)] )
Cll fallrp.g.5)

(Ifu’ (P(2))¢' (2)h(z) + fu(qD(Z))h’(Z)l) <1

C”fa”F(p,q,s) -

1- Ialz)%(

=(1- Ial2)’gfp(

<sup(l - Izlz)ﬁ(p
zelD

Therefore,

P @h@/ (1 = 9@ + log el @] ( . )
Clfillrons = \a—app)
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Furthermore,

Il (@)|log 27 (@)’ (@)h(a)]

< Cllfallra.s + '
o (wer) o™ (timy ) (L= 10 @P)

Employing (4.1), we obtain that

I (2)|log 1 2mr i lp(2)¢’ (2)h(z)|
2D 7 (ke ) (1= [p@)P)

sup
=0 ¢ (i)
As a consequence, (4.3) holds for the case 2% =1 and s> 2.
(iii) For 2? > 1, considering a € D, define
249
(1 - lp@P)™* 1 - |¢(a)P

fa(z) = ——.— =2 ——.,z€D,
A -zp@)’7 A -zp@) 7

which is in F(p, q, s) with sup ||fallrp,q,s < 1. By a direct calculation,
aelD

flb@) = ——
(1~ 1p@P)

and f;(¢(a)) = 0.

2+q
7 1

Putting f, into (4.9), we verify that

(1 - JaP)ye [ |hz’+(qa)| ]

(1= 1p@P) 7~ Cllfallepae
|fa(p@)H (a)] )
CHfa”F(p,q,s)
If2 (@)@’ (a)h(a) + fa(p(a)l' (a)] )
C”fu”l—"(p,q,s)
(|fa' (¢(2))¢’ (2)h(z) + fa(¢(Z))h’(Z)|) <1

C”fa”F(p,q,s) -

=(1—MFW¢(

=(1- Ialz)%(

<sup(l - Izlz)ﬁ(p
zeD

which implies that
I (@)l

sup < oo,

D o7 (ke ) 4 - lo@P) 7

Then (4.4) is true for the case % > 1. The proof is complete. [

Theorem 4.2. Let ¢ : [0,00) — [0, 00) be an N-function, ¢ € S(D) and h € H(ID). Then the operator PZ) :
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F(p,q,5) — Zj is compact if and only if P!, : F(p,q,5) — Zj is bounded and

¢’ (z)h(z)] _
lim 29
BT 1 (mlzmﬂ) (1-lp@)P) 7

and
’ 2+

1m11|hL)1|=0, for 0<—q<1;

e Q_(ﬂﬁﬁﬁ> P
@)l log 2= 24
|05H|nll—1|¢” =0, for 791 and s>2;
O o (k) P
hl

l hllnl |7 (z)| = =0, for
PO o1 (g ) (A = 1o (2)P) 7

+q>1
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(4.13)

(4.14)

(4.15)

(4.16)

Proof. Sufficiency. Assume the operator P’(; : F(p,q,8) — Zg is bounded and (4.13)—(4.16) hold. By the
boundedness of PZ) :F(p,q,5) = .Zg and let fo(z) = 1 or fo(z) = z, we prove that L; < co and L; < oo in (4.2)

and (4.11), respectively.

Let {f,} be a sequence in F(p, q,s) with sup || fullrp,4s) < Kand f, converging to zero uniformly on compact

nelN

subsets of ID as n — 0. By Lemma 2.3, we will show that IIP’;banZE — 0asn — oo. Indeed, for r € (0,1) we

express the norm into

1
1P £ (O) + (P £ O)] + sup —————
=D ¢_1(0—Q%ﬁ)

: "(@h(z) + ful @)
= 1 @OO)] + sup TP Cl0 GGG
zeD 0] (m)

1P fllzy Ph £ @)

/2 (@@)¢" @hE@)] + 1 fu(P@)H ()]

IA

|fu(@ON)R(O)] + n
{zeD: [p(2)<r} ot (m)
(@@ @) + [ful@@) @

{z€D: [p(@)1>7) @1 (m)

