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Abstract. In this paper, a stochastic predator-prey system with modified Leslie-Gower and Holling type
II schemes is studied. For the autonomous case, we prove that the system has a stationary distribution
under some parametric restrictions. We also obtain conditions for the non-persistence of the system, and
the results are illustrated by computer simulations. For the non-autonomous system with continuous
periodic coefficients, sufficient conditions which guarantee the existence of periodic solution of the system
are established.

1. Introduction

One of the dominant themes in both ecology and mathematical ecology is the dynamic relationship
between predators and their prey due to its universal existence and importance in population dynamics.
The predator-prey system, incorporating a modified Leslie-Gower function response and the Holling-type
II function response, can be written as follows [1, 2]:

ẋ(t) = x(t)
(
a − bx(t) −

cy(t)
m1 + x(t)

)
,

ẏ(t) = y(t)
(
r −

f y(t)
m2 + x(t)

)
,

(1)

where x(t) and y(t) represent the population densities at time t, the model parameters a, b, c, r, f ,m1 and m2
are assuming only positive values. a is the growth rate of prey, b is the strength of competition among
individuals of species x, c is the maximum value of the per capita reduction rate of x due to y, m1 and

2010 Mathematics Subject Classification. Primary 60H10; Secondary 92D25,93E15
Keywords. Predator-prey system, Stationary distribution, Periodic solution, Non-persistence
Received: 10 February 2018; Accepted: 26 March 2020
Communicated by Miljana Jovanović
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m2 measure the extent to which the environment provides protection to prey x and to the predator y
respectively, r describes the growth rate of y and f has a similar meaning to c. Aziz-Alaoui and Daher
Okiye [1] point out that:
(i) System (1) has a unique interior equilibrium E∗(x∗, y∗) if rm2

f < am1
c .

(ii) The interior equilibrium E∗(x∗, y∗) is globally asymptotically stable if the following conditions hold

L1 <
am1

2c
, m1 < 2m2, 4(a + bm1) < c,

where L1 = 1
4 f b (a f (a + 4) + (r + 1)2(a + bm2)). More related results on (1) can be seen in [1–5].

In fact, population dynamics is inevitably affected by environmental white noise. Some researchers have
paid their attention to the environmentally perturbed system, and many interesting results are obtained
[6–10]. In this paper, we will focus on the case that a and r in model (1) are perturbed with white noise, that
is

a→ a + αḂ1(t),

r→ r + βḂ2(t).

Then we get the following stochastic system
dx(t) = x(t)

(
a − bx(t) −

cy(t)
m1 + x(t)

)
dt + αx(t)dB1(t),

dy(t) = y(t)
(
r −

f y(t)
m2 + x(t)

)
dt + βy(t)dB2(t),

(2)

where B1(t) and B2(t) are independent one-dimensional Wiener processes, α2 and β2 represent the intensities
of the white noise.

Ji and Jiang [6, 7] investigate the special case of system (2), that is, m1 = m2 = m:
dx(t) = x(t)

(
a − bx(t) −

cy(t)
m + x(t)

)
dt + αx(t)dB1(t),

dy(t) = y(t)
(
r −

f y(t)
m + x(t)

)
dt + βy(t)dB2(t).

(3)

Condition for the system to be extinct is given and persistent condition is established. Moreover, they show
that there is a stationary distribution for the system by constructing the Lyapunov function. However,
in these work, the existence of stationary distribution depends heavily on the positive equilibrium of
corresponding deterministic system. In this paper, one of our aims is to establish sufficient conditions for
the existence of stationary distribution of system (2) by constructing the suitable Lyapunov function, which
does not depend on the existence and the stability of the positive equilibrium of system (1).

Since there are number of factors in the environment, which vary periodically with changing seasons,
affect various parameters in the ecological models, therefore the study of ecological systems driven by
periodic external forces is of importance. However, there is little work about periodically stochastic
differential equations. In [11], Li and Xu obtain some sufficient conditions for the existence of periodic
solution of the delay equations by using the properties of periodic Markov processes. Lin and Jiang [12]
investigate stochastic SIR epidemic model with variation in all parameters, they obtain the threshold for the
epidemic to occur. Moreover, the existence of nontrivial positive periodic solution is obtained. Motivated
by these, we consider a stochastic non-autonomous predator-prey system with modified Leslie-Gower and
Holling type II schemes with periodic coefficients, which takes the following form:

dx(t) = x(t)
(
a(t) − b(t)x(t) −

c(t)y(t)
m1(t) + x(t)

)
dt + α(t)x(t)dB1(t),

dy(t) = y(t)
(
r(t) −

f (t)y(t)
m2(t) + x(t)

)
dt + β(t)y(t)dB2(t),

(4)
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where a(t), b(t), c(t),m1(t), r(t), f (t),m2(t), α(t) and β(t) are positive continuous functions with period θ, B1(t)
and B2(t) are standard one-dimensional Wiener processes (the independence of Bi(t) is not necessary in
model (4)), andα2(t), β2(t) are the intensity of the white noise at time t. We will study the sufficient conditions
for existence of positive periodic solution of system (4) by using the periodic theory of Has’minskii.

The structure of this paper is as follows. In Section 2, we establish the existence of unique positive
global solution for system (2). If the noise is relatively small, there is a stationary distribution. Conditions
for non-persistence of the system are established. In Section 3, we explore the existence of periodic solution
of system (4) provided the coefficients of the system are continuous periodic functions.

Throughout this paper, let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions (i.e. it is increasing and right continuous while F0 contains all P-null sets). We denote
by Rn

+ the positive cone in Rn, that is Rn
+ = {x ∈ Rn : xi > 0 for all 1 ≤ i ≤ n}.

If f (t) is a continuous bounded function on [0,+∞), we define

f u = sup
t∈[0,+∞)

f (t), f l = inf
t∈[0,+∞)

f (t).

