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Abstract. Suppose α is a nonzero cardinal number, I is an ideal on arc connected topological space X,
and Pα

I
(X) is the subgroup of π1(X) (the first fundamental group of X) generated by homotopy classes of

αI loops. The main aim of this text is to study Pα
I

(X)s and compare them. Most interest is in α ∈ {ω, c} and
I ∈ {P f in(X), {∅}}, where P f in(X) denotes the collection of all finite subsets of X. We denote Pα

{∅}
(X) with

Pα(X). We prove the following statements:
• for arc connected topological spaces X and Y if Pα(X) is isomorphic to Pα(Y) for all infinite cardinal
number α, then π1(X) is isomorphic to π1(Y);
• there are arc connected topological spaces X and Y such that π1(X) is isomorphic to π1(Y) but Pω(X) is
not isomorphic to Pω(Y);
• for arc connected topological space X we have Pω(X) ⊆ Pc(X) ⊆ π1(X);
• for Hawaiian earring X, the sets Pω(X), Pc(X), and π1(X) are pairwise distinct.
SoPα(X)s andPα

I
(X)s will help us to classify the class of all arc connected topological spaces with isomorphic

fundamental groups.

1. Introduction

The main aim of algebraic topology is “classifying the topological spaces”. One of the first concepts intro-
duced in algebraic topology is “fundamental group”. As it has been mentioned in [4, page1], fundamental
groups are introduced by Poincaré. In this text we consider special subgroups of fundamental group.
Explicitly we pay attention to path homotopy classes induced by loops which are “enough one to one”. We
have the following sections:

1. Introduction

2. What is an αIarc?

3. New subgroups

4. A useful remark

5. Primary properties of Pα
I

(X)s

6. Some preliminaries on Hawaiian earring

7. Pc(X) is a proper subset of π1(X)

8. Pc
P f in(Y)(Y) is a proper subset of π1(Y)
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9. Main examples and counterexamples

10. Main Table

11. Two spaces having fundamental groups isomorphic to Hawaiian earring’s fundamental group

12. A distinguished counterexample

13. A diagram and a hint

14. A strategy for future and conjecture

15. Conclusion

Our main conventions located in section 2, although there are conventions in other sections too. Briefly, we
introduce our new subgroups in Section 3 and obtain their primary properties in Section 5. Sections 6, 7
and 8 contain basic lemmas for our counterexamples in Section 9. Regarding these three sections 7, 8, and
9 we see Pω(X) ⊂ Pc(X) ⊂ π1(X) where X is Infinite or Hawaiian earring and “⊂” means strict inclusion;
also we see Pω

P f in(Y)(Y) ⊂ Pc
P f in(Y)(Y) ⊂ π1(Y) (Y is introduced in Section 2). However Counterexamples

of Section 9 are essential for Main Table in Section 10, which shows probable inclusion relations between
different Pα

I
(X) for a fix X (arc connected locally compact Hausdorff topological space), α ∈ {ω, c} and

I ∈ {{∅},P f in(X),P(X)}where P(X) is the power set of X andPα
P(X)(X) is just π1(X) (the fundamental group

of X) by Section 5. We continue to discover the properties of “our new subgroups” in Sections 12 and 13,
as a matter of fact in Sections 11 and 12 we see π1(X) � π1(W) and Pω(X) � Pω(W) (W is introduced in
Section 2), consequently we have a diagram and two problems in Section 13. As a matter of fact using the
diagram of Section 13 and “Distinguished Example” in Section 12, we try to show “these new subgroups”
can make meaningful subclasses of a class of arc connected locally compact Hausdorff topological spaces with the
isomorphic fundamental groups.
Remembering all the conventions during reading the text is highly recommended.

Convention 1.1. A topological space X is an arc connected space, if for all a, b ∈ X with a , b there exists a
continuous one to one map f : [0, 1]→ X with f (0) = a and f (1) = b. In this text all spaces assumed to be Hausdorff,
locally compact, and arc connected with at least two elements.

Remark 1.2. Let X be an arbitrary set. We call I ⊆ P(X), an ideal on X, if:

• I , ∅,

• If A,B ∈ I, then A ∪ B ∈ I,

• If B ⊆ A and A ∈ I, then B ∈ I.

The collection of all finite subsets of X, P f in(X), is one of the most famous ideals on X.

In this text ZFC+GCH (we recall that GCH or Generalized Continuum Hypothesis indicates that for transfinite
cardinal number β, there is not any cardinal number γ with β < γ < 2β, i.e. 2β = β+ [3]) is assumed and by
“⊂” we mean strict inclusion. Whenever G is a group isomorphic to group H, we write G � H. Also G � H
means that G is not isomorphic to H. Whenever 1 ∈ G and A ⊆ G, then < A > denotes the subgroup of G
generated by A, denote < {1} > simply by < 1 >. We recall thatω is the cardinality ofN (the set of all natural
numbers {1, 2, . . .}) and c is the cardinality of R (the set of all real numbers). We denote the cardinality of
A by |A|. For cardinal numbers (real numbers) α, β we denote the maximum of {α, β} by max(α, β) also we
denote the minimum of {α, β} by min(α, β).
In addition for n ∈N, consider Rn under Euclidean norm. Also consider S1 = {(x, y) ∈ R2 : x2 + y2 = 1} as a
subspace of R2 (or {eiθ : θ ∈ [0, 2π]} as a subspace of C, the set of all complex numbers).

2. What is an αI arc?

The concept of αIarc is a generalization of α−arc which is originated from [1] and then in [2]. However a
1−arc or briefly arc is a one to one map f : [0, 1]→ X.
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Definition 2.1. For nonzero cardinal number α, and ideal I on X, the continuous map f : Y → X is called an
αImap if there exists A ∈ I such that for all x ∈ X \ A, | f−1(x)| < α + 1 . In particular for infinite cardinal number
α, the continuous map f : Y→ X is an αImap if there exists A ∈ I such that for all x ∈ X \ A, | f−1(x)| < α.
We call αImap f : [0, 1] → X, αIarc. We call αImap f : [0, 1] → X with f (0) = f (1) = a, an αI loop with base
point a.
We use briefly terms α−map, α−arc, and α−loop respectively instead of α {∅}map, α {∅}arc, and α {∅} loop.

We want to study subgroups of π1(X) generated by path homotopy equivalence classes of α−loops and
αI loops for nonzero cardinal number α and ideal I on X. We pay special attention to αI loops for α ∈ {ω, c}
and I ∈ {P f in(X), {∅}}. We use the following spaces and loops in most counterexamples in this text.

Convention 2.2. Suppose p ∈N, let

X :=
{1

n
e2πiθ +

i
n

: n ∈N, θ ∈ [0, 1]
}

(=
⋃
n∈N

{
(x, y) ∈ R2 : x2 + (y −

1
n

)2 =
1
n2

}
) (Hawaiian earring)

Y :=
⋃{ 1

2n+1X +
1
n

: n ∈N
}
∪ [0, 1]

Z :=
{1

k
e2πi(x−k− 1

4 ) +
i
k

: k ∈ {1, ..., p}, x ∈ [0, 1]
}

W :=
{ 1

2n+1 e2πiθ +
1
n

+
i

2n+1 : n ∈N, θ ∈ [0, 1]
}
∪ [0, 1]

Cn :=
{1

n
e2πit +

i
n

: t ∈ [0, 1]
}

(=
{
(x, y) ∈ R2 : x2 + (y −

1
n

)2 =
1
n2

}
)

(circle with radius
1
n

and center
i
n

(n ∈N))

V :=
⋃
n∈N

{
(x, y, z) ∈ R3 : y2 + (z −

1
n

)2 =
1
n2 ∧ 0 ≤ x ≤

1
n

}
moreover define fX : [0, 1]→ X, fY : [0, 1]→ Y and fZ : [0, 1]→Z with:

fX(x) =


1
n

e2πi(n(n+1)x−n− 1
4 ) +

i
n

1
n + 1

≤ x ≤
1
n
,n ∈N ,

0 x = 0 ,

fY(x) =



fX(4xn(n + 1) − (2n + 1))
2n+1 +

1
n

2n + 1
4n(n + 1)

≤ x ≤
1

2n
,n ∈N ,

2(n + 1)(2n − 1)x + (2 − 2n)
1

2(n + 1)
≤ x ≤

2n + 1
4n(n + 1)

,n ∈N ,

2 − 2x
1
2
≤ x ≤ 1 ,

0 x = 0 ,

and

fZ(x) =
1
k

e2πi(px−k− 1
4 ) +

i
k

(
k − 1

p
≤ x ≤

k
p
, k ∈ {1, ..., p}) .
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Note: Consider 0 as the base point of all spaces in this convention

(Figure of X = fX[0, 1]) (Figure ofY = fY[0, 1])

(Figure ofW) (Figure ofV)

Example 2.3. 1) The map fX : [0, 1]→ X is an α−loop if and only if α > ω, since:

| f−1
X

(x)| =
{

1 x , 0 ,
ω x = 0 .

In addition for each nonzero cardinal number α and ideal I on X with {0} ∈ I, fX : [0, 1]→ X is an αI loop.
2) The map fY : [0, 1]→ Y is an αI loop if and only if “α > ω” or “α ≥ 2 and { 1

n : n ∈N} ∈ I”, since:

| f−1
Y

(x)| =
{
ω x ∈ { 1

n : n ∈N} ,
2 otherwise .

In particular fY : [0, 1]→ Y is an αP f in(Y) loop if and only if α ≥ c.
3) The map fZ : [0, 1]→Z is an α−loop if and only if α > p. In addition for all nonzero cardinal number α and ideal
I on X with {0} ∈ I, fX : [0, 1]→ X is an αI loop.

3. New subgroups

In this section we introduce Pα
I

(X) as a subgroup of π1(X).
We recall that for continuous maps f , 1 : [0, 1] → X with f (1) = 1(0), we have f ∗ 1 : [0, 1] → X with
f ∗ 1(t) = f (2t) for t ∈ [0, 1

2 ] and f ∗ 1(t) = 1(2t − 1) for t ∈ [ 1
2 , 1]. If f : [0, 1] → X is a continuous map, [ f ]

denotes its path homotopy equivalence class, where loops f , 1 : [0, 1]→ X with same base point a are path
homotopic (or [ f ] = [1]) if there exists continuous map F : [0, 1] × [0, 1]→ X with F(s, 0) = f (s), F(s, 1) = 1(s)
and F(0, s) = F(1, s) = a for all s ∈ [0, 1].
In the rest of this paper simply we use term “homotopy” or “homotopic” respectively instead of “path
homotopy” or “path homotopic”.
In addition for two loops f , 1 : [0, 1]→ X with same base point a, we define [ f ] ∗ [1] as [ f ∗ 1]. The class of all
homotopy equivalence classes of loops with base point a under operation ∗ is a group which is denoted by
π1(X, a). Whenever X is arc connected and a, b ∈ X we have π1(X, a) � π1(X, b) so π1(X, a) is denoted simply
by π1(X).
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Definition 3.1. For nonzero cardinal number α and ideal I byPα
I

(X, a) we mean subgroup of π1(X, a) generated by
homotopy classes of αI loops with base point a.

Theorem 3.2. For infinite cardinal number α and ideal I on X, if f , 1 : [0, 1] → X are αIarcs with f (1) = 1(0),
then f ∗ 1 : [0, 1]→ X is an αIarc. Moreover f : [0, 1]→ X with f (t) = f (1 − t) is an αIarc too.

Proof. Use the fact that for all x ∈ X, ( f ∗1)−1(x) = ( 1
2 f−1(x))∪( 1

21
−1(x)+ 1

2 ), thus |( f ∗1)−1(x)| ≤ | f−1(x)|+ |1−1(x)|.

Also note to the fact that for all x ∈ X we have f
−1

(x) = {1 − t : t ∈ f−1(x)}, hence | f
−1

(x)| = | f−1(x)|.