(i) For 0 < % < 1,in view of (4.13) and (4.14), we claim that for every € > 0, there is 0 < r; < 1 satisfying

¢’ (2)h(z)]

o (o) (1~ 6P 7
@)

o (tey)

<

7

NI o™

€
<§,

(4.17)

(4.18)
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for |¢(z)| > r1. Based on (4.17), (4.18) and the described norm above, we give that

/(@) Dh@@)] + 1 fu(@@)H (2)]

IP! fullze < Ifu(@(0)R(0)] +
oz e e porr ¢ (=)
N Ifa(P(2)" (2)h(2)| + | fu(P)H (2)|
{2€D: [p(@)|>n) Pl (m)
< ful@ODhO) + L1 sup @) +Li  sup  |fu(w)l
{weD: [w|<r} {weD: |w|<r1}
C K s CCICTR
(eD: (@) -1 (m) 1-lpE@PR)T
+ K sup Gl

(zeD: [p@)I>n) Q1 (m)
< 1fu(@OPRO) + L1 sup |f;(w)|
{welD: [w|<r}

+L;  sup |fu(w)| + Ke. (4.19)

{we: [w|<r}

(i7) For 2% =1, in light of (4.13) and (4.15), then for every € > 0, there is 0 < r, < 1 such that

¢/ @h(z)l

o (i) 0 - 16D 7

I (2)l10g t=ice
o™ ()

€
<§,

€
<§,

for |¢p(z)| > rp. Similarly, it follows that

IIPZ, full z = fa(@ONRO) + L1 sup  |fj)l+L1 sup |fu(w)]
{weD: [w|<ry} {weD: |w|<r,}
¢’ (2)h(z)|

+ K sup =
D972 7 (i ) (1= @) 7

I (2)|log 1=oar

{zeD: |p(2)|>12} (o (m)

[fu(@ODRO) + L1 sup  |fn(w)l
{welD: [w|<r,}

+L;  sup |fu(w)| + Ke. (4.20)

{weD: [w|<r,}

A

(iii) For % > 1, in view of (4.13) and (4.16), it yields that for every € > 0, there exists 0 < r3 < 1 fulfilling

¢/ @h(2) e
o () - lo@R) T 2
W) <

o () A - 19D T
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for |¢p(z)| > r3. It can analogously be shown that

Pefllze < Ifa(@O)RO) + L1 sup |fi@)]+L1  sup  |fu(aw)

{weD: |w|<rs} {weD: |w|<rs}
"(2)h(z
LK eup ¢’ (2)h(z)] -
t: WG] ! () (L= 1@ T
hl
. I (2)

(== [ D
Ifu(PODRO) + L1 sup  |fi(w)]
{weD: [w|<rs}

+L;  sup |fu(w)l + Ke. (4.21)

{weD: [w|<rs}

A

Summarizing (4.19)-(4.21), by Cauchy estimate, we conclude that

lim P fall 77 < Ke. (4.22)

Since € is arbitrary, by (4.22) and Lemma 2.3, the operator P?a :F(p,q,s) — Z;p is compact.

Necessity. Assume P’(;) :F(p,q,5) — Z;’ is compact. The boundedness clearly follows. Let {zi}ren be a
sequence in ID such that I}im |p(z¢)| = 1. Then set

A-1pE@P" T 1-1p@E)P

fox@) = e —
(I-zpz)) 7 (1 —zP(zp) 7

—~ _ 225! _ 2\ 5!

Fi2) = (1 = lo(z)l )w _2(1 Kb@)m for 0< 2+q _ L
1 -zp(z0))’ 7 (1 —zp(zi) 7 p

-1

=1 ;)2(10 ——_
B e ) BT 10@R)

+
q=1 and s> 2;

- 2y1+21 3 )
J?S\,k(z) = d |¢@) w2 ! @lm , for 244 > 1.
(1-26@)Y7 (-2 " P

Similar to the proof in Theorem 3.3, the desired equations (4.13)-(4.16) follow. This ends the proof. [

5. Some corollaries

In this section, we present some corollaries without proof, which can seen as special cases in the above
two sections.

et ¢ = 1d the identity map in P’,, then P!, = ", combining wit eorems 3.1, 3.3, 4.1 ana 4.2, tour
(1) L id the identity map in P!, then P!, = T bining with Th 3.1,3.3,41and 4.2, f

corollaries about the boundedness and compactness of T" : F(p,q,s) — 8% (or ZE) follow.