In general, consider a d-dimensional stochastic differential equation

dx(t) = f (x(t), t)dt + 1(x(t), t)dB(t) on t ≥ t0 (5)

with initial value x(t0) = x0 ∈ Rd. Define the differential operator L associated with equation (5) by

L =
∂
∂t

+

d∑
k=1

fk(x, t)
∂
∂xk

+
1
2

d∑
k, j=1

[1T(x, t)1(x, t)]kj
∂2

∂xk∂x j
.

2. Stationary distribution and non-persistence of system (2)

2.1. Existence and uniqueness of the global positive solution
In order for the model to make sense, we need to show the solution is global and nonnegative. However,

theorem of existence and uniqueness (cf. Mao [15]) is not satisfied in (1.2). Using the Lyapunov analysis
method([13]), we will show the existence and uniqueness of the global positive solution of (1.2).

Theorem 2.1. For any given initial value (x0, y0) ∈ R2
+, there exists a unique solution (x(t), y(t)) to (2) and the

solution will remain in R2
+ with probability 1, that is, (x(t), y(t)) ∈ R2

+ for all t ≥ 0 almost surely.

Proof. First, consider the equation
du(t) =

[
a −

α2

2
− beu(t)

−
cev(t)

m1 + eu(t)

]
dt + αdB1(t),

dv(t) =

[
r −

β2

2
−

f ev(t)

m2 + eu(t)

]
dt + βdB2(t).

(6)

For any given initial value u(0) = log x(0), v(0) = log y(0), there exists a unique local solution (u(t), v(t)) on
t ∈ [0, τe), where τe is the explosion time [14, 15]. By Itô’s formula, it is easy to see that x(t) = eu(t), y(t) = ev(t)

is the unique locally positive solution of (2) with initial value (x(0), y(0)) ∈ R2
+. To show this solution is

global, we need to show that τe = ∞ a.s. Let m0 > 0 be sufficient large so that x0 and y0 lie within the
interval [ 1

m0
,m0]. For each integer m ≥ m0, we define the stopping time

τm = inf{t ∈ [0, τe) : x(t) < (
1
m
,m) or y(t) < (

1
m
,m)},

where throughout this paper, we set inf ∅ = ∞ (as usual ∅ denotes the empty set). It is clearly that τm is
increasing as m → ∞. Denote τ∞ = lim

m→∞
τm, whence τ∞ ≤ τe. It is easy to show that τ∞ = ∞ a.s. implies
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τe = ∞ a.s. Therefore, to complete this proof, it is enough to show that τ∞ = ∞ a.s. If this statement is not
true, there will exist a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τm ≤ T} ≥ ε. (7)

Define a C2 function V(x, y) as follows:

V(x, y) = x + 1 − log x + (y + 1 − log y).

By Itô’s formula, we get

dV(x, y) = LV(x, y)dt + α(x − 1)dB1(t) + β(y − 1)dB2(t), (8)

where

LV(x, y) = (x − 1)
(
a − bx −

cy
m1 + x

)
+
α2

2
+ (y − 1)

(
r −

f y
m2 + x

)
+
β2

2

= −bx2 + (a + b)x − a −
cxy − cy
m1 + x

+ ry −
f y2

m2 + x
− r +

f y
m2 + x

+
α2

2
+
β2

2

≤
α2

2
+
β2

2
+ (a + b)x +

(
r +

c
m1

+
f

m2

)
y

= c1 + c2x + c3y
≤ c1 + 2c2(x + 1 − log x) + 2c3(y + 1 − log y),

where c1 = α2

2 +
β2

2 , c2 = a + b, c3 = r + c
m1

+
f

m2
, and inequality z ≤ 2(z + 1− log z)− (4− 2 log 2), (z ≥ 0) is used

in the last inequality. Therefore,

LV(x, y) ≤ c1 + c4V(x, y) ≤ c5(1 + V(x, y)), (9)

where c4 = max {2c2, 2c3}, c5 = max {c1, c4}. Substituting (9) into (8), we get

dV(x, y) ≤ c5(1 + V(x, y)) + α(x − 1)dB1(t) + β(y − 1)dB2(t).

Hence for any 0 ≤ t1 ≤ T, we have∫ τm∧t1

0
dV(x(t), y(t))

≤

∫ τm∧t1

0
c5(1 + V(x(t), y(t)))dt +

∫ τm∧t1

0
α(x − 1)dB1(t) +

∫ τm∧t1

0
β(y − 1)dB2(t).

Taking expectation of both sides, yields

E[V(x(τm ∧ t1)), (y(τm ∧ t1))] ≤ V(x(0), y(0)) + c5E
∫ τm∧t1

0
V(x(t), y(t))dt

≤ V(x(0), y(0)) + c5T + c5

∫ t1

0
EV(x(t ∧ τm), y(t ∧ τm))dt.

The Gronwall’s inequality yields that

E[V(x(τm ∧ T)), (y(τm ∧ T))] ≤ c6,

where c6 = (V(x(0), y(0)) + c5T)ec5T. Set Ωm = {τm ≤ T} for m ≥ m0, due to (7), we have P(Ωm ≥ ε). Note that
for every ω ∈ Ωm, at least one of x(τm, ω), y(τm, ω) equal to m or 1

m . It follows from that

c6 ≥ E[IΩm V(x(τm), y(τm))]

≥ ε
[
(m − 1 − log m) ∧

( 1
m
− 1 − log

1
m

)]
,

here IΩm is the indicator function of Ωm. Letting m→∞ yields the contradiction∞ > c6 = ∞. Therefore we
obtain that τ∞ = ∞ a.s. This completes the proof of Theorem 2.1.
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2.2. Existence of stationary distribution
In this section, we prove the existence of stationary distribution of system (2). First, we cite a result from

[16] as a lemma.
Let X(t) be a homogeneous Markov Process in El (El denotes l dimensional Euclidean space), and is

described by the following stochastic equation:

dX(t) = b(X)dt +

k∑
r=1

1r(X)dBr(t). (10)

The diffusion matrix is defined as follows:

Λ(x) =
(
λi j(x)

)
, λi j(x) =

k∑
r=1

1i
r(x)1 j

r(x).