Theorem 3.3. For infinite cardinal number α, a ∈ X and ideal I on X, we have:

Pα
I

(X, a) = {[ f ] : f : [0, 1]→ X is an αI loop with base point a}.

Proof. Choose b ∈ X \ {a}. There exists a continuous one to one map 1 : [0, 1]→ X with 1(0) = a and 1(1) = b.
Using Theorem 3.2, 1 ∗ 1 : [0, 1]→ X is an αIarc. Thus [1 ∗ 1] ∈ {[ f ] : f : [0, 1]→ X is an αI loop with base
point a}, and {[ f ] : f : [0, 1]→ X is an αI loop with base point a} , ∅. Using Theorem 3.2, {[ f ] : f : [0, 1]→ X
is an αI loop with base point a} is a subgroup of π1(X, a) which completes the proof.

Note 3.4. Using Theorem 3.3 for a ∈ X and infinite cardinal number α, for the loop 1 : [0, 1]→ X with base point a,
[1] ∈ Pα

I
(X, a) if and only if there exists an αI loop f : [0, 1]→ X with base point a homotopic to 1 : [0, 1]→ X.

Theorem 3.5. For all a, b ∈ X, ideal I on X and infinite α, Pα
I

(X, a) and Pα
I

(X, b) are isomorphic groups.

Proof. For a , b, suppose f : [0, 1]→ X is a continuous one to one map (1-arc) such that f (0) = a and f (1) = b,
and f : [0, 1]→ X is f (t) = f (1 − t) for all t ∈ [0, 1]. Using Theorem 3.2, 1 : [0, 1]→ X is an αIarc if and only
if f ∗ 1 ∗ f : [0, 1]→ X is an αIarc too, which leads to the desired result (note: ϕ : Pα

I
(X, a)→ Pα

I
(X, b), with

ϕ([1]) = [ f ∗ 1 ∗ f ] is an isomorphism).

By the following counterexample the infiniteness of α in Theorem 3.5 is essential.

Counterexample 3.6. Consider X = S1
∪ [1, 2] as a subspace of R2) (X and 9 are homeomorph). If a ∈ S1 and

b ∈ (1, 2], then:

1. P1
P f in(X)(X, a) = π1(X, a) � Z,

2. P1
P f in(X)(X, b) = {e} (where e is the identity of π1(X, b)).

In particular P1
P f in(X)(X, a) and P1

P f in(X)(X, b) are nonisomorphic (although X is linear connected).

Proof. (1) By definition P1
P f in(X)(X, a) ⊆ π1(X, a)(= Z). On the other hand f : [0, 1]→ X

t 7→e2πit
is a 1

P f in(X)
arc and

π1(X, a) =< [ f ] >⊆ P1
P f in(X)(X, a), which completes the proof.

(2) Suppose f : [0, 1]→ X with f (0) = f (1) = b is a continuous map. If f , b, then there exists c ∈ [1, 2] \ {b}
with c = inf[0, 1]. Let s := min(c, b) and t := max(c, b). For all y ∈ (s, t) we have | f−1(y)| ≥ 2, and (s, t) < P f in(X)

(since (s, t) is infinite). Therefore f is not a 1
P f in(X)

loop, and the constant loop b is the unique 1
P f in(X)

loop
with base point b, thus P1

P f in(X)(X, b) = {[b]} = {e}

Definition 3.7. Regarding Theorem 3.5 for infinite cardinal number α and ideal I on X, we denotePα
I

(X, a) simply
byPα

I
(X) (subgroup of π1(X) generated by homotopy classes of αI loops). We denotePα

{∅}
(X) byPα(X) (subgroup of

π1(X) generated by homotopy classes of α−loops).
So for infinite cardinal number α we have (use Note 3.4 and above discussion):

Pα
I

(X) = {[ f ] : f : [0, 1]→ X is an αI loop},

and

Pα(X) = {[ f ] : f : [0, 1]→ X is an α−loop}.
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4. A useful remark

For the remain of this text we use the following useful convention.

Convention 4.1. Suppose X and Y are closed subspaces of Z such that X ∩ Y = {t}. For f : [0, 1]→ X ∪ Y define:

f X(x) =

{
f (x) f (x) ∈ X ,
t f (x) ∈ Y .

Remark 4.2. Suppose X and Y are closed (linear connected) subspaces of Z such that X ∩ Y = {t}. For loops
1, h : [0, 1]→ X ∪ Y with base point t we have:

A. If 1, h : [0, 1] → X ∪ Y are homotopic loops, then 1X, hX : [0, 1] → X are homotopic loops (therefore
1X, hX : [0, 1]→ X ∪ Y are homotopic too).

B. Let 1[0, 1] ⊆ X and h[0, 1] ⊆ Y. 1, h : [0, 1]→ X ∪ Y are homotopic if and only if they are null-homotopic.

C. Let 1[0, 1] ∪ h[0, 1] ⊆ X. 1, h : [0, 1]→ X ∪ Y are homotopic if and only if 1, h : [0, 1]→ X are homotopic.

D. π1(X, t) and π1(Y, t) are subgroups of π1(X ∪ Y, t) and π1(X, t) ∩ π1(Y, t) = {[t]} where t denotes the constant
arc with value t (as a matter of fact the map π1(X, t)→ π1(X ∪ Y, t)

[ f ]7→[ f ]
is a group embedding).

Proof. (A) Suppose 1, h : [0, 1] → X ∪ Y are homotopic loops, then there exists a continuous map F :
[0, 1] × [0, 1] → X ∪ Y such that F(s, 0) = 1(s), F(s, 1) = h(s) and F(0, s) = F(1, s) = t for all s ∈ [0, 1]. Define
continuous map P : X∪Y→ X with P(z) = z for z ∈ X and P(z) = t for z ∈ Y. The map P◦F : [0, 1]×[0, 1]→ X
is continuous, moreover P ◦ F(s, 0) = 1X(s), P ◦ F(s, 1) = hX(s) and P ◦ F(1, s) = P ◦ F(0, s) = t for all s ∈ [0, 1],
thus 1X, hX : [0, 1]→ X ∪ Y are homotopic.
(B) If 1, h : [0, 1] → X ∪ Y are homotopic, then by (A), 1X, hX : [0, 1] → X ∪ Y are homotopic. On the other
hand 1X = t (constant function t) and hX = h, since 1[0, 1] ⊆ X and h[0, 1] ⊆ Y. Therefore h : [0, 1] → X ∪ Y
is null homotopic which leads to the desired result.

5. Primary properties of Pα
I

(X)s

In this section we study primary properties of Pα
I

(X)s. It is wellknown that Φ : π1(X, x0) × π1(Y, y0) →
π1(X × Y, (x0, y0)) with Φ([ f ], [1]) = [( f , 1)] is an isomorphism (for example see [5, Theorem 60.1]) where
for f : [0, 1] → X and 1 : [0, 1] → Y we have ( f , 1) : [0, 1] → X × Y with ( f , 1)(t) = ( f (t), 1(t)) (t ∈ [0, 1]).
For transfinite cardinal numbers α, β, ideal I on X and ideal J on Y we prove Φ(Pα

I
(X, x0) × Pβ

J
(Y, y0)) ⊆

P
max(α,β)
I×J

(X × Y, (x0, y0)), hence Pα
I

(X, x0) ×Pβ
J

(Y, y0) is isomorphic to a subgroup of Pmax(α,β)
I×J

(X × Y, (x0, y0)).

Theorem 5.1. For topological spaces X and Y we have (we recall that X and Y are arc connected locally compact
Hausdorff topological spaces with at least two elements, moreover consider x0 ∈ X, and y0 ∈ Y):
1. For all α > c, nonzero β and ideal I on X we have Pα

I
(X) = π1(X) = P

β
P(X)(X).

2. For nonzero cardinal numbers α, β, x0 ∈ X, and ideals I,J on X we have:

• If α ≤ β, then Pα
I

(X, x0) ⊆ Pβ
I

(X, x0).

• If I ⊆ J , then Pα
I

(X, x0) ⊆ Pα
J

(X, x0).

Therefore for infinite α we have (base point is x0, whenever it is necessary):

• If α ≤ β, then Pα
I

(X) ⊆ Pβ
I

(X).

• If I ⊆ J , then Pα
I

(X) ⊆ Pα
J

(X);
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• Pα
I∩J

(X) ⊆ Pα
I

(X) ∩Pα
J

(X).

3. For infinite cardinal numbers α, β and ideals I on X and J on Y we have

Φ(Pα
I

(X, x0) ×Pβ
J

(Y, y0)) ⊆ Pmax(α,β)
I×J

(X × Y, (x0, y0)),

where I×J is ideal on X×Y generated by {A×B : A ∈ I,B ∈ J} and Φ([ f ], [1]) = [( f , 1)] for loops f : [0, 1]→ X
and 1 : [0, 1]→ Y. Hence Pα

I
(X) ×Pβ

J
(Y) is isomorphic to a subgroup of Pmax(α,β)

I×J
(X × Y).

4. For infinite cardinal numbers α, β, ideal I on X, and isomorphism Φ : π1(X) × π1(Y) → π1(X × Y) with
Φ([ f ], [1]) = [( f , 1)], we have:

a. Φ(Pα
I

(X, x0) × π1(Y, y0)) ⊆ Pα
I×P(Y)(X × Y, (x0, y0)),

b. Φ(Pα
I

(X, x0) ×Pβ(Y, y0)) ⊆ Pβ(X × Y, (x0, y0));

c. Φ(Pα(X, x0) ×Pβ(Y, y0)) ⊆ Pmin(α,β)(X × Y, (x0, y0)).

5. For infinite cardinal numbers α, β, ideal I on X, ideal J on Y, K := {A ∪ B : A ∈ I,B ∈ J}, if X ∩ Y = {t} and
X,Y are (linear connected) closed subspaces of Z, then we have (note thatK is an ideal on X∪Y) (see Convention 4.1
(D)):

a. Pα
I

(X, t)Pβ
J

(Y, t) ⊆ Pmax(α,β)
K

(X ∪ Y, t),

b. Pα(X, t)Pβ(Y, t) ⊆ Pmax(α,β)(X ∪ Y, t).

Proof. (1) and (2) are clear by definition.
(3) If f : [0, 1]→ X is an αIarc with base point x0 and 1 : [0, 1]→ Y is a βJ arc with base point y0, then there
exist A ∈ I and B ∈ J such that for all x ∈ X \ A and y ∈ Y \ B we have | f−1(x)| < α and |1−1(y)| < β. For
h = ( f , 1) : [0, 1]→ X × Y with h(t) = ( f (t), 1(t)) and (z,w) ∈ (X × Y) \ (A × B) we have:

(z,w) ∈ (X × Y) \ (A × B) ⇒ z ∈ X \ A ∨ w ∈ Y \ B
⇒ | f −1(z)| < α ∨ |1−1(w)| < β

⇒ |h−1(z,w)| ≤ min(| f −1(z)|, |1−1(w)|) < max(α, β)

therefore ( f , 1) : [0, 1]→ X × Y is a max(α, β)I×J arc, and

Φ([ f ], [1]) = [( f , 1)] ∈ Pmax(α,β)
I×J

(X × Y, (x0, y0)) .

(4) (a) is a special case of item (3), since π1(Y, y0) = Pα
P(Y)(Y, y0).

For rest note that for all (x, y) ∈ X × Y, continuous maps f : [0, 1] → X, and 1 : [0, 1] → Y we have
( f , 1)−1(x, y) = f−1(x) ∩ 1−1(y), thus |h−1(x, y)| ≤ min(| f−1(x)|, |1−1(y)|).