Corollary 5.1. Let ¢ : [0,00) — [0, 00) be an N-function and h € H(D). Then the operator T" : F(p,q,s) — BY% is
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bounded if and only if

supﬂ<oo,for 0<2ﬂ<1;
b ¢~ (7w
Ih(z)llog =5

e Sy e B
(1-lzP)e

h(z)| 2+

< oo, for

+
17:1 and s > 2;

sup 1 1.

_ 2
<D 071 (py ) (1= 12R) 7

Corollary 5.2. Let ¢ : [0,00) — [0, 00) be an N-function and h € H(D). Then the operator T" : F(p,q,s) — BY is
compact if and only if T" : F(p,q,s) — B, is bounded and

2
k 1%:0,]% O<ﬂ<1;
e ((1—|z|2>w) P

h@)llog 37 2

+
ll}rr} - - 0, for il 1 and s> 2;
1 71 () P
h 2+
lirr} In(z) g s 0, for 151
|zl— ! (m) (1-z0)7 - p

Corollary 5.3. Let ¢ : [0,00) — [0, 00) be an N-function and h € H(ID). Then the operator T" : F(p, q,s) — ZZ) is
bounded if and only if

|h(2)]

Sup 2+4 < OO’
1 2y 52
2D o1 (k) (1= 2R) 7

and

@) 244

sup < 0o, for0<7<1;

=D ¢! (i)

I @)log 127

2+
sup —————— < 0, for—qzl and s> 2;
> ¢~ (i) P

¢ 2+
sup )l < oo, for

T 1 > 1.
D 71 (tpp ) (1 = 12R) 7

Corollary 5.4. Let ¢ : [0,00) — [0, 00) be an N-function and h € H(ID). Then the operator T" : F(p, q,s) — Z;’ is
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compact if and only if T" : F(p,q,s) — Zg is bounded and

h(z)| _
m — =
o7 () - D)

and

! 2+
I 1—1"1(2)1' =0, for0< —1 <1
=197 (i) P

W (2)] log 15
|Z}I—n>1 -1 1
¢ ((1—|z|2>ﬂ)
/4 2+
l} 1 |n' ()| T =0, for
e ((1—|1z|2>ﬁ)(1 — [2P)7

2+
=0, forTq:l and s > 2;

> 1.

(2) Let h = k' € H(ID) in Pf;, then Pg = TxCy, which together with Theorems 3.1, 3.3, 4.1 and 4.2 imply
some corollaries for the boundedness and compactness of TxCy : F(p, q,5) — BY (or Z;f).

Corollary 5.5. Let ¢ : [0,00) — [0,00) be an N-function, ¢ € S(ID) and k € H(ID). Then the operator TyCy :
F(p,q,s) — BY% is bounded if and only if

’ 2+
sup&<oo, for 0<Tq<l;

=D ¢! (i)

K (2)|log =27 2+
supl—iw)l o, for L 1 and s> 2;
D @~ (_(HZIZ)“) §

, 2+
sup Ik (Z)l — < 0o, fOT 1 > 1.

D o (g ) (L~ @) 7

Corollary 5.6. Let ¢ : [0,00) — [0, 00) be an N-function, ¢ € S(ID) and k € H(ID). Then the operator TyCy :
F(p,q,s) — B is compact if and only if TyCy : F(p, q,5) — BY is bounded and

! 2+

| 1?1%20, for 0<—q<1;
A1 o1 (1t ) P
Ik (2)] log =5 2+

. q
lim =0, forr —— =1 and s>2;
9@I>1 -1 ((1_‘12‘2)“ ) p
K =0, for Sl
' p

li
lp@)I-1 1

o (k) (- o @P) 7!