Assumption (A): Assume that there exists a bounded domain U ∈ El with regular boundary Γ, having the
following properties:
A1: In the domain U and some neighborhood thereof, the smallest eigenvalue of the the diffusion matrix
Λ(x) is bounded away from zero.
A2: If x ∈ El\U, the mean time τ at which a path emerging from x reaches the set U is finite, and sup

x∈G
Exτ < ∞

for every compact subset G ∈ El.

Lemma 2.2. [16] If Assumption (A) holds, then the Markov process X(t) has a stationary distribution µ(·). Let f (·)
be a function integrable with respect to the measure µ. Then

Px

{
lim
T→∞

1
T

∫ T

0
f (X(t))dt =

∫
El

f (x)µ(dx)
}

= 1

for all x ∈ El.

Remark 2.3. In order to verify (A1), it is sufficient to prove that F is uniformly elliptical in U, where Fu =

b(x) · ux +
1
2

tr(A(x)uxx), that is, there is a positive number M such that
l∑

i, j=1
ai j(x)ξiξ j ≥ M|ξ|2, x ∈ U, ξ ∈ Rl(see

[17], Chapter 3, p.103). To validate (A2), it is sufficient to verify that there exist a nonnegative C2
−function V such

that LV is negative for any El \U(see [18], p.1163).

Theorem 2.4. Assume that 0 < (r− β
2

2 )m2

f <
(a− α

2
2 )m1

c , then for any initial value (x(0), y(0)) ∈ R2
+, there is a stationary

distribution µ(·) for system (2) and it has ergodic property.

Proof. Introduce a nonnegative C2
−function

V(x, y) = 1(x, y) + cy − 1(x∗, y∗),

where
1(x, y) = rx −

km1

c
log x +

km2

f
log y +

1
yρ
,

(x∗, y∗) = ( km1
rc , (

km2
ρ f )−

1
ρ ) is the unique minimum point of function 1(x, y), and k and ρ are positive constants

chosen in the following proof. Applying Itô’s formula, we get

LV = rx
(
a − bx −

cy
m1 + x

)
+ cy

(
r −

f y
m2 + x

)
+

kbm1

c
x +

k(m1 −m2)xy
(m1 + x)(m2 + x)

− ρ

(
r −

f y
m2 + x

)
y−ρ +

1
2
ρ(ρ + 1)β2y−ρ − k

 (a − α2

2 )m1

c
−

(r − β2

2 )m2

f

 .
(11)
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Consider the following bounded subset

U = {(x, y) ∈ R2
+, ε ≤ x ≤

1
ε
, ε ≤ y ≤

1
ε
}.

Then

R2
+\U = U1

⋃
U2

⋃
U3

⋃
U4,

where

U1 =
{
(x, y) ∈ R2

+, x >
1
ε

}
,U2 = {(x, y) ∈ R2

+, 0 < x < ε},

U3 = {(x, y) ∈ R2
+, 0 < y < ε},U4 =

{
(x, y) ∈ R2

+, x ≥ ε, y >
1
ε

}
,

ε (0 < ε < 1) is sufficiently small number satisfying the following conditions

M1 +
|M2|

m2
−

rb
2ε2 < −1, (12)

(2 + |M3|)bm1

c
[

(a− α2
2 )m1

c −
(r− β

2

2 )m2

f

]ε < 1, (13)

M4 +
|M2|

m2
− ρε−ρ[r −

1
2

(ρ + 1)β2] < −1, (14)

and

M4 +
|M5|

m2
−

c f
2m2ε2 + 2ε

< −1, (15)

where M1,M2,M3,M4 and M5 are defined in the following proof.
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Case 1. If (x, y) ∈ U1, we have

LV ≤
(
ra +

kbm1

c

)
x − rbx2 +

1
m2 + x

[
−c f y2 +

crm1(m2 + x)
m1 + x

y +
k(m1 −m2)x

m1 + x
y
]

+
ρ f y1−ρ

m2
− ρy−ρ[r −

1
2

(ρ + 1)β2] − k

 (a − α2

2 )m1

c
−

(r − β2

2 )m2

f


=

(
ra +

kbm1

c

)
x − rbx2 +

1
m2 + x

[
−c f y2 + crm1(

m2 −m1

m1 + x
+ 1)y +

k(m1 −m2)x
m1 + x

y
]

+
1

m2 + x

[
ρ f y1−ρ +

ρ f xy1−ρ

m2

]
− ρy−ρ[r −

1
2

(ρ + 1)β2] − k

 (a − α2

2 )m1

c
−

(r − β2

2 )m2

f


≤

(
ra +

kbm1

c

)
x − rbx2 +

1
m2 + x

{
−c f y2 + [cr(m1 + m2) + km1]y

}
+

1
m2 + x

[
ρ f y1−ρ +

ρ f
2m2

(x2 + y2−2ρ)
]
− ρy−ρ[r −

1
2

(ρ + 1)β2]

− k

 (a − α2

2 )m1

c
−

(r − β2

2 )m2

f


≤

(
ra +

kbm1

c

)
x −

1
2

(rb −
ρ f
m2

2

)x2 +
−c f y2 + [cr(m1 + m2) + km1]y + ρ f y1−ρ +

ρ f
2m2

y2−2ρ

m2 + x

− ρy−ρ[r −
1
2

(ρ + 1)β2] − k

 (a − α2

2 )m1

c
−

(r − β2

2 )m2

f

 − 1
2

rbx2.