(b) If f : [0, 1] → X is an αIarc and 1 : [0, 1] → Y is a β−arc, then for all (x, y) ∈ X × Y we have
|( f , 1)−1(x, y)| ≤ min(| f−1(x)|, |1−1(y)|) ≤ |1−1(y)| < β. Therefore ( f , 1) : [0, 1]→ X × Y is a β−arc.

(c) If f : [0, 1] → X is an α−arc and 1 : [0, 1] → Y is a β−arc, then for all (x, y) ∈ X × Y we have
|( f , 1)−1(x, y)| ≤ min(| f−1(x)|, |1−1(y)|) < min(α, β). Therefore ( f , 1) : [0, 1]→ X × Y is a min(α, β)−arc.

(5) SincePα
I

(X, t) ⊆ Pα
K

(X, t) ⊆ Pmax(α,β)
K

(X, t) ⊆ Pmax(α,β)
K

(X∪Y, t) and similarlyPβ
J

(Y, t) ⊆ Pmax(α,β)
K

(X∪Y, t).

Example 5.2 (Pα
I

(X) for some well-known spaces X). We may find the following easy examples:

1. It’s evident that for any contractible space X, nonzero cardinal number α and idealI on X, we havePα
I

(X) = {e}.

2. Let X = {e2πiθ : θ ∈ [0, 1]}(= S1). Then Pα
I

(X) = π1(X), for all α ≥ 2 and ideal I on X (since for
f : [0, 1] → S1 with f (t) = e2πit we have [ f ] ∈ Pα(S1) ⊆ Pα

I
(S1) ⊆ π1(S1) and [ f ] is a generator of π1(S1),

thus Pα
I

(S1) = π1(S1) � Z).
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3. With a similar method described in item (2), for all α ≥ 2 and ideal I on R2
\ {0} (punctured space), we have

Pα
I

(R2
\ {0}) = π1(R2

\ {0}) � Z.

4. Using (2) and a similar method described in Theorem 5.1 for all α ≥ 2 and ideal I on T = S1
× S1 (Torus) we

have Pα
I

(T) = π1(T).

6. Some preliminaries on Hawaiian earring

In this section we bring some useful properties of Infinite earring (Hawaiian earring) (see [5, page 500,
Exercise 5] too)

Lemma 6.1. If loop f : [0, 1]→ S1 is not null-homotopic and f (0) = f (1) = 1, then there exist a, b ∈ [0, 1] such that
f (a, b) = S1

\ {1} and f (a) = f (b) = 1.

Proof. In the following proof for 1 : [u, v]→ X with 1[u,v] : [0, 1]→ X we mean 1[u,v](t) = 1(t(v−u) + u). Since
f : [0, 1]→ S1 is uniformly continuous,there exists ε > 0 such that for all s, t ∈ [0, 1] with |s − t| < ε we have
| f (s) − f (t)| < 1

2 .
Let T = {t ∈ [0, 1] : f (0) = f (t) = 1 and f[0,t] : [0, 1]→ S1 is not null-homotopic}. We have T , ∅, since 1 ∈ T.
Suppose τ = inf(T). Since f is continuous and T ⊆ f−1(1), thus f (τ) = 1. We claim that τ ∈ T.There exists
t ∈ T such that 0 ≤ t − τ < ε, if τ = t ∈ T we are done, otherwise since f[τ,t]([0, 1]) = f [τ, t] ⊆ {x ∈ S1 : |x − 1| =
|x− f (τ)| < 1

2 } ⊆ S
1
\ {−1}, thus f[τ,t] is null-homotopic. On the other hand [ f[0,t]] = [ f[0,τ]] ∗ [ f[τ,t]] = [ f[0,τ]] and

f[0,τ] is not null-homotopic, which indicates τ ∈ T.
Let S = {s ∈ [0, τ] : f (s) = f (τ) = 1 and f[s,τ] : [0, 1] → S1 is not null-homotopic}, so 0 ∈ S and S , ∅. let
σ = sup(S). Similar to first part of proof, σ ∈ S. It is clear that σ < τ. Moreover [ f[0,τ]] = [ f[0,σ]] ∗ [ f[σ,τ]] and
using the way of choose of τ, f[0,σ] : [0, 1]→ S1 is null-homotopic, thus [ f[0,τ]] = [ f[σ,τ]] and f[σ,τ] : [0, 1]→ S1is
not null-homotopic.
Since f[σ,τ] : [0, 1]→ S1 is not null-homotopic, f [σ, τ] = f[σ,τ]([0, 1]) = S1.
On the other hand if there exists ζ ∈ (σ, τ) such that f (ζ) = 1. Respectively using the way of choose of τ
and σ, two maps f[0,ζ] : [0, 1] → S1 and f[ζ,τ] : [0, 1] → S1 are null-homotopic. Using [ f[0,τ]] = [ f[0,ζ]] ∗ [ f[ζ,τ]],
f[0,σ][0, 1] → S1 is null-homotopic, which is a contradiction. Therefore for all ζ ∈ (σ, τ) we have f (ζ) , 1,
which shows f (σ, τ) = S1

\ {1}.

Lemma 6.2. If X = (S1
− 1) ∪ (S1 + 1) (X and Figure 8 are homeomorph), ρ : [0, 1] → X with ρ(t) = e4πit

− 1
for t ∈ [0, 1

2 ] and ρ(t) = −e4πit + 1 for t ∈ [ 1
2 , 1], and loop f : [0, 1] → X with f (0) = f (1) = 0 is homotopic

to ρ : [0, 1] → X, then there exist a, b, c, d ∈ [0, 1] such that a < b ≤ c < d, f (a) = f (b) = f (c) = f (d) = 0,
f (a, b) = (S1

− 1) \ {0} and f (c, d) = (S1 + 1) \ {0}.

Proof. Let:

f S
1
−1(t) =

{
f (t) f (t) ∈ S1

− 1
0 otherwise , ρS

1
−1(t) =

{
ρ(t) ρ(t) ∈ S1

− 1
0 otherwise

f S
1+1(t) =

{
f (t) f (t) ∈ S1 + 1
0 otherwise , ρS

1+1(t) =

{
ρ(t) ρ(t) ∈ S1 + 1
0 otherwise

Two maps f S1
−1, ρS

1
−1 : [0, 1] → S1

− 1 are homotopic, since f , ρ : [0, 1] → X are homotopic. Since
ρS

1
−1 : [0, 1] → S1

− 1 is not null-homotopic, by Lemma 6.1 there exists a, b ∈ [0, 1] with f S1
−1(a, b) =

(S1
− 1) \ {0} and f S1

−1(a) = f S1
−1(b) = 0. For all t ∈ (a, b) we have f S1

−1(t) , 0, therefore f (t) = f S1
−1(t).

Thus f (a, b) = f S1
−1(a, b) = S1

− 1 \ {0}. Moreover f S1
−1(a) = f S1

−1(b) = 0, thus f (a), f (b) ∈ S1 + 1. Using
the continuity of f we have f (a), f (b) ∈ f (a, b) = S1

− 1, therefore f (a), f (b) ∈ S1
− 1 ∩ S1 + 1 = {0} and

f (a) = f (b) = 0. Let:

Γ1 := {(a, b) ∈ [0, 1] × [0, 1] : f (a, b) = (S1
− 1) \ {0}, f (a) = f (b) = 0} ,
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Γ2 := {(a, b) ∈ [0, 1] × [0, 1] : f (a, b) = (S1 + 1) \ {0}, f (a) = f (b) = 0} .

By the above discussion, Γ1 , ∅. It is evident that for all distinct (a, b), (a′, b′) ∈ Γ1 we have (a, b)∩ (a′, b′) = ∅.
Since f : [0, 1]→ X is uniformly continuous there exists δ > 0 such that:

∀u, v ∈ [0, 1] (|u − v| < δ⇒ | f (u) − f (v)| < 1)

which leads to:

∀u, v ∈ [0, 1] (|u − v| < δ⇒ f (u, v) , S1
− 1)

so for all (a, b) ∈ Γ1 we have b − a ≥ δ.
Thus Γ1 is finite, since Γ1 is a nonempty collection of disjoint subintervals of [0, 1] with b − a ≥ δ for all
(a, b) ∈ Γ1.
In a similar way Γ2 is a nonempty finite collection of disjoint subintervals of [0, 1].
It is evident that for all (a, b) ∈ Γ1 and (c, d) ∈ Γ2 we have (a, b) ∩ (c, d) , ∅ (since f (a, b) ∩ f (c, d) =
((S1
− 1) ∩ (S1 + 1)) \ {0} = ∅), therefore a < b ≤ c < d or c < d ≤ a < b.

If there exist (a, b) ∈ Γ1 and (c, d) ∈ Γ2 with a < b ≤ c < d, we are done, otherwise suppose for all (a, b) ∈ Γ1
and (c, d) ∈ Γ2 we have c < d ≤ a < b. Let

Γ1 = {(a1, b1), . . . , (an, bn)} , Γ2 = {(c1, d1), . . . , (cm, dm)} .

and suppose

c1 < d1 ≤ c2 < d2 ≤ · · · ≤ cm < dm ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn

Using the same notations as in Lemma 6.1, if d1 < c2, then f[d1,c2] : [0, 1] → X is null-homotopic (use
Lemma 6.1 and consider Γ1,Γ2). if p ∈ [0, 1] suppose f[p,p] : [0, 1]→ X is constant 0 function. So

f[0,c1], f[d1,c2], f[d2,c3], . . . , f[dm−1,cm], f[dm,a1], f[b1,a2], f[bn−1,an], f[an,1] : [0, 1]→ X

are null-homotopic. Thus

[ f ] = [ f[c1,d1]] ∗ · · · ∗ [ f[cm,dm]] ∗ [ f[a1,b1]] ∗ · · · ∗ [ f[an,bn]]

For all i, j we have f[ci,di] ⊆ S
1 + 1 and f[a j,b j] ⊆ S

1
− 1. thus there exist q1, . . . , qm, p1, . . . , pn ≥ 0 with

[ f[ci,di]] = [ρ[ 1
2 ,1]]

qi (1 ≤ i ≤ m) and [ f[a j,b j]] = [ρ[0, 1
2 ]]

p j (1 ≤ j ≤ n)

(we recall that π1(X) = π1(S1
− 1) ∗ π1(S1 + 1) =< [ρ[0, 1

2 ]] > ∗ < [ρ[ 1
2 ,1]] >, by van Kampen Theorem). Thus

[ρ[0, 1
2 ]] ∗ [ρ[ 1

2 ,1]] = [ρ] = [ f ] = [ρ[ 1
2 ,1]]

q1+···+qm ∗ [ρ[0, 1
2 ]]

p1+···+pn

which is a contradiction since π1(X) is nonabelian free group over two generators [ρ[0, 1
2 ]] and [ρ[ 1

2 ,1]].

Lemma 6.3. If loop f : [0, 1] → Z with f (0) = f (1) = 0 is homotopic to fZ : [0, 1] → Z, then there exist
s1, t1, s2, t2, . . . , sp, tp ∈ [0, 1] such that s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sp < tp, f (s j) = f (t j) = 0, f (s j, t j) =

{
1
j e2πi(x− j− 1

4 ) + i
j : x ∈ [0, 1]} \ {0} for all j ∈ {1, . . . , p}.

Proof. Use the same method described in Lemma 6.2 and note to the fact thatπ1(Z) is nonabelian free group
over p generators [h[ k−1

p , k
p ]] for k = 1, . . . , p where h := fZ and using the notations of Lemma 6.1.

Note 6.4. Consider loops f , 1 : [0, 1] → X such that f (0) = f (1) = 1(0) = 1(1) = 0. For nonempty subset Γ of N
and h : [0, 1]→ X let:

hΓ(x) =

{
h(x) h(x) ∈

⋃
{Cn : n ∈ Γ} ,

0 h(x) ∈ (X \
⋃
{Cn : n ∈ Γ}) ∪ {0} .