Corollary 5.7. Let ¢ : [0,00) — [0, 00) be an N-function, ¢ € S(ID) and k € H(ID). Then the operator TyCy :
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F(p,q,5) — Zj is bounded if and only if

p ¢’ (2K (2)]
D o (ke ) (1= Ip(P) 7

and
17 2
u %<oo, f0r0<ﬂ<1;
b 97! (7izy) P

Ik (z)l log 1—|¢3(z>|2 q

2+
sup 0, forT =1 and s>2;

b 7! ((1—|1z|2>ﬁ)
k" (z)|

sup - e

D -1 (m) 1 -lp@)P)7

< oo, for > 1.

Corollary 5.8. Let ¢ : [0,00) — [0, 00) be an N-function, ¢ € S(D) and k € H(D).

F(p,q,s) — Zz) is compact if and only if TyCy : F(p, q,s) — Z(g is bounded and

¢’ (2)K' (2)]
111'_1)1 : T =
[p(2)l @1 (W) 1-lp@)P)7
and
% 2+
| (1)I|nlllk#3|=0, for 0 < il <1
Pt ((1—\z\2)ﬂ)
k" (z)|log 2= 2+
| lirlnll—lllw)le, for—qzl and s > 2;
PO 97 (k) i
K@) 244

lim

PO o1 (b ) A = @B 7!

=0, for > 1.
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Then the operator TyCyg :

(3) Let ¢ = id the identity map in TyCy, then TiCiy = Ty, which together with Corollaries 5.5-5.8 imply

some corollaries for the operator T : F(p,q,s) — B (or ZE).

Corollary 5.9. Let ¢ : [0,00) — [0, 00) be an N-function and k € H(ID). Then the operator Ty : F(p,q,s) — B is

bounded if and only if

/ 2
sukaL)l'<oo, for 0<ﬂ<1;
=D ¢~ ((1—|z|2)a)

k' (2)llog 57
SU.p _1—1 , f I3
b ¢ ((1—|z|2)ﬂ)

/ 2
kel < oo, for il > 1.

—q=1 and s > 2;

sup
zeD (P71 ((1*|12|2)"‘ ) (1 - |Z|2)

2+q
2
P

Corollary 5.10. Let ¢ : [0, 00) — [0, 00) be an N-function and k € H(ID). Then the operator Ty : F(p,q,s) — B is
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compact if and only if Ty : F(p,q,5) — B is bounded and

! 2+
l}rr}llkL)llZO, for 0<—q<1;
=197 () P
K (2)log = 2+
l}ml#:o, for 29 21 and §>2;
e ((1—|z|2)“) P
’ 2
Hn’ll ke 2 _q =0, fOT i > 1.
o () - ) $
Corollary 5.11. Let ¢ : [0,00) — [0, o) be an N-function and k € H(ID). Then the operator Ty
bounded if and only if
up K (2)l .

2+
0 o7 (i) (0 - )7
and

' 2+
suplk—(zz| < oo, for0< il | <1
b 97! (7izy) P

Ik (z)l log 2> 2+
sup$ 00, for—q =1 and s >2;
zeD (,0_1 ('(1_|Z|2)ﬁ) P

Iku(z)| 2 + q
sup

o <% for —— > 1.
zD -1 (m) 1-1zP)7 p

Corollary 5.12. Let ¢ : [0,00) — [0, o0) be an N-function and k € H(ID). Then the operator Ty

compact if and only if Ty : F(p, q,s) — Zg is bounded and

; k) _
im = =
. (P_l ((1_|1z|2);3) (1- |Z|2) b

and
K’ 2+

I 1%20, f0r0<—q<1;
41 o1 (k)

k" (z)|log 5= 2+
l}ﬁ&%zo, for—qzl and s > 2;
41 o7 () P

K 2+
ll}rr} K7() T 0, for 151,
o (i) - 1) §
References

[1] C.C.Cowen, B.D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995.