(16)

We can choose ρ(0 < ρ < 1) sufficiently small such that

rb −
ρ f
m2

2

> 0 (17)

and

r −
1
2

(ρ + 1)β2 > 0. (18)

Inequality (18) is allowed by the assumption r > β2

2 . Substituting (18) and condition (r− β
2

2 )m2

f <
(a− α

2
2 )m1

c into
(16) yields

LV ≤ (ra +
kbm1

c
)x −

1
2

(
rb −

ρ f
m2

2

)
x2 +

−c f y2 + [cr(m1 + m2) + km1]y + ρ f y1−ρ +
ρ f

2m2
y2−2ρ

m2 + x

−
1
2

rbx2

≤ (ra +
kbm1

c
)x −

1
2

(
rb −

ρ f
m2

2

)
x2 +

M2

m2 + x
−

rb
2ε2

≤M1 +
|M2|

m2
−

rb
2ε2 ,

where

M1 = sup
x∈(0,∞)

{(ra +
kbm1

c
)x −

1
2

(rb −
ρ f
m2

2

)x2
} < ∞
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and

M2 = sup
y∈(0,∞)

{−c f y2 + [cr(m1 + m2) + km1]y + ρ f y1−ρ +
ρ f

2m2
y2−2ρ

} < ∞.

It then follows from (12) that
LV < −1.

Case 2. If (x, y) ∈ U2, that is 0 < x < ε < 1, then

LV ≤ ra + cry −
c f y2

m2 + 1
+

k
m2

y +
ρ f
m2

y1−ρ
− k

 (a − α2

2 )
c

−
(r − β2

2 )
f

 +
kbm1ε

c

≤ |M3| − k

 (a − α2

2 )m1

c
−

(r − β2

2 )m2

f

 +
kbm1ε

c
,

where

M3 = sup
y∈(0,∞)

(ra + cry −
c f y2

m2 + 1
+

k
m2

y +
ρ f
m2

y1−ρ).

Choosing k = 2+|M3 |

(a− α
2
2 )m1
c −

(r−
β2
2 )m2
f

, we have

LV ≤ −2 +
(2 + |M3|)bm1

c
[

(a− α2
2 )m1

c −
(r− β

2

2 )m2

f

]ε.
It then follows from (31) that

LV < −1.

Case 3. If (x, y) ∈ U3,

LV ≤
(
ra +

kbm1

c

)
x − rbx2 +

1
m2 + x

{
−c f y2 + [cr(m1 + m2) + km1]y

}
+

1
m2 + x

[
ρ f y1−ρ +

ρ f
2m2

(x2 + y2−2ρ)
]
− ρy−ρ[r −

1
2

(ρ + 1)β2]

≤

(
ra +

kbm1

c

)
x −

(
rb −

ρ f
2m2

2

)
x2 +

−c f y2 + [cr(m1 + m2) + km1]y + ρ f y1−ρ +
ρ f

2m2
y2−2ρ

m2 + x

− ρy−ρ[r −
1
2

(ρ + 1)β2]

≤M4 +
M2

m2 + x
− ρε−ρ[r −

1
2

(ρ + 1)β2]

≤M4 +
|M2|

m2
− ρε−ρ[r −

1
2

(ρ + 1)β2],

where

M4 = sup
x∈(0,∞)

{(ra +
kbm1

c
)x − (rb −

ρ f
2m2

2

)x2
} < ∞.

By (14), we have
LV < −1.



Q. Han et al. / Filomat 34:4 (2020), 1383–1402 1391

Case 4. If (x, y) ∈ U4,

LV ≤
(
ra +

kbm1

c

)
x −

(
rb −

ρ f
2m2

2

)
x2 +

−c f y2 + [cr(m1 + m2) + km1]y + ρ f y1−ρ +
ρ f

2m2
y2−2ρ

m2 + x

≤M4 +
1

m2 + x
(−

c f
2

y2 + M5)

≤M4 +
|M5|

m2
−

c f
2(m2 + x)

y2

≤M4 +
|M5|

m2
−

c f
ε2

2m2 + 2
ε

= M4 +
|M5|

m2
−

c f
2m2ε2 + 2ε

,

where

M5 = sup
y∈(0,∞)

{−
1
2

c f y2 + [cr(m1 + m2) + km1]y + ρ f y1−ρ +
ρ f

2m2
y2−2ρ

}.

By (15), we derive that
LV < −1.

According to the discussion above, we have
LV < −1

for any (x, y) ∈ R2
+ \U. Hence condition (A2) in Lemma 2.1 is satisfied.

Besides, choosing
M = min{α2x2, β2y2, (x, y) ∈ U} > 0,

then we have
2∑

i, j=1

ai j(x, y)ξiξ j = α2x2ξ2
1 + β2y2ξ2

2 ≥M | ξ |2,

which means that condition (A1) is satisfied. By Lemma 2.1, the desired results can be obtained.

Remark 2.5. In Ref [6, 7], Ji and Jiang investigated the dynamic of (3), which is a special case of system (2). They
show that there is a stationary distribution µ(.) for system (3) and it has ergodic property provided the following
conditions hold:
(H1) α > 0, β > 0;

(H2) δ < min
{

b f m−cr
f

[
x∗ +

f
4(b f m−cr) (x

∗α2 +
cy∗β2

r )
]2
,

c f (y∗)2

r

}
,

where (x∗, y∗) is the interior equilibrium of the corresponding deterministic system of (3) and δ =
f

16(b f m−cr) (x
∗α2 +

cy∗β2

r )2 + 1
2 (x∗ + m)(x∗α2 +

cy∗β2

r ). Theorem 2.2 in our investigation shows that if the intensities of the white noise are

small, only condition (r− β
2

2 )m2

f <
(a− α

2
2 )m1

c is required, without other conditions imposed on the coefficients. Therefore,
Theorem 2.2 in large improves Theorem 2.1 in [7]. Moreover, we see that if α = 0, β = 0, the above condition is
reduced to rm2

f < am1
c , which is the condition for the existence of interior equilibrium of system (1). This means that

the existence of white noise is beneficial to the stability of the system.

2.3. Non-persistence

In this section, we will discuss the non-persistence of system (2).
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First, we consider the following stochastic equation{
dX(t) = X(t) (a − bX(t)) dt + αX(t)dB1(t),
X(0) = x(0).

(19)

Lemma 2.6. [6] Suppose that a > α2

2 , then for any initial value x(0) > 0, the solution of (19) has the following
properties:

lim
t→∞

log X(t)
t

= 0, a.s.,

lim
t→∞

1
t

∫ t

0
X(s)ds =

a − α2

2

b
, a.s.