(As a matter of fact we denote h
⋃
{Cn:n∈Γ} (see Convention 4.1) briefly by hΓ)
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1. If f , 1 : [0, 1] → X are homotopic, then f Γ, 1Γ : [0, 1] →
⋃
{Cn : n ∈ Γ} are homotopic (equivalently

f Γ, 1Γ : [0, 1]→ X are homotopic).

2. For loop h : [0, 1]→ X with h(0) = h(1) = 0 define:

A(h) := {n ∈N : h{n} : [0, 1]→ Cn is not null − homotopic} .

Then A(h) is a subset of:

{n ∈N : ∃a, b ∈ [0, 1] (h(a, b) = Cn \ {0} ∧ h(a) = h(b) = 0)} .

Moreover if f , 1 : [0, 1]→ X are homotopic, then A( f ) = A(1).

3. For loop h : [0, 1]→ X with h(0) = h(1) = 0, we have |h−1(0)| ≥ |A(h)|.

4. If [ f ] ∈ Pω(X), then |A( f )| < ω and A( f ) is finite.

Proof.

1. Note to the fact that A =
⋃
{Cn : n ∈ Γ} and B = (X \ A) ∪ {0} are closed (linear connected) subsets of

X. Moreover A ∩ B = {0}. Now use the same argument as in Convention 4.1.

2. If n ∈ A(h), then h{n} : [0, 1] → Cn is not null-homotopic. By Lemma 6.1 there exist a, b ∈ [0, 1] with
h(a) = h(b) = 0 and h(a, b) = Cn \ {0}. Use item (1) to complete the proof.

3. By (2) for all n ∈ A(h) there exists an, bn ∈ [0, 1] with h(an, bn) = Cn \ {0} and h(an) = h(bn) = 0. We claim
that A(h)→ h−1(0)

n7→an

is one to one. Suppose n , m and n,m ∈ A(h). By

h(an, bn) ∩ h(am, bm) = (Cn \ {0}) ∩ (Cm \ {0}) = ∅

we have (an, bn) ∩ (am, bm) = ∅, thus an , am.

4. If [ f ] ∈ Pω(X), then by Note 3.4 there exists ω−loop k : [0, 1] → X with k(0) = k(1) = 0 homotopic to
f : [0, 1] → X. By (3) we have |A(k)| ≤ |k−1(0)| < ω. By item (2) we have A( f ) = A(k) which leads to
|A( f )| = |A(k)| ≤ |k−1(0)| < ω.

Note 6.5. For (m,n) ∈N ×N and loop h : [0, 1]→ Y with base point 0, define:

h(m,n)(t) =


h(t) h(t) ∈

1
2m+1 Cn +

1
m
,

1
m

h(t) <
1

2m+1 Cn +
1
m
.

(As a matter of fact we denote h
1

2m+1 Cn+ 1
m (see Convention 4.1) briefly by h(m,n))

Moreover for loop h : [0, 1]→ Y we define:

B(h) :=
{
(m,n) ∈N ×N : h(m,n) : [0, 1]→

1
2m+1 Cn +

1
m

is not null − homotopic
}
,

then B(h) is a subset of:{
(m,n) ∈N ×N : ∃a, b ∈ [0, 1] (h(a, b) = (

1
2m+1 Cn +

1
m

) \ {
1
m
} ∧ h(a) = h(b) =

1
m

)
}

and for loops f , 1 : [0, 1]→ Y with f (0) = f (1) = 1(0) = 1(1) = 0, we have:

1. If f , 1 : [0, 1]→ Y are homotopic, then B( f ) = B(1).
2. For m ∈N, we have:
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a. | f−1( 1
m )| ≥ |{n ∈N : (m,n) ∈ B( f )}|.

b. If [ f ] ∈ Pω(Y), then |{n ∈N : (m,n) ∈ B( f )}| < ω.

c. If I is an ideal onY and [ f ] ∈ Pω
I

(Y), then there exists F ∈ I such that for all k ∈N with 1
k ∈ Y \ F, we have

|{n ∈N : (k,n) ∈ B( f )}| < ω.

Proof. If (m,n) ∈ B(h), then h(m,n) : [0, 1]→ 1
2m+1 Cn + 1

m is not null-homotopic, thus by Lemma 6.1 there exist
a, b ∈ [0, 1] with h(a, b) = ( 1

2m+1 Cn + 1
m ) \ { 1

m } and h(a) = h(b) = 1
m .

1) Suppose f , 1 : [0, 1]→ Y are homotopic. For m,n ∈N, two sets 1
2m+1 Cn + 1

m and (Y\ ( 1
2m+1 Cn + 1

m ))∪{ 1
m } are

closed (linear) subsets ofYwith ( 1
2m+1 Cn + 1

m )∩((Y\( 1
2m+1 Cn + 1

m ))∪{ 1
m }) = { 1

m }. Thus using the same argument
as in Convention 4.1 (note to the fact that base point in the proof of Convention 4.1 is not important) two
maps f (m,n), 1(m,n) : [0, 1]→ 1

2m+1 Cn + 1
m are homotopic, therefore (m,n) ∈ B( f ) if and only if (m,n) ∈ B(1). So

B( f ) = B(1).
2-a) For all (m,n) ∈ B( f ) there exists a(m,n), b(m,n) ∈ [0, 1] with f (a(m,n), b(m,n)) = ( 1

2m+1 Cn + 1
m ) \ { 1

m } and f (a(m,n)) =

f (b(m,n)) = 1
m . We claim that

{n ∈N : (m,n) ∈ B( f )} → f−1(
1
m

)
n7→a(m,n)

is one to one. Suppose n , k and (m, k), (m,n) ∈ B( f ). By

f (a(m,n), b(m,n)) ∩ f (a(m,k), b(m,k))

= ((
1

2m+1 Cn +
1
m

) \ {
1
m
}) ∩ ((

1
2m+1 Ck +

1
m

) \ {
1
m
}) = ∅

we have (a(m,n), b(m,n)) ∩ (a(m,k), b(m,k)) = ∅, thus a(m,n) , a(m,k). Therefore | f−1( 1
m )| ≥ |{n ∈N : (m,n) ∈ B( f )}|

2-b) This item is a special case of (c) for I = {∅}.
2-c) If [ f ] ∈ Pω

I
(Y), then by Note 3.4 there exists ωI loop h : [0, 1]→ Y homotopic to f : [0, 1]→ Y also we

may suppose h(0) = h(1) = 0. There exists F ∈ I such that for all z ∈ Y\F we have |h−1(z)| < ω+1. In particular
for all k ∈N with 1

k ∈ Y \ F we have |h−1( 1
k )| < ω, which leads to |{n ∈N : (k,n) ∈ B(h)}| ≤ |h−1( 1

k )| < ω by (a).
Using (1) we have B( f ) = B(h), thus |{n ∈N : (k,n) ∈ B(h)}| = |{n ∈N : (k,n) ∈ B( f )}| < ω.

7. Pc(X) is a proper subset of π1(X)

Here we want to prove π1(X) \Pc(X) , ∅ step by step.
Consider the following conventions in this section:
Usually in order to construct Cantor set, one may remove the following intervals step by step from [0, 1]:

(c1
1, d

1
1) = ( 1

3 ,
2
3 ) ,

(c1
2, d

1
2) = ( 1

9 ,
2
9 ) , (c2

2, d
2
2) = ( 7

9 ,
8
9 ) ,

...
(c1

n, d1
n) = ( 1

3n , 2
3n ) , (c2

n, d2
n) = ( 2

3 + 1
3n , 2

3 + 2
3n ) , · · · , (c2n−1

n , d2n−1

n ) = (1 − 2
3n , 1 − 1

3n ) ,
...

So M = [0, 1] \
⋃
{(ci

n, di
n) : n ∈N, i ∈ {1, ..., 2n−1

}} is Cantor set. Now suppose:
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(a1, b1) = (c1
1, d

1
1) ,

(a2, b2) = (c1
2, d

1
2) , (a3, b3) = (c2

2, d
2
2) ,

...
(a2n−1 , b2n−1 ) = (c1

n, d1
n) , (a2n−1+1, b2n−1+1) = (c2

n, d2
n) , · · · , (a2n−1, b2n−1) = (c2n−1

n , d2n−1

n ) ,
...

Define 1 : [0, 1]→ Xwith:

1(x) =


1
n

e2πi x−an
bn−an +

i
n

x ∈ (an, bn),n ∈N

0 otherwise

Suppose the loops 1, f : [0, 1]→ X are homotopic with f (0) = f (1) = 0. Consider the above mentioned f
and 1 in this section.
It is well-known that (see [6]):

M =

 ∞∑
n=1

xn

3n : ∀n ∈N xn ∈ {0, 2}

 .
For x =

∞∑
n=1

xn

3n ∈M with xn ∈ {0, 2} (n ∈N). For m ∈N choose nx
m ∈N such that:

anx
m =

{
min{ci

m : 1 ≤ i ≤ 2m−1, x ≤ ci
m} xm = 0

max{ci
m : 1 ≤ i ≤ 2m−1, ci

m ≤ x} xm = 2

also let

Ex := {n ∈N : xn = 0} , Fx := {n ∈N : xn = 2} .

Finally consider:

K := {x ∈M : Ex and Fx are infinite} .

We have the following sequel of lemmas and notes.

Lemma 7.1. For x =

∞∑
n=1

xn

3n ∈M with xn ∈ {0, 2} , we have:

anx
k

=



k∑
n=1

xn

3n +
1
3k

xk = 0 ,

k∑
n=1

xn

3n −
1
3k

xk = 2 ,

and bnx
k

=



k∑
n=1

xn

3n +
2
3k

xk = 0 ,

k∑
n=1

xn

3n xk = 2 .

(*)

And:

|anx
k
− x| ≤

2
3k

and |bnx
k
− x| ≤

2
3k

(for all k ∈N) . (**)
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Proof. For each k ∈N suppose

Ak =

 k∑
n=1

yn

3n : y1, . . . , yk ∈ {0, 2}

 ,
then we may suppose Ak = {w1

k , . . . ,w
2k

k }with w1
k < w2

k < · · · < w2k

k . It is easy to see that:

c1
k = w1

k +
∑

n≥k+1

2
3n = w1

k +
1
3k

, d1
k = w2

k

c2
k = w3

k +
∑

n≥k+1

2
3n = w3

k +
1
3k

, d2
k = w4

k

...

ci
k = w2i−1

k +
∑

n≥k+1

2
3n = w2i−1

k +
1
3k

, di
k = w2i

k

...

c2k−1

k = w2k
−1

k +
∑

n≥k+1

2
3n = w2k

−1
k +

1
3k

, d2k−1

k = w2k

k

so (ci
k, d

i
k) = (w2i−1

k + 1
3k ,w2i

k ).

Now for x =
∑
n∈N

xn

3n ∈M with x1, x2, . . . ∈ {0, 2}we have:

• For p ∈ N we have xp = 0 and xp+1 = xp+2 = · · · = 2 if and only if there exists i ∈ {1, . . . , 2p−1
} with

x = ci
p.

• For p ∈ N we have xp = 2 and xp+1 = xp+2 = · · · = 0 if and only if there exists i ∈ {1, . . . , 2p−1
} with

x = di
p.

• x ∈ K if and only if for all p ∈N we have p < {ci
p : 1 ≤ i ≤ 2p−1

} ∪ {di
p : 1 ≤ i ≤ 2p−1

} (and x ∈M).