1380

:F(p,q,8) — ZE is

:F(p,q,s) — Zz is

[2] Z].Jiang, On a product-type operator from weighted Bergman-Orlicz space to some weighted type spaces, Appl. Math. Comput.

256 (2015) 37-51.

[3] H.Y.Liand Z.T. Guo, On a product-type operator from Zygmund-type spaces to Bloch-Orlicz spaces, J. Inequal. Appl. 2015 (132)

(2015)1-18.

[4] Y. Liang, Integral-Type Operators from F(p,q,s) space to a-Bloch-Orlicz and g-Zygmund-Orlicz spaces, Complex Anal. Oper.

Theory 12 (2018) 169-194.



(5]
(6]
[7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]
[19]

[20]

[21]
[22]

Y. Liang et al. / Filomat 34:4 (2020), 1359-1381 1381

Y. Liang, C. J. Wang, and Z. H. Zhou, Weighted composition operators from Zygmund spaces to Bloch spaces on the unit ball,
Ann. Polon. Math. 114 (2015) 101-114.

Y. Liang and Z.H. Zhou, Some integral-type operators from F(p, g, s) spaces to mixed-norm spaces on the unit ball, Math. Nachr.
287 (11-12) (2014) 1298-1311.

Y. Liang, Z.H. Zhou and X.T. Dong, Weighted composition operator from Bers-type space to Bloch-type space on the unit ball,
Bull. Malays. Math. Sci. Soc. (2) 36(3) (2013) 833-844.

J.C. Ramos-Ferndndez, Composition operators on Bloch-Orlicz type spaces, Appl. Math. Comp. 217 (2010), 3392-3402.

W. Rudin, Function Theory in the Unit Ball of C*, Crundlehren Math. Wiss. 241, Spring-Verlag, New-York Berlin 1980.

B. Sehba, S. Stevi¢, On some product-type operators from Hardy-Orlicz and Bergman-Orlicz spaces to weighted-type spaces,
Appl. Math. Comput. 233 (2014) 565-581.

S. Stevi¢, On an integral operator on the unit ball in C*, J. Inequal. Appl. 2005 (1) (2005) 81-88.

J.H. Shapiro, Composition Operators and Classical Function Theory, Spriger-Verlag, 1993.

S. Stevi¢, S. Ueki, On an integral-type operator between weighted-type spaces and Bloch-type spaces on the unit ball, Appl.
Math. Comp. 217 (2010) 3127-3136.

S. Ueki, On the Li-Stevi¢ integral type operators from weighted Bergman spaces into f-Zygmund spaces, Integr. Equ. Oper.
Theory 74 (2012) 137-150.

C.L. Yang, Integral-type operators from F(p, q,s) spaces to Zygmund-type spaces on the unit ball, ]. Inequal. Appl. 2010 (2010),
Article ID 789285, 14 pages.

C.L. Yang, EW. Chen and P.C. Wu, Generalized composition operators on Zygmund-Orlicz type spaces and Bloch-Orlicz type
spaces, J. Funct. Spaces, 2014 (2014), Article ID 549370, 9 pages.

X. Zhang, S. Li, Q. Shang and Y. Guo, An integral estimate and the equivalent norms on F(p, g, s, k) spaces in the unit ball, Acta
Math. Sci. Ser. B 38 (2018), no. 6, 1861-1880.

R.H. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. 105, 56 (1996).

Z.H. Zhou, Y.X. Liang and X.T. Dong, Weighted composition operator between weighted-type space and Hardy space on the
unit ball, Ann. Polon. Math. 104 (3)(2012) 309-319.

ZH. Zhou, Y.X. Liang and H.G. Zeng, Essential norms of weighted composition operator from weighted Bergman space to
mixed-norm space on the unit ball, Acta Math. Sin. (Engl. Ser.) 29 (3) (2013) 547-556.

K.H. Zhu, Operator Theory in Function Spaces, Marcel Dekker. Inc, New York, 1990.

K.H. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics 226, Springer, New York, 2005.