Theorem 2.7. Suppose that (x(t), y(t)) is the solution of (2) with initial value (x0, y0) ∈ R2
+.

(1) If a − α2

2 < 0 , r − β2

2 > 0, then lim
t→∞

x(t) = 0, lim
t→∞

1
t

∫ t

0 y(s)ds =
m2(r− β

2

2 )
f a.s.;

(2) If a − α2

2 > 0 , r − β2

2 < 0, then lim
t→∞

1
t

∫ t

0 x(s)ds =
a− α

2
2

b , lim
t→∞

y(t) = 0 a.s.;

(3) If a − α2

2 < 0 , r − β2

2 < 0, then lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0 a.s.

Proof. Clearly,
dx(t) ≤ x(t) (a − bx(t)) dt + αx(t)dB1(t).

By the comparison theorem, we derive that

x(t) ≤ Φ(t), (20)

where Φ(t) is the solution of the following equation{
dΦ(t) = Φ(t) (a − bΦ(t)) dt + αΦ(t)dB1(t),
Φ(0) = x(0).

(21)

According to Theorem 2.2 in [19], we derive that

Φ(t) =
e(a− α

2
2 )t+αB1(t)

1
x0

+ b
∫ t

0 e(a− α2
2 )s+αB1(s)ds

. (22)

Case 1: (22) and (20) show that

x(t) ≤ Φ(t) ≤ x(0)ea− α
2
2 t+B1(t).

If a − α2

2 < 0, obviously
lim
t→∞

x(t) = 0.

Then for any ε > 0, there exists Ωε such that P(Ωε) ≥ 1− ε, for every ω ∈ Ωε, there exists t0 = t0(ω) > 0 such
that

x(t)
m2 + x(t)

≤ ε whenever t ≥ t0(ω).
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Hence we have

dy(t) = y(t)
(
r −

f y(t)
m2 + x(t)

)
dt + βy(t)dB2(t)

= y(t)
[
r −

f
m2

y(t) +
f x(t)y(t)

m2(m2 + x(t))

]
ldt + βy(t)dB2(t)

≤ y(t)
[
r −

f
m2

(1 − ε)y(t)
]

dt + βy(t)dB2(t).

On the other hand

dy(t) ≥ y(t)
(
r −

f
m2

y(t)
)

dt + βy(t)dB2(t).

If r − β2

2 > 0, according to Lemma 2.2 and comparison theorem, we have

lim inf
t→∞

1
t

∫ t

0
y(s)ds ≥

m2(r − β2

2 )
f

a.s.

lim sup
t→∞

1
t

∫ t

0
y(s)ds ≤

m2(r − β2

2 )
f (1 − ε)

a.s.

For the arbitrary of ε, we have

lim
t→∞

1
t

∫ t

0
y(s)ds =

m2(r − β2

2 )
f

a.s.

Case 2: Take (20) into the second equation of (2), we have

dy(t) ≤ y(t)
(
r −

f y(t)
m2 + Φ(t)

)
dt + βy(t)dB2(t),

which implies

y(t) ≤ Ψ(t), (23)

where Ψ(t) is the solution of the following equation
dΨ(t) = Ψ(t)

(
r −

fΨ(t)
m2 + Φ(t)

)
dt + βΨ(t)dB2(t),

Ψ(0) = y(0).
(24)

The solution of (24) is

Ψ(t) =
e(r− β

2

2 )t+βB2(t)

1
y0

+ f
∫ t

0
1

m2+Φ(s) e
(r− β2 )s+βB2(s)ds

. (25)

(23) and (25) show that

y(t) ≤ Ψ(t) ≤ y(0)e(r− β
2

2 )t+βB2(t).

If r − β2

2 < 0, we get
lim
t→∞

y(t) = 0.
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Then for any ε > 0, there exists Ωε such that P(Ωε) ≥ 1− ε, for every ω ∈ Ωε, there exists t1 = t1(ω) > 0 such
that

cy(t)
m1 + x(t)

≤ ε , t ≥ t1(ω).

Hence we have
dx(t) ≤ x(t)(a − bx(t))dt + αx(t)dB1(t),

and
dx(t) ≥ x(t)(a − bx(t) − ε)dt + αx(t)dB1(t).

If a − α2

2 > 0, according to Lemma 2.2 and comparison theorem, we obtain

lim
t→∞

1
t

∫ t

0
x(s)ds =

a − α2

2

b
a.s.

Case 3: Basing on the discussion in case 1 and case 2, if a − α2

2 < 0, r − β2

2 < 0, it follows that

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0 a.s.

2.4. Simulations
In this section, we will illustrate our findings by the method developed in [20]. Consider the corre-

sponding discretization equation:
xk+1 = xk + xk

[(
a − bxk −

cyk

m1 + xk

)
∆t + αε1,k

√

∆t +
α2

2
(ε2

1,k∆t − ∆t)
]
,

yk+1 = yk + yk

[(
r −

f yk

m2 + xk

)
∆t + βε2,k

√

∆t +
β2

2
(ε2

2,k∆t − ∆t)
]
,

where ε1,k and ε2,k are the Gaussian random variables N(0, 1). Parameters are listed in the following Table
1 and initial values are x(0) = 1, y(0) = 1.5, we get simulations by the help of Matlab.

Table 1: List of parameters

Parameters Description Values Source
a Intrinsic growth rate of the prey 1 [3, 4]
b Strength of competition among the prey 0.06 [3, 5]
c The maximum value of reduction rate of prey 1 [3]

m1 The extent of protection to prey by environment 10 [4]
r Growth rate of the predator 0.03 Assumed
f The maximum value of reduction rate of predator 1 [3]

m2 The extent of protection to predator by environment 20 [3, 4]

First, we start the numerical simulation with environmental intensities α = 0.05, β = 0.05, parameters

satisfy conditions a > α2

2 , r >
β2

2 and (r− β
2

2 )m2

f <
(a− α

2
2 )m1

c . Hence Theorem 2.2 is satisfied. In the left figure, we
show that the population densities fluctuate around the the equilibrium (x∗1, x

∗

2) of the deterministic system.
Stationary distribution of x and y is provided in the right figure (see the histogram on the right in Fig.1).