In particular if xk = 0, then anx
k

=

k∑
n=1

xn

3n +
1
3k

, in other words if wi
k =

k∑
n=1

xn

3n , then i = 2 j − 1 is odd and

anx
k

= w2 j−1
k +

1
3k

=

k∑
n=1

xn

3n +
1
3k

= ci
k. Also if xk = 2, then

k∑
n=1

xn

3n ∈ Ak and there exists even i = 2 j such that

k∑
n=1

xn

3n = w2 j
k , moreover bnx

k
= w2 j

k . So we have (*), moreover considering the following inequalities will

complete the proof:

|anx
k
− x| ≤

∣∣∣∣∣∣∣anx
k
−

k∑
n=1

xn

3n

∣∣∣∣∣∣∣ +

∞∑
n=k+1

xn

3n ≤
1
3k

+

∞∑
n=k+1

2
3n =

2
3k
,
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and:

|bnx
k
− x| =

∣∣∣∣∣∣∣
k−1∑
n=1

xn

3n +
2
3k
− x

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣2 − xk

3k
−

∞∑
n=k+1

xn

3n

∣∣∣∣∣∣∣
=


∞∑

n=k+1

xn

3n ≤

∞∑
n=k+1

2
3n =

1
3k

xk = 2

2
3k
−

∞∑
n=k+1

xn

3n ≤
2
3k

xk = 0

which shows (**).

Lemma 7.2. Let x =
∑
n∈N

xn

3n ∈M with xn ∈ {0, 2} (n ∈N), then we have:

1. lim
k→∞

anx
k

= lim
k→∞

bnx
k

= x.

2. For i < j if xi = x j = 0, then x ≤ anx
j
< bnx

j
< anx

i
< bnx

i
.

3. For i < j if xi = x j = 2, then anx
i
< bnx

i
< anx

j
< bnx

j
≤ x.

Proof. Use (**) in Lemma 7.1 in order to prove (1).
2) Suppose i < j and xi = x j = 0, then by (*) in Lemma 7.1 we have:

bnx
i
> anx

i
=

i∑
n=1

xn

3n +
1
3i =

i∑
n=1

xn

3n +

∞∑
n=i+1

2
3n >

i∑
n=1

xn

3n +

j∑
n=i+1

2
3n

>
i∑

n=1

xn

3n +

j−1∑
n=i+1

xn

3n +
2
3 j =

j∑
n=1

xn

3n +
2
3 j = bnx

j
> anx

j
=

j∑
n=1

xn

3n +
1
3 j

=

j∑
n=1

xn

3n +

∞∑
n= j+1

2
3n ≥

j∑
n=1

xn

3n +

∞∑
n= j+1

xn

3n = x

3) Use a similar method described in the proof of (2), to prove (3).

Lemma 7.3. There exists a sequence ((pn, qn) : n ∈N) such that for all n,m ∈N we have:

• 0 ≤ pn < qn ≤ 1, f (pn, qn) = Cn \ {0} and f (pn) = f (qn) = 0;

• if an < bn < am < bm, then pn < qn < pm < qm.

Proof. For all n ∈ N, by Note 6.4 we have f {n}, 1{n} : [0, 1] → Cn are homotopic loops, therefore f {n} :
[0, 1] → Cn is not null-homotopic. By Lemma 6.1 there exist a, b ∈ [0, 1] with f {n}(a, b) = Cn \ {0} and
f {n}(a) = f {n}(b) = 0, therefore f (a, b) = Cn \ {0} and f (a) = f (b) = 0. On the other hand f : [0, 1] → X is
uniformly continuous, thus

Γn := {(a, b) ∈ [0, 1] × [0, 1] : f (a, b) = Cn \ {0}, f (a) = f (b) = 0}

is a finite nonempty set. For k ∈ N, by considering f {1,...,k} : [0, 1] → C1 ∪ · · · ∪ Ck, Note 6.4 and Lemma 6.3
there exist (u1, v1) ∈ Γ1, . . . , (uk, vk) ∈ Γk such that if ai < bi < a j < b j, then ui < vi ≤ u j < v j for all i, j ∈ {1, . . . , k}.
Using the above mentioned note and finiteness of Γ1, there exists (p1, q1) ∈ Γ1 such that sup{k ∈ N : there



F. Ayatollah Zadeh Shirazi et al. / Filomat 34:5 (2020), 1403–1429 1417

exist u2, v2,u3, v3, . . . ,uk, vk ∈ [0, 1] such that for u1 = p1 and v1 = q1 and all i, j ∈ {1, . . . , k}we have (ui, vi) ∈ Γi
and if ai < bi < a j < b j, then ui < vi ≤ u j < v j} = ∞.
For m ∈N if (p1, q1) ∈ Γ1, ..., (pm, qm) ∈ Γm are such that sup{k ∈N : there exist um+1, vm+1,um+2, vm+2, . . . ,uk, vk ∈

[0, 1] such that for u1 = p1, v1 = q1,u2 = p2, v2 = q2, . . . ,um = pm, vm = qm for all i, j ∈ {1, . . . , k} we have
(ui, vi) ∈ Γi and if ai < bi < a j < b j, then ui < vi ≤ u j < v j} = ∞. Since Γm+1 is finite, there exists
(pm+1, qm+1) ∈ Γm+1 such that sup{k ∈ N : there exist um+2, vm+2,um+3, vm+3, . . . ,uk, vk ∈ [0, 1] such that for
u1 = p1, v1 = q1,u2 = p2, v2 = q2, . . . ,um+1 = pm+1, vm+1 = qm+1 for all i, j ∈ {1, . . . , k} we have (ui, vi) ∈ Γi and if
ai < bi < a j < b j, then ui < vi ≤ u j < v j} = ∞.
The sequence ((pn, qn) : n ∈N) is our desired sequence.

Lemma 7.4. Let x =
∑
n∈N

xn

3n ∈ K(⊂M) with xn ∈ {0, 2} (n ∈N), and

Ex = {n ∈N : xn = 0} = {uk : k ∈N} ,

Fx = {n ∈N : xn = 2} = {vk : k ∈N}

such that u1 < u2 < · · · and v1 < v2 < · · · , and consider the sequence ((pn, qn) : n ∈ N) as in Lemma 7.3, then we
have:
1. The sequences {anx

uk
: k ∈N} and {bnx

uk
: k ∈N} are strictly decreasing to x.

2. The sequences {anx
vk

: k ∈N} and {bnx
vk

: k ∈N} are strictly increasing to x.
3. The sequences {pnx

uk
: k ∈N} and {qnx

uk
: k ∈N} are strictly decreasing.

4. The sequences {pnx
vk

: k ∈N} and {qnx
vk

: k ∈N} are strictly increasing.
5. lim

k→∞
pnx

vk
= lim

k→∞
qnx

vk
≤ lim

k→∞
pnx

uk
= lim

k→∞
qnx

uk
.

Proof.
Use Lemma 7.2 in order to prove (1) and (2).
3) By Lemma 7.2 (2), for all k ∈N we have

anx
uk+1

< bnx
uk+1

< anx
uk
< bnx

uk
,

which leads to pnx
uk+1

< qnx
uk+1

< pnx
uk
< qnx

uk
.

4) Lemma 7.2 (3), for all k ∈N we have

anx
vk
< bnx

vk
< anx

vk+1
< bnx

vk+1
,

which leads to pnx
vk
< qnx

vk
< pnx

vk+1
< qnx

vk+1
.

5) Using (3) and (4), we have lim
k→∞

pnx
uk

= lim
k→∞

qnx
uk

and lim
k→∞

pnx
vk

= lim
k→∞

qnx
vk

. On the other hand for all k ∈N we

have anx
vk
< bnx

vk
< x < anx

uk
< bnx

uk
, thus

pnx
vk
< qnx

vk
< pnx

uk
< qnx

uk
,

which leads to lim
k→∞

pnx
vk
≤ lim

k→∞
pnx

uk
.

Lemma 7.5. For x =
∑
n∈N

xn

3n ∈ K with xn ∈ {0, 2} and Ex = {n ∈ N : xn = 0} = {uk : k ∈ N} with u1 < u2 < · · ·

under the same notations as in Lemma 7.3, by Lemma 7.4, {pnx
uk

: k ∈N} is an strictly decreasing sequence (in [0, 1]).
Let η(x) = lim

k→∞
pnx

uk
, then η : K→ [0, 1] is strictly increasing, and for all x ∈ K we have f (η(x)) = 0.

Proof. Consider x, y ∈ K with x < y. Suppose x =
∑
n∈N

xn

3n and y =
∑
n∈N

yn

3n with xn, yn ∈ {0, 2} for all n ∈N. Let

Ex = {n ∈N : xn = 0} = {uk : k ∈N} ,
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Ey = {n ∈N : yn = 0} = {u′k : k ∈N} ,
with

u1 < u2 < · · · and u′1 < u′2 < · · · .

By Lemma 7.4 (1), {anx
uk

: k ∈N} is a strictly decreasing sequence to x, and {anx
u′k

: k ∈N} is a strictly decreasing

sequence to y. Since x < y, there exists m ∈N such that

x ≤ · · · < anx
um+2

< anx
um+1

< anx
um
< y ≤ · · · < any

u′m+2

< any
u′m+1

< any
u′m

.

Thus

x ≤ · · · < anx
um+2

< bnx
um+2

< anx
um+1

< bnx
um+1

< anx
um
< bnx

um

< y ≤ · · · < any
u′m+2

< bny
u′m+2

< any
u′m+1

< bny
u′m+1

< any
u′m

< bny
u′m

.

Using Lemma 7.3 we have:

· · · < pnx
um+2

< qnx
um+2

< pnx
um+1

< qnx
um+1

< pnx
um
< qnx

um

< · · · < pny
u′m+2

< qny
u′m+2

< pny
u′m+1

< qny
u′m+1

< pny
u′m

< qny
u′m

.

Therefore

η(x) = lim
k→∞

pnx
uk
≤ pnx

um+1
< pnx

um
≤ lim

k→∞
pny

u′k

= η(y) ,

and η : K → [0, 1] is strictly increasing. Since f (pnx
uk

) = 0 for all k ∈ N and f is continuous, we have
f (η(x)) = 0.

Lemma 7.6. | f−1(0)| ≥ c and f is not a c−arc.

Proof. Consider η : K→ [0, 1] as in Lemma 7.5. By Lemma 7.5 we have | f−1(0)| ≥ |η(K)| and by Lemma 7.4 η
is one to one, therefore |η(K)| = |K| = c. Thus | f−1(0)| ≥ c and f is not a c−arc.

Theorem 7.7. We have

Pc(X) ⊂ π1(X) , Pω
P f in(X)(X) * Pc(X) ,

Pω(X) ⊂ Pω
P f in(X)(X) andPω

P f in(X)(X) * Pc(X) .

Proof. Using Note 3.4, and Lemma 7.6, [1] < Pc(X), thus Pc(X) ⊂ π1(X). Using [1] ∈ Pω
P f in(X)(X) shows

Pω
P f in(X)(X) * Pc(X). Also [1] ∈ Pω(X) \ Pω

P f in(X)(X), thus Pω(X) is a proper subgroup of Pω
P f in(X)(X). Using

[1] ∈ Pω
P f in(X)(X) \Pc(X) will complete the proof.

8. Pc
P f in(Y)

(Y) is a proper subset of π1(Y)

In this section we prove π1(Y) \Pc
P f in(Y)(Y) , ∅. We use the same notations as in Section 7.

Define G : [0, 1]→ Y with:

G(x) =



1(4xn(n + 1) − (2n + 1))
2n+1 +

1
n

2n + 1
4n(n + 1)

≤ x ≤
1

2n
,n ∈N ,

2(n + 1)(2n − 1)x + (2 − 2n)
1

2(n + 1)
≤ x ≤

2n + 1
4n(n + 1)

,n ∈N ,

2 − 2x
1
2
≤ x ≤ 1 ,

0 x = 0 ,
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where 1 : [0, 1]→ X as in section 7 is:

1(x) =


1
n

e2πi x−an
bn−an +

i
n

x ∈ (an, bn),n ∈N ,

0 otherwise .

Lemma 8.1. Let K,G : [0, 1]→ Y are homotopic and m ∈N, then |K−1( 1
m )| = c.

Proof. Choose θ ∈ ( 1
m+1 + 1

2m+2 ,
1
m −

1
2m+1 ). Consider h, h : [0, 1]→ Y with h(x) = θx and h(x) = θ(1 − x). Since

K,G : [0, 1] → Y are path homotopic with base point 0, h ∗ K ∗ h, h ∗ G ∗ h : [0, 1] → Y are path homotopic
with base point θ. Using Convention 4.1 two maps

(h ∗ K ∗ h){(x,y)∈Y:x≥θ}, (h ∗ G ∗ h){(x,y)∈Y:x≥θ} : [0, 1]→ {(x, y) ∈ Y : x ≥ θ}

are path homotopic with base point θ. Let

K1 = (h ∗ K ∗ h){(x,y)∈Y:x≥θ} and G1 = (h ∗ G ∗ h){(x,y)∈Y:x≥θ} .

If m = 1 let K2 = K1 and G2 = G1.
If m > 1, choose µ ∈ ( 1

m + 1
2m+1 ,

1
m−1 −

1
2m ). Consider h1, h1 : [0, 1] → Y with h1(x) = (µ − θ)x + θ and

h1(x) = (µ − θ)(1 − x) + θ. Since K1,G1 : [0, 1] → {(x, y) ∈ Y : x ≥ θ} are path homotopic with base point θ,
h1∗K1∗h1, h1∗G1∗h1 : [0, 1]→ {(x, y) ∈ Y : x ≥ θ} are path homotopic with base pointµ. Using Convention 4.1
two maps (h1 ∗K1 ∗ h1){(x,y)∈Y:θ≤x≤µ} and (h1 ∗G1 ∗ h1){(x,y)∈Y:θ≤x≤µ} from [0, 1] to {(x, y) ∈ Y : θ ≤ x ≤ µ} are path
homotopic with base point µ. Let h2(x) = ( 1

m − µ)x + µ and h2(x) = ( 1
m − µ)(1 − x) + µ for x ∈ [0, 1].

Now let:

K2 =

{
h2 ∗ (h1 ∗ K1 ∗ h1){(x,y)∈Y:θ≤x≤µ}

∗ h2 m > 1 ,
K1 m = 1 ,

and

G2 =

{
h2 ∗ (h1 ∗ G1 ∗ h1){(x,y)∈Y:θ≤x≤µ}

∗ h2 m > 1 ,
G1 m = 1 ,

also in order to be more convenient, whenever m = 1 let µ = 1. Then K2,G2 : [0, 1]→ {(x, y) ∈ Y : θ ≤ x ≤ µ}
(⊆ ( 1

2m+1X + 1
m ) ∪ [θ, µ]) are path homotopic with base point 1

m . Hence there exists a continuous map
F : [0, 1] × [0, 1]→ {(x, y) ∈ Y : θ ≤ x ≤ µ} such that F(0, s) = F(1, s) = 1

m , F(s, 0) = K2(s) and F(s, 1) = G2(s) for
all s ∈ [0, 1].
DefineK ,G : [0, 1]→ X and F : [0, 1] × [0, 1]→ Xwith:

K (x) =

 2m+1(K2(x) − 1
m ) K2(x) ∈ 1

2m+1X + 1
m ,

−ie
iπ(K2(x)− 1

m )
2 + i θ ≤ K2(x) ≤ µ ,

G(x) =

 2m+1(G2(x) − 1
m ) G2(x) ∈ 1

2m+1X + 1
m ,

−ie
iπ(G2(x)− 1

m )
2 + i θ ≤ G2(x) ≤ µ ,

F (s, t) =

 2m+1(F(s, t) − 1
m ) F(s, t) ∈ 1

2m+1X + 1
m ,

−ie
iπ(F(s,t)− 1

m )
2 + i θ ≤ F(s, t) ≤ µ .

Using the gluing lemma,K , G and F are continuous, moreover by the above definition, for all s ∈ [0, 1] we
have:
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• the equality F(0, s) = F(1, s) = 1
m , implies

F (0, s) = F (1, s) = −ie
iπ( 1

m −
1
m )

2 + i = 0 ,

• two equalities F(s, 0) = K2(s) and F(s, 1) = G2(s), imply F (s, 0) = K (s) and F (s, 1) = G(s).

So K ,G; [0, 1] → X are path homotopic with base point 0. One could verify that G, 1 : [0, 1] → X are
homotopic, thus K , 1 : [0, 1] → X are homotopic and by Lemma 7.6 in which we proved | f−1(0)| = c
whenever f , 1 : [0, 1] → X are homotopic, we have |K−1(0)| ≥ c. Since K−1(0) and K−1( 1

m ) differs in a finite
set, we have |K−1( 1

m )| = c.

Theorem 8.2. We have [G] ∈ π1(Y) \Pc
P f in(Y)(Y).

Proof. If [G] ∈ Pc
P f in(Y)(Y), then by Note 3.4, there exists cP f in(Y)

loop K : [0, 1] → Y with K(0) = K(1) = 0

and [F] = [G]. Since G : [0, 1] → Y is not null-homotopic, K : [0, 1] → Y is not constant. Thus there exists
k ∈ N such that for all m ≥ k we have 1

m ∈ K[0, 1]. By Lemma 8.1, for all m ≥ k we have |K−1( 1
m )| = c, thus

{x ∈ Y : |K−1(x)| ≮ c} is infinite, which is a contradiction, since K : [0, 1] → Y is a cP f in(Y)
loop. Therefore

[G] < Pc
P f in(Y)(Y).

9. Main examples and counterexamples

Now we are ready to present examples.

Example 9.1. Using Note 6.4 (4), since A( fX)(= N) is infinite, thus [ fX] < Pω(X). On the other hand, using
Example 2.3 (1), fX : [0, 1]→ X is a c−loop, thus [ fX] ∈ Pc(X) \Pω(X) and Pω(X) is a proper subgroup of Pc(X).
Therefore by Theorem 2.3, we have:

Pω(X) ⊂ Pc(X) ⊂ π1(X) .

Also using Theorem 2.3 again we havePω(X) ⊂ Pω
P f in(X)(X), which leads toPω(X) ⊂ Pc

P f in(X)(X), sincePω
P f in(X)(X) ⊆

Pc
P f in(X)(X). We recall that according to Theorem 2.3,Pω

P f in(X)(X) * Pc(X), which leads toPc
P f in(X)(X) * Pc(X) since

Pω
P f in(X)(X) ⊆ Pc

P f in(X)(X).

The following Example deal with Theorem 5.1. We again recall that Φ : π1(X) × π1(Y) → π1(X × Y), with
Φ([ f ], [1]) = [( f , 1)] (where ( f , 1)(t) = ( f (t), 1(t)) (for t ∈ [0, 1] and loops f : [0, 1] → X, 1 : [0, 1] → Y)) is a
group isomorphism. Moreover as it was proved in Theorem 5.1 (4c), for infinite cardinal number αwe have
Φ(Pα(X)×Pα(Y)) ⊆ Pα(X×Y). In the following we bring an example in which Φ(Pα(X)×Pα(Y)) , Pα(X×Y),
in particular we prove that Φ �Pω(X)×Pω(X): Pω(X) ×Pω(X) → Pω(X × X) is a group monomorphism but it
is not an isomorphism.

Example 9.2. Define f
X

: [0, 1] → X with f
X

(t) = fX(1 − t). ( fX, f
X

) : [0, 1] → X × X is an ω−arc since for all
(x, y) ∈ X × X, if |( fX, f

X
)−1(x, y)| > 1, then x = y = 0. Moreover ( fX, f

X
)−1(0, 0) ⊆ {t ∈ [0, 1] : t, 1 − t ∈ { 1n : n ∈

N}} ∪ {0, 1} = {0, 1, 1
2 }. Therefore for all (x, y) we have |( fX, f

X
)−1(x, y)| ≤ 3 < ω and ( fX, f

X
) : [0, 1] → X × X

is an ω−arc. Thus Φ([ fX], [ f
X

]) = [( fX, f
X

)] ∈ Pω(X × X). Since Φ : π1(X) × π1(X) → π1(X × X) is a group
isomorphism, there exist unique ([1], [h]) ∈ π1(X) × π1(X) with Φ([1], [h]) = [( fX, f

X
)] therefore [1] = [ fX] and

[h] = [ f
X

]. Using Example 9.1, [ fX] < Pω(X), so ([1], [h]) = ([ fX], [ f
X

]) < Pω(X) ×Pω(X). So (note: Φ is one to
one):

[( fX, f
X

)] = Φ([1], [h]) = Φ([ fX], [ f
X

]) < Φ(Pω(X) ×Pω(X))

which shows Φ(Pω(X) ×Pω(X)) , Pω(X ×X).
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Example 9.3. Using the same notations as in Note 6.5 we have B( fY) = N ×N, therefore for all m ∈ N, {n ∈ N :
(m,n) ∈ B( fY)}(= N) is infinite. If F ∈ P f in(Y), then F is finite and there exists k ∈ N with 1

k ∈ Y \ F. Using
infiniteness of {n ∈ N : (k,n) ∈ B( fY)} and Note 6.5 (c) we have [ fY] < Pω

P f in(Y)(Y). On the other hand using
Example 2.3 (2), fY : [0, 1]→ Y is a c−loop, thus [ fY] ∈ Pc(Y). So Pω

P f in(Y)(Y) is a proper subgroup of Pc(Y) and
π1(Y) (Hint: We can prove Pω(Y) is a proper subgroup of Pω

P f in(Y)(Y), thus Pω(Y) ⊂ Pω
P f in(Y)(Y) ⊂ π1(Y)).

Example 9.4. Map fZ : [0, 1] → Z is a p + 1−arc and it is not homotopic with any k−arc 1 : [0, 1] → Z for
k < p + 1. However for all α ≥ 2 and ideal I onZ we havePα

I
(Z) = π1(Z). For this aim, for all k ∈ {1, ..., p}, define

fk : [0, 1]→Zwith fk(t) = 1
k e2πi(t− 1

4 ) + i
k . For all α ≥ 2 and ideal I onZ, we have [ fk] ∈ P2(Z) ⊆ Pα

I
(Z) ⊆ π1(Z).

Since {[ f1], ..., [ fn]} generates π1(Z), thus Pα
I

(Z) = π1(Z).

Example 9.5. We recall that π1(Y) \ Pc
P f in(Y)(Y) , ∅ by Theorem 8.2. However [ fY] ∈ Pc

P f in(Y)(Y) (since
fY : [0, 1]→ Y is a c−loop, thus [ fY] ∈ Pc

P f in(Y)(Y)) One may show [ fY] < Pω
P f in(Y)(Y), thus:

Pω
P f in(Y)(Y) ⊂ Pc

P f in(Y)(Y) ⊂ π1(Y) .

10. Main Table

Table 10.1. We have the following Table:

K
H

Pω(X) Pω
P f in(X)(X) Pc(X) Pc

P f in(X)(X) π1(X)

Pω(X) ⊆ ⊆ ⊆ ⊆ ⊆

Pω
P f in(X)(X) 9.1 ⊆ 9.1 ⊆ ⊆

Pc(X) 9.1 9.3 ⊆ ⊆ ⊆

Pc
P f in(X)(X) 9.1 9.3 9.1 ⊆ ⊆

π1(X) 9.1 9.3 9.1 9.5 ⊆

In the above table “⊆” means that in the corresponding case we have H ⊆ K.
In addition the number i.j means that in Example i.j there exists an example such that H * K in the corresponding

case.

11. Two spaces having fundamental groups isomorphic to Hawaiian earring’s fundamental group

In this section we prove in a sequel of Lemmas, that X (Hawaiian earring) andW are homeomorph with
two deformation retracts of V. Thus we have π1(X) � π1(V) � π1(W), which is important for our main
counterexamples in next section.
We recall sign map sgn : R→ {±1, 0}with sgn(x) = x

|x| for x , 0 and sgn(0) = 0.
Note: In a connected topological space A, we call x ∈ A a cut point of A if A \ {x} is disconnected. It is
evident thatX andW are not homeomorphic sinceX has just one cut point andW has infinitely many cut
points.