In Fig.2, we choose the same parameters as in Figure 1, but change the intensities of the white noise(
α = 1.5, β = 0.01), case 1 in Theorem 2.3 is satisfied. We can see that species x(t) will die out, and species
y(t) will be persistent.
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Figure 1: The solution x(t) of model (2) compared to the deterministic system with (α, β) = (0.05, 0.05) and its histogram. The red line represents the

solution of stochastic system, and the blue line represents the solution of the corresponding deterministic system.
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Figure 2: The solution x(t) of model (2) compared to the deterministic system with (α, β) = (1.5, 0.01). The red line represents the solution of stochastic

system, and the blue line represents the solution of the corresponding deterministic system.

In Fig.3, we choose intensities of the white noise α = 0.1, β = 1.3, thus case 2 in Theorem 2.3 is satisfied.
We see that species y(t) will die out, and species x(t) will be persistent.

In Fig.4, we increase the intensities of the white noise( α = 1.5, β = 1.3), parameters satisfy case 3
in Theorem 2.3. In this case, both of the two species go to extinction after some initial large amplitude
oscillation. However, the corresponding deterministic system is persistent. These show that the strong
white noise may make a persistent system to be extinct.
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Figure 3: The solution x(t) of model (2) compared to the deterministic system with (α, β) = (0.1, 1.3). The red line represents the solution of stochastic

system, and the blue line represents the solution of the corresponding deterministic system.
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Figure 4: The solution x(t) of model (2) compared to the deterministic system with (α, β) = (1.5, 1.3). The red line represents the solution of stochastic

system, and the blue line represents the solution of the corresponding deterministic system.

3. Existence of periodic solution of system (4)

3.1. Existence and uniqueness of the global positive solution

Theorem 3.1. For any given initial value (x0, y0) ∈ R2
+, there exists a unique solution (x(t), y(t)) to (4) and the

solution will remain in R2
+ with probability 1, that is, (x(t), y(t)) ∈ R2

+ for all t ≥ 0 almost surely.

The proof is a modification of the autonomous case (Theorem 2.1) hence is omitted.

3.2. Existence of θ-periodic solution

In this section, we will discuss the existence of positive periodic solution of system (4). First, we assume
that
(H) : a(t), b(t), c(t),m1(t), r(t), f (t),m2(t), α(t) and β(t) are positive continuous θ-periodic functions.

Now, we shall present some definitions, lemmas which are used in the follows.

Definition 3.2. [21] A stochastic process ξ(t) = ξ(t, ω)(−∞ < t < ∞) is said to be periodic with period θ if for
every finite sequence of numbers t1, t2, · · · , tn the joint distribution of random variables ξ(t1 + h), · · · , ξ(tn + h) is
independent of h, where h = kθ(k = ±1,±2, . . .).
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Remark 3.3. In [21], they show that a Markov process x(t) is θ-periodic if and only if its transition probability
function is θ-periodic and the function P0(t,A) = P{X(t) ∈ A} satisfies the equation

P0(s,A) =

∫
Rl

P0(s, dx)P(s, x, s + θ,A) ≡ P0(s + θ,A)

for every A ∈ B, where B denotes the σ-algebra of Borel sets

Consider the following equation

X(t) = X(t0) +

∫ t

t0

b(s,X(s))ds +

k∑
r=1

∫ t

t0

σr(s,X(s))dBr(s), (26)

assume that the coefficients b(s, x), σ1(s, x), σ2(s, x), . . . σr(s, x) satisfy the following conditions:

|b(s, x) − b(s, y)| +
k∑

r=1

|σr(s, x) − σr(s, y)| ≤ B|x − y|, |b(s, x)| +
k∑

r=1

|σr(s, x)| ≤ B(1 + |x|), (27)

where B is a constant.

Lemma 3.4. [21] Suppose that the coefficients of (26) are θ-periodic in t and satisfy condition (27) in every cylinder
I×U, and suppose further that there exists a function V(t, x) ∈ C2 which is θ-periodic in t, and satisfies the following
conditions

inf
|x|>R

V(t, x)→∞ as R→∞, (28)

LV(t, x) ≤ −1 (29)

outside some compact set. Then there exists a solution of (26) which is a θ-periodic Markov process.

Remark 3.5. According to the proof of Lemma 3.1, we note that linear growth condition is only used to guarantee
the existence and uniqueness of the solution of (26).

Theorem 3.6. Suppose that condition (H) holds. Assume further that
(A)

∫ θ
0 (r(s) − 1

2β
2(s))ds > 0,

(B)
∫ θ

0

[
ml

1
cu (a(s) − α2(s)

2 ) −
mu

2
f l (r(s) − β2(s)

2 )
]

ds > 0,

then there exists a θ periodic solution of (4).

Proof. Since the coefficients of system (4) satisfy the local Lipschitz condition and the existence and unique-
ness of the positive solution of (4) has been guaranteed by Theorem 3.1, to prove Theorem 3.2 we only need
to show that conditions (28) and (29) are satisfied. Define a C2 function V(t, x, y) as follows:

V(t, x, y) = (x − k
ml

1

cu log x + y) + (k
mu

2

f l
log y +

eρω1(t)

yρ
+ kω2(t))

:= V1(t, x, y) + V2(t, x, y),

where ωi(t) ∈ C1(R+,R)(i = 1, 2) is a θ-periodic function which will be determined in the following proof,
and ρ is a sufficient small positive number satisfying

1
θ

∫ θ

0
(r(s) −

1
2
β2(s))ds −

ρ

2
β2u

> 0. (30)
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We note that

lim inf
k→∞,(x,y)∈R2

+\Dk

V(t, x, y) = ∞, (31)

where

Dk =
{
(x, y), (x, y) ∈

(1
k
, k

)
×

(1
k
, k

)}
.