Lemma 11.1. For x ∈ [0, 1], the map Φx : [0, 1
2 ]→ {w ∈ [−1, 1] : x + w ≤ 0} = [−1, 1]∩ (−∞,−x] = [−1,−x] with:

Φx(t) =

{
(1 − sin(πt))(1 − x

1−2t ) − 1 t ∈ [0, 1
2 )

−1 t = 1
2

is a homeomorphism.

Proof. Suppose z ∈ (−1, 1] and z + x ≤ 0. The map ϕ : [0, 1
2 ) → R with ϕ(t) = (1 − sin(πt))(1 − x

1−2t ) − 1
is continuous, moreover ϕ(0) = −x and lim

t→ 1
2
−
ϕ(t) = −1. By −1 < z ≤ −x and the mean value theorem

there exists t ∈ [0, 1
2 ) with ϕ(t) = z. In addition Φx �[0, 1

2 )= ϕ : [0, 1
2 ) → R is strictly decreasing, therefore

Φx : [0, 1
2 ]→ [−1,−x] is a bijective continuous map which completes the proof.
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Lemma 11.2. Using the same notations as in Lemma 11.1, Φ̂ : {(x,w) ∈ [0, 1] × [−1, 0] : x + w ≤ 0} → [0, 1
2 ] with

Φ̂(x,w) = Φ−1
x (w) is continuous.

Proof. Using Lemma 11.1, Φ̂ : {(x,w) ∈ [0, 1] × [−1, 0] : x + w ≤ 0} → [0, 1
2 ] is well-defined. Let A := {(x,w) ∈

[0, 1] × [−1, 0] : x + w ≤ 0}. Consider (x,w) ∈ A, s ∈ [0, 1
2 ], and sequence {(xn,wn) : n ∈ N} such that

lim
n→∞

xn = x, lim
n→∞

wn = w, lim
n→∞

Φ̂(xn,wn) = s. Let t = Φ̂(x,w) and tn = Φ̂(xn,wn) (n ∈ N). We show s = t, i.e.

lim
n→∞

Φ̂(xn,wn) = Φ̂(x,w).
We have the following cases:
Case 1. s , 1

2 . In this case we may suppose for all n ∈ N we have tn , 1
2 . For all n ∈ N we have

wn = Φxn (tn) = (1 − sin(πtn))(1 − xn
1−2tn

) − 1 moreover:

Φx(t) = w = lim
n→∞

wn = lim
n→∞

Φxn (tn)

= lim
n→∞

(1 − sin(πtn))(1 −
xn

1 − 2tn
) − 1

= (1 − sin(πs))(1 −
x

1 − 2s
) − 1 = Φx(s)

and s = t since Φx is one to one according to Lemma 11.1.
Case 2. s = 1

2 and for infinitely many of ns we have tn = 1
2 . In this case we may suppose for all n ∈ N we

have tn = 1
2 . Thus we have:

Φx(t) = w = lim
n→∞

wn = lim
n→∞

Φxn (tn)

= lim
n→∞

Φxn (
1
2

) = lim
n→∞
−1 = −1 = Φx(

1
2

)

and s = 1
2 = t since Φx is one to one according to Lemma 11.1.

Case 3. s = 1
2 and for infinitely many of ns we have tn ,

1
2 . In this case we may suppose for all n ∈ N we

have tn ,
1
2 . Thus we have:

Φx(t) = w = lim
n→∞

wn = lim
n→∞

Φxn (tn)

= lim
n→∞

(1 − sin(πtn))(1 −
xn

1 − 2tn
) − 1

= lim
n→∞

(1 − sin(πtn))
1 − 2tn

lim
n→∞

(1 − 2tn − xn) − 1

= 0 × (1 − s − x) − 1 = −1 = Φx(
1
2

)

and s = 1
2 = t since Φx is one to one according to Lemma 11.1.

Using the above cases s = t and Φ̂ : {(x,w) ∈ [0, 1] × [−1, 0] : x + w ≤ 0} → [0, 1
2 ] is continuous (otherwise

since [0, 1
2 ] is compact, there exists (x,w) ∈ A and sequence {(xn,wn) : n ∈ N} converging to (x,w) such that

the sequence {Φ̂(xn,wn) : n ∈N} converges to a point s ∈ [0, 1
2 ] \ {Φ̂(x,w)}).

Lemma 11.3. Consider X = {(x, y, z) ∈ R3 : y2 + z2 = 1, 0 ≤ x ≤ 1} and Φ̂ as in Lemma 11.2. Let M1 = {(x, y, z) ∈
X : x + z ≤ 0}, the map F1 : [0, 1] ×M1 → X with F1(µ, (x, y, z)) = (x′, y′, z′) for:

x′ = x + (1 − 2(1 − x)Φ̂(x, z) − x)µ ,
z′ = (1 − µ)z − µ ,
y′ = sgn(y)

√

1 − z′2 ,

is continuous.
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Proof. Let (µ, (x, y, z)) ∈ [0, 1] ×M1, since Φ̂(x, z) ∈ [0, 1
2 ], we have 1 − 2Φ̂(x, z) ∈ [0, 1] which leads to (use

x, µ ∈ [0, 1]):

0 ≤ x(1 − µ) = x + (0 − x)µ ≤ x′ = x + (1 − 2(1 − x)Φ̂(x, z) − x)µ
≤ x + (1 − x)µ ≤ x + (1 − x) = 1

thus x′ ∈ [0, 1]. Moreover using µ ∈ [0, 1] and z ∈ [−1, 0] we have:

−1 = (1 − µ)(−1) − µ ≤ (1 − µ)z − µ ≤ (1 − µ)0 − µ = −µ ≤ 0 ,

thus z′ ∈ [−1, 0] using y′2 + z′2 = 1, F1 : [0, 1] ×M1 → X is well-defined.
Using Lemma 11.2, F1 : [0, 1] ×M1 → X is continuous.

Lemma 11.4. For x ∈ [0, 1], the map Ψx : [0, 1
2 ] → {z ∈ [−1, 1] : x + z ≥ 0} = [−1, 1] ∩ [−x,+∞) = [−x, 1] with

Ψx(t) = sin(πt) − (1 + sin(πt) − 4t)x is a homeomorphism.

Proof. Suppose z ∈ [−1, 1] and z + x ≥ 0. Since Ψx(0) = −x and Ψx( 1
2 ) = 1 by the mean value theorem there

exists t ∈ [0, 1
2 ] with Ψx(t) = z. Thus Ψx : [0, 1

2 ]→ [−x, 1] is a bijection continuous map which completes the
proof.

Lemma 11.5. Using the same notations as in Lemma 11.4, Ψ̂ : {(x,w) ∈ [0, 1] × [−1, 1] : x + w ≥ 0} → [0, 1
2 ] with

Ψ̂(x,w) = Ψ−1
x (w) is continuous.

Proof. Using Lemma 11.4, Ψ̂ : {(x,w) ∈ [0, 1] × [−1, 1] : x + w ≥ 0} → [0, 1
2 ] is well-defined. Let B := {(x,w) ∈

[0, 1]× [−1, 1] : x+w ≥ 0}. Consider (x,w) ∈ B, s ∈ [0, 1
2 ], and sequence {(xn,wn) : n ∈N} such that lim

n→∞
xn = x,

lim
n→∞

wn = w, lim
n→∞

Ψ̂(xn,wn) = s. Let t = Ψ̂(x,w) and tn = Ψ̂(xn,wn) (n ∈N). We have:

Ψx(t) = w = lim
n→∞

wn = lim
n→∞

Ψxn (tn)

= lim
n→∞

sin(πtn) − (1 + sin(πtn) − 4tn)xn

= sin(πs) − (1 + sin(πs) − 4s)x = Ψx(s)

and s = t since Ψx is one to one according to Lemma 11.4. Using the above discussion and the compactness
of [0, 1

2 ], Ψ̂ : {(x,w) ∈ [0, 1] × [−1, 1] : x + w ≥ 0} → [0, 1
2 ] is continuous.

Lemma 11.6. Consider X = {(x, y, z) ∈ R3 : y2 + z2 = 1, 0 ≤ x ≤ 1} and Ψ̂ as in Lemma 11.5. Let M2 = {(x, y, z) ∈
X : x + z ≥ 0}, the map F2 : [0, 1] ×M2 → X with F2(µ, (x, y, z)) = (x′, y′, z′) for:

x′ = x + (1 − x)µ ,
z′ = (1 − µ)z + (4Ψ̂(x, z) − 1)µ ,
y′ = sgn(y)

√

1 − z′2 ,

is continuous.

Proof. Let (µ, (x, y, z)) ∈ [0, 1] ×M2, since x, µ ∈ [0, 1] we have 0 ≤ x ≤ x + (1 − x)µ ≤ x + (1 − x) = 1 and
x′ ∈ [0, 1]. Since Ψ̂(x, z) ∈ [0, 1

2 ] we have 1−4Ψ̂(x, z) ∈ [−1, 1]. Now using µ ∈ [0, 1] and 1−4Ψ̂(x, z), z ∈ [−1, 1]
we have

−1 = (1 − µ)(−1) + (−1)µ ≤ (1 − µ)z + (4Ψ̂(x, z) − 1)µ ≤ 1 − µ + µ = 1

therefore z′ ∈ [−1, 1] using y′2 + z′2 = 1, F2 : [0, 1] ×M2 → X is well-defined.
Using Lemma 11.5, F2 : [0, 1] ×M2 → X is continuous.
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Construction 11.7. Consider X = {(x, y, z) ∈ R3 : y2 + z2 = 1, 0 ≤ x ≤ 1}, Y = {(x, y, z) ∈ X : x = 1 ∨ z = −1},
M1 = {(x, y, z) ∈ X : x + z ≤ 0} and M2 = {(x, y, z) ∈ X : x + z ≥ 0}. F : [0, 1] × X → X with F �M1= F1 as in
Lemma 11.3 and F �M2= F2 as in Lemma 11.6. Then we have:

1. F : [0, 1] × X→ X is continuous.

2. For all (x, y, z) ∈ X we have F(0, (x, y, z)) = (x, y, z) and F(1, (x, y, z)) ∈ Y

3. For all (x, y, z) ∈ Y and µ ∈ [0, 1] we have F(µ, (x, y, z)) = (x, y, z).

Proof. (1) For all x ∈ [0, 1] we have Φ̂(x,−x) = Ψ̂(x,−x) = 0, so using Lemma 11.3, Lemma 11.6 and gluing
lemma the map F : [0, 1] × X→ X is continuous.
(2) For (x, y, z) ∈ X, F(0, (x, y, z)) = (x, y, z) is clear by definition of F1 and F2. Suppose F(1, (x, y, z)) =
(x1, y1, z1). If (x, y, z) ∈M1, then z1 = (1− 1)z− 1 = −1 and F(1, (x, y, z)) = (x1, y1, z1) ∈ Y. If (x, y, z) ∈M2, then
x1 = x + (1 − x)1 = 1 and F(1, (x, y, z)) = (x1, y1, z1) ∈ Y.
(3) Suppose (x, y, z) ∈ Y, µ ∈ [0, 1] and F(µ, (x, y, z)) = (x′, y′, z′). We have the following cases:
Case 1. z = −1. In this case y = 0, (x, y, z) ∈M1 and Φ̂(x, z) = Φ̂(x,−1) = 1

2 . Thus x′ = x+(1−2(1−x) 1
2−x)µ = x,

z′ = (1 − µ)(−1) − µ = −1 = z and y′ = sgn(y)
√

1 − z′2 = sgn(y)
√

1 − 1 = 0 = y
Case 2. x = 1. In this case y = 0, (x, y, z) ∈ M2 and Ψ̂(x, z) = Ψ̂(1, z) = t implies z = Ψ1(t) = 4t − 1, i.e.
Ψ̂(1, z) = z+1

4 . Thus x′ = 1 + (1 − 1)µ = 1 = x, z′ = (1 − µ)z + (4 × z+1
4 − 1)µ = z, and y′ = sgn(y)

√

1 − z′2 =

sgn(y)
√

1 − z2 = sgn(y)|y| = y.
Considering the above cases we are done.

Construction 11.8. For n ∈N let

Xn = {(x, y, z) ∈ R3 : y2 + (z −
1
n

)2 =
1
n2 , 0 ≤ x ≤

1
n
} ,

and X0 =
⋃
{Xn : n ∈N}, in this construction we want to define a map F0 : [0, 1] × X0 → X0.

Considering the same notations as in Construction 11.7 for m ∈N and (x, y, z) ∈ Xm we have (mx,my,mz− 1) ∈ X.
For µ ∈ [0, 1] if

F(µ, (mx,my,mz − 1)) = (x′m, y
′

m, z
′

m) ∈ X ,

then 0 ≤ x′m ≤ 1 and y′2m + z′2m = 1, thus 0 ≤ x′m
m ≤

1
m and(

y′m
m

)2

+

(
z′m + 1

m
−

1
m

)2

=
1

m2 ,

therefore ( x′m
m ,

y′m
m ,

z′m+1
m ) ∈ Xm, let Fm(µ, (x, y, z)) = ( x′m

m ,
y′m
m ,

z′m+1
m ), i.e.

Fm(µ, (x, y, z)) =
1
m

F(µ, (mx,my,mz − 1)) + (0, 0,
1
m

) .

It is clear that Fm : [0, 1] × Xm → Xm is continuous. Suppose s, t ∈N, s < t, µ ∈ [0, 1] and (x, y, z) ∈ Fs ∩ Ft, then:

0 ≤ x ≤ min(
1
t
,

1
s

) ∧ y2 + (z −
1
s

)2 =
1
s2 ∧ y2 + (z −

1
t

)2 =
1
t2

which leads to 0 ≤ x ≤ 1
t (< 1

s ) and y = z = 0. Now, since (sx, 0,−1), (tx, 0,−1) ∈ Y (in Construction 11.8), we have:

F(µ, (sx, 0,−1)) = (sx, 0,−1) , F(µ, (tx, 0,−1)) = (sx, 0,−1) ,
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and:

Fs(µ, (x, y, z)) = Fs(µ, (x, 0, 0)) =
1
s

F(µ, (sx, 0,−1)) + (0, 0,
1
s

)

=
1
s

(sx, 0,−1) + (0, 0,
1
s

) = (x, 0, 0) =
1
s

(tx, 0,−1) + (0, 0,
1
t

)

=
1
t

F(µ, (tx, 0,−1)) + (0, 0,
1
t

) = Ft(µ, (x, 0, 0)) = Ft(µ, (x, y, z))

Therefore for F0 =
⋃
{Fn : n ∈N}, F0 : [0, 1] × X0 → X0 is well-defined.

Note: We recall that for A ⊆ B, we call A a deformation retract of B if there exists a continuous map
ν : [0, 1] × B → A with ν(0, b) = b, ν(1, b) ∈ A, and ν(t, a) = a (for all b ∈ B, a ∈ A, t ∈ [0, 1]). It is well-known
that if A is a deformation retract of B (and a0 ∈ A), then Υ : π1(A, a0)→ π1(B, a0)

[k]7→[k]
is a group isomorphism, in

particular π1(A) � π1(B) [5, Theorem 58.3].

Lemma 11.9. For n ∈N let

Xn = {(x, y, z) ∈ R3 : y2 + (z −
1
n

)2 =
1
n2 , 0 ≤ x ≤

1
n
} ,

and

Yn = {(x, y, z) ∈ Xn : x =
1
n
∨ z = 0} ,

then Y0 =
⋃
{Yn : n ∈N} is a deformation retract of X0 =

⋃
{Xn : n ∈N}.

Proof. Consider F0 : [0, 1] × X0 → X0 as in Construction 11.8. We prove the following claims:

• Claim 1. F0 : [0, 1] × X0 → X0 is continuous.

• Claim 2. ∀(x, y, z) ∈ X0 (F0(0, (x, y, z)) = (x, y, z) ∧ F0(1, (x, y, z)) ∈ Y0).

• Claim 3. ∀(x, y, z) ∈ Y0 ∀µ ∈ [0, 1] F0(µ, (x, y, z)) = (x, y, z).

Proof of Claim 1. Since for all n ∈ N, Fn : [0, 1] × Xn → Xn is continuous, using the gluing lemma,⋃
{Fi : 1 ≤ i ≤ n} : [0, 1] ×

⋃
{Xi : 1 ≤ i ≤ n} →

⋃
{Xi : 1 ≤ i ≤ n} is continuous.

If (x, y, z) ∈ X0 \ {(0, 0, 0)}, then there exist n ∈ N and open neighborhood V of (x, y, z) in X0 such that
V ⊆

⋃
{Xi : 1 ≤ i ≤ n}. Since

⋃
{Fi : 1 ≤ i ≤ n} �[0,1]×V: [0, 1] ×

⋃
{Xi : 1 ≤ i ≤ n} →

⋃
{Xi : 1 ≤ i ≤ n} is

continuous,
⋃
{Fi : 1 ≤ i ≤ n} : [0, 1] × V → X0 is continuous, i.e. F0 �[0,1]×V: [0, 1] × V → X0 is continuous,

therefore F0 is continuous in all points of [0, 1] × {(x, y, z)}.
In order to show the continuity of F0 : [0, 1] × X0 → X0, we should prove that it is continuous in all points
(µ, (0, 0, 0)) (µ ∈ [0, 1]). Consider ε > 0 there exists n ∈N such that

√
6

n < ε for all (x, y, z) ∈ X0 and µ, λ ∈ [0, 1]
we have (consider [0, 1] × X0 and X0 respectively under Euclidean norm of R4 and R3):
||(µ, (0, 0, 0)) − (λ, (x, y, z))|| < 1

n

⇒ x <
1
n

⇒ (x, y, z) ∈
⋃
{Xi : i ≥ n}

⇒ F0(λ, (x, y, z)) =
⋃
{Fi : i ≥ n}(λ, (x, y, z))

⇒ F0(λ, (x, y, z)) ∈
⋃
{Fi : i ≥ n}([0, 1] ×

⋃
{Xi : 1 ≤ i ≥ n})

⇒ F0(λ, (x, y, z)) ∈
⋃
{Fi([0, 1] × Xi) : i ≥ n} =

⋃
{Xi : i ≥ n}

⇒ ||F0(λ, (x, y, z))|| ≤ max{

√
6

i
: i ≥ n} =

√
6

n

⇒ ||F0(λ, (x, y, z)) − F0(µ, (0, 0, 0))|| = ||F0(λ, (x, y, z))|| ≤

√
6

n
< ε
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(note to the fact that Xn ⊆ [0, 1
n ]×[− 1

n ,
1
n ]×[0, 2

n ], thus for all (u, v,w) ∈ Xn we have ||(u, v,w)|| ≤
√

1
n2 + 1

n2 + 4
n2 =

√
6

n ) therefore F0 : [0, 1] × X0 → X0 is continuous in (µ, (0, 0, 0)) as well as it is continuous in other points of
[0, 1] × X0.
Proof of Claim 2. Suppose (x, y, z) ∈ X0, there exists n ∈N such that (x, y, z) ∈ Xn, using Construction 11.7 (2),
we have:

F0(0, (x, y, z)) = Fn(0, (x, y, z)) =
1
n

F(0, (nx,ny,nz − 1)) + (0, 0,
1
n

)

=
1
n

(nx,ny,nz − 1) + (0, 0,
1
n

) = (x, y, z)

and F0(1, (x, y, z)) = Fn(1, (x, y, z)) = 1
n F(1, (nx,ny,nz − 1)) + (0, 0, 1

n ), by Construction 11.7 (2) we have
F(1, (nx,ny,nz − 1)) ∈ Y which leads to F0(1, (x, y, z)) ∈ 1

n Y + (0, 0, 1
n ) = Yn ⊆ Y0.

Proof of Claim 3. Suppose µ ∈ [0, 1] and (x, y, z) ∈ X0, there exists n ∈N such that (x, y, z) ∈ Yn ⊆ Xn, now we
have (use Construction 11.7 (3)):

(x, y, z) ∈ Yn ⇒ ((x, y, z) ∈ Xn ∧ x =
1
n

) ∨ ((x, y, z) ∈ Xn ∧ z = 0)

⇒ (y2 + (z −
1
n

)2 =
1
n2 ∧ x =

1
n

) ∨ (0 ≤ x ≤
1
n
∧ y = z = 0)

⇒ (((ny)2 + (nz − 1)2 = 1 ∧ nx = 1)
∨(0 ≤ nx ≤ 1 ∧ ny = 0 ∧ nz − 1 = −1))

⇒ (nx,ny,nz − 1) ∈ Y
⇒ F(µ, (nx,ny,nz − 1)) = (nx,ny,nz − 1)

thus

F0(µ, (x, y, z)) = Fn(µ, (x, y, z)) =
1
n

F(µ, (nx,ny,nz − 1)) + (0, 0,
1
n

)

=
1
n

(nx,ny,nz − 1) + (0, 0,
1
n

) = (x, y, z)

Which completes the proof of Claim 3.
Using Claims 1, 2, and 3, Y0 is a deformation retract of X0.

Theorem 11.10. Under the same notations as in Construction 11.8 and
Lemma 11.9, Z0 = {(0, y, z) : ∃x(x, y, z) ∈ X0} is a deformation retract of X0. In particularπ1(Y0) � π1(X0) � π1(Z0).

Proof. The map [0, 1] × X0 → Z0 (µ, (x, y, z)) 7→ ((1 − µ)x, y, z) shows that Z0 is a deformation retract of X0
too. Now use [5, Theorem 58.3] to complete the proof.

Corollary 11.11. Two setsX andW are homeomorphic with deformation retracts ofV, therefore π1(X) � π1(V) �
π1(W).

Proof. Under the same notations as in Theorem 11.10, X and Z0 are homeomorph, moreover Y0 andW are
homeomorph too, also X0 =V. Now by Theorem 11.10 we have π1(X) � π1(V) � π1(W).

12. A distinguished counterexample

In Section 11 we have proved π1(X) � π1(W), in this section we prove Pω(X) � Pω(W).

Lemma 12.1. We have |Pω(X)| = ω.
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Proof. For n ∈ N consider ρn : [0, 1] → Cn with ρn(t) = 1
n e2πit− πi

2 + i
n , then ω−loops ρn, ρm : [0, 1] → X are

homotopic if and only if n = m. Therefore {[ρn] : n ∈ N} is an infinite subset of Pω(X) which leads to
|Pω(X)| ≥ ω. On the other hand as it has been mentioned in Note 6.4 (4), if [ f ] ∈ Pω(X), then |A( f )| < ω,
which leads to Pω(X) ⊆ ∗{π1(Cn) : n ∈N}, thus

|Pω(X)| ≤ | ∗ {π1(Cn) : n ∈N}|

= |{ρ j1
i1
∗ ρ j2

i2
∗ · · · ∗ ρ jm

im
: m ∈N, i1, j1, i2, j2, . . . , im, jm ∈ Z}|

≤ |

⋃
m∈N

{(i1, j1, · · · , im, jm) : i1, j1, . . . , im, jm ∈ Z}| = ω

Hence |Pω(X)| = ω.

Lemma 12.2. We have |Pω(W)| = c.

Proof. It is well-known that for all Hausdorff