Applying Itô’s formula, we get

LV1(t, x, y) = x
(
a(t) − b(t)x −

c(t)y
m1(t) + x

)
−

kml
1

cu

[(
a(t) −

α2(t)
2

)
− b(t)x −

c(t)y
m1(t) + x

]
+ y

(
r(t) −

f (t)y
m2(t) + x

)
≤

au +
kml

1bu

cu

 x − blx2 +
kml

1y
m1(t) + x(t)

+
1

m2(t) + x
(− f ly2 + mu

2ruy + ruxy)

−
kml

1

cu

(
a(t) −

α2(t)
2

)
(32)

and

LV2(t, x, y) = k
mu

2

f l

(
r(t) −

β2(t)
2
−

f (t)y
m2(t) + x

)
+ ρeρω1(t)ω′1(t)y−ρ

− ρeρω1(t)y−ρ
[
r(t) −

1
2

(ρ + 1)β2(t) −
f (t)y

m2(t) + x

]
+ kω′2(t)

≤ k
mu

2

f l

(
r(t) −

β2(t)
2

)
− k

mu
2 y

m2(t) + x
+

ρ̃

m2(t) + x
y1−ρ

− ρeρω1(t)y−ρ
[
r(t) −

1
2

(ρ + 1)β2(t) − ω′1(t) + ρ(r(t) −
1
2

(ρ + 1)β2(t))
]

+ kω′2(t)

≤ k
mu

2

f l

(
r(t) −

β2(t)
2

)
− k

mu
2 y

m2(t) + x
+ ρ(ρ + eρ|ω1 |

u
)

f u

m2(t) + x
y1−ρ

− ρeρω1(t)y−ρ
[
r(t) −

1
2
β2(t) −

ρ

2
β2u
− ω′1(t) + ρ(ru +

1
2

(ρ + 1)β2u
]

+ kω′2(t),

(33)

where ρ̃ = ρeρω
u
1 f u.

Let

ω′1(t) = (r(t) −
1
2
β2(t)) −

1
θ

∫ θ

0

(
r(s) −

1
2
β2(s)

)
ds. (34)

Then ω1(t) is a θ periodic function. In fact,

ω1(t + θ) − ω1(t) =

∫ t+θ

t
ω′1(s)ds

=

∫ t+θ

t
(r(s) −

1
2
β2(s))ds −

∫ θ

0

(
r(s) −

1
2
β2(s)

)
ds

= 0.

(35)
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Substituting (34) into (33) yields

LV2(t, x, y) ≤ k
mu

2

f l

(
r(t) −

β2(t)
2

)
− k

mu
2 y

m2(t) + x
+

ρ̃

m2(t) + x
y1−ρ

− ρeρω
l
1 y−ρ

[
1
θ

∫ θ

0
(r(s) −

1
2
β2(s))ds −

ρ

2
β2u

]
+ kω′2(t).

(36)

Then

LV(t, x, y) ≤

au +
kml

1bu

cu

 x − blx2 +
kml

1y
m1(t) + x(t)

+
1

m2(t) + x
(− f ly2 + mu

2ruy + ruxy)

−
kml

1

cu

(
a(t) −

α2(t)
2

)
+ k

mu
2

f l

(
r(t) −

β2(t)
2

)
− k

mu
2 y

m2(t) + x
+

ρ̃

m2(t) + x
y1−ρ

− ρeρω
l
1 y−ρ

[
1
θ

∫ θ

0
(r(s) −

1
2
β2(s))ds −

ρ

2
β2u

]
+ kω′2(t)

≤

au +
kml

1bu

cu

 x − blx2 +
1

m2(t) + x

− f ly2 + mu
2ruy + ruxy +

k(ml
1 −mu

2)xy
m1(t) + x


+

ρ̃

m2(t) + x
y1−ρ
− ρeρω

l
1 y−ρ

[
1
θ

∫ θ

0
(r(s) −

1
2
β2(s))ds −

ρ

2
β2u

]
− k

ml
1

cu (a(t) −
α2(t)

2
) −

mu
2

f l
(r(t) −

β2(t)
2

) − ω′2(t)

 .

(37)

Let

ω′2(t) =
ml

1

cu

(
a(t) −

α2(t)
2

)
−

mu
2

f l
(r(t) −

β2(t)
2

) −
1
θ

∫ θ

0

ml
1

cu (a(s) −
α2(s)

2
) −

mu
2

f l
(r(s) −

β2(s)
2

)

 ds. (38)

By the similar computation as (35), we show that ω2(t) is a θ periodic function. Substituting (38) into (37)
gives

LV(t, x, y) ≤

au +
kml

1bu

cu

 x − blx2 +
1

m2(t) + x

− f ly2 + mu
2ruy + ruxy +

k(ml
1 −mu

2)xy
m1(t) + x


+

ρ̃

m2(t) + x
y1−ρ
− ρeρω

l
1 y−ρ

[
1
θ

∫ θ

0
(r(s) −

1
2
β2(s))ds −

ρ

2
β2u

]
− k

 1
θ

∫ θ

0

ml
1

cu (a(s) −
α2(s)

2
) −

mu
2

f l
(r(s) −

β2(s)
2

)

 ds

 .
(39)

Consider the following closed set

Ũ = {(x, y) ∈ R2
+, λ ≤ x ≤

1
λ
, λ ≤ y ≤

1
λ
}.

Then
R2

+\Ũ = Ũ1

⋃
Ũ2

⋃
Ũ3

⋃
Ũ4,

where

Ũ1 =
{
(x, y) ∈ R2

+, x >
1
λ

}
, Ũ2 = {(x, y) ∈ R2

+, 0 < x < λ},
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Ũ3 = {(x, y) ∈ R2
+, 0 < y < λ}, Ũ4 =

{
(x, y) ∈ R2

+, λ < x <
1
λ
, y >

1
λ

}
,

λ(0 < λ < 1) is sufficiently small number such that

H1 +
|H2|

ml
2

−
bl

2λ2 ≤ −1, (40)

−2 +
(2 + |H3|)ml

1bu

cu
[

1
θ

∫ θ
0 (

ml
1

cu (a(s) − α2(s)
2 ) −

mu
2

f l (r(s) − β2(s)
2 ))ds

]λ ≤ −1, (41)

H4 +
|H2|

ml
2

− ρeρω
l
1λ−ρ

[
1
θ

∫ θ

0
(r(s) −

1
2
β2(s))ds −

ρ

2
β2u

]
≤ −1, (42)

H4 +
|H5|

ml
2

−
f l

4mu
2λ

2 + 4λ
≤ −1. (43)

Case 1. If (x, y) ∈ Ũ1, substituting conditions (A) and (B) into (39) yields

LV(t, x, y) ≤

au +
kml

1bu

cu

 x − blx2 +
1

m2(t) + x

− f ly2 + mu
2ruy + ruxy +

k(ml
1 −mu

2)xy
m1(t) + x


≤

au +
kml

1bu

cu

 x − blx2 +
− f ly2 + mu

2ruy + ρ̃y1−ρ + ru( 1
4λ0

x2 + λ0y2) + k|ml
1 −mu

2 |y

m2(t) + x
.

(44)

where Young inequality is used in the second inequality. Choosing λ0 =
f l

2ru yields

LV(t, x, y) ≤

au +
kml

1bu

cu +
ru

2 f l

 x − blx2 +
−

f l

2 y2 + mu
2ruy + ρ̃y1−ρ + k|ml

1 −mu
2 |y

m2(t) + x

≤

au +
kml

1bu

cu +
ru

2 f l

 x −
bl

2
x2 +

−
f l

2 y2 + mu
2ruy + ρ̃y1−ρ + k|ml

1 −mu
2 |y

m2(t) + x
−

bl

2
x2

≤ H1 +
|H2|

ml
2

−
bl

2λ2 ,

(45)

where

H1 = sup
x∈(0,∞)


au +

kml
1bu

cu +
ru

2 f l

 x −
bl

2
x2

 < ∞
and

H2 = sup
y∈(0,∞)

{
−

f l

2
y2 + mu

2ruy + ρ̃y1−ρ + k|ml
1 −mu

2 |y
}
< ∞.

It then follows from (40) that

LV ≤ −1. (46)
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Case 2. If (x, y) ∈ Ũ2, that is 0 < x < λ < 1, we get

LV(t, x, y) ≤ au
−

f l

mu
2

y2 +

mu
2

ml
2

+ 1

 ru +
k|ml

1 −mu
2 |

ml
2

 y +
ρ̃

ml
2

y1−ρ +
kml

1bu

cu λ

− k

 1
θ

∫ θ

0

ml
1

cu

(
a(s) −

α2(s)
2

)
−

mu
2

f l

(
r(s) −

β2(s)
2

) ds


≤ |H3| − k

 1
θ

∫ θ

0

ml
1

cu

(
a(s) −

α2(s)
2

)
−

mu
2

f l

(
r(s) −

β2(s)
2

) ds

 +
kml

1bu

cu λ.

(47)

where

H3 = sup
y∈(0,∞)

au
−

f l

mu
2

y2 +

mu
2

ml
2

+ 1

 ru +
k|ml

1 −mu
2 |

ml
2

 y +
ρ̃

ml
2

y1−ρ

 .
Choosing k = 2+|H3 |

1
θ

∫ θ
0

[
ml

1
cu

(
a(s)− α

2(s)
2

)
−

mu
2

f l

(
r(s)− β

2(s)
2

)]
ds

, we have

LV ≤ −2 +
(2 + |H3|)ml

1bu

cu

θ

∫ θ
0

[
ml

1
cu

(
a(s) − α2(s)

2

)
−

mu
2

f l

(
r(s) − β2(s)

2

)]
ds
λ.

It then follows from (41) that

LV ≤ −1. (48)

Case 3. If (x, y) ∈ Ũ3, making use of (45) we obtained that

LV ≤

au +
kml

1bu

cu +
ru

2 f l

 x − blx2 +
1

m2(t) + x

(
−

f l

2
y2 + mu

2ruy + ρ̃y1−ρ + k|ml
1 −mu

2 |y
)

− ρeρω
l
1 y−ρ

[
1
θ

∫ θ

0

(
r(s) −

1
2
β2(s)

)
ds −

ρ

2
β2u

]
≤ H4 +

|H2|

ml
2

− ρeρω
l
1λ−ρ

[
1
θ

∫ θ

0

(
r(s) −

1
2
β2(s)

)
ds −

ρ

2
β2u

]
,

where

H4 = sup
x∈(0,∞)


au +

kml
1bu

cu +
ru

2 f l

 x − blx2

 < ∞.
By (42), we have

LV ≤ −1. (49)

Case 4. If (x, y) ∈ Ũ4, from the the proof of Case 3, together with (30), we derive

LV ≤

au +
kml

1bu

cu +
ru

2 f l

 x − blx2 +
1

m2(t) + x

(
−

f l

2
y2 + mu

2ruy + ρ̃y1−ρ + k|ml
1 −mu

2 |y
)

≤ H4 +
1

m2(t) + x

(
−

f l

4
y2 + H5

)
≤ H4 +

|H5|

ml
2

−
f l

4(mu
2 + x)

y2

≤ H4 +
|H5|

ml
2

−

f l

λ2

4mu
2 + 4

λ

= H4 +
|H5|

ml
2

−
f l

4mu
2λ

2 + 4λ
,
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where

H5 = sup
y∈(0,∞)

{
−

f l

4
y2 + mu

2ruy + ρ̃y1−ρ + k|ml
1 −mu

2 |y
}
.

By (43), we derive that

LV ≤ −1. (50)

It then follows from (46), (48), (49) and (50) that

LV(t, x, y) ≤ −1, (x, y) ∈ R2
+\Ũ.

According to Lemma 3.1, the proof is completed.
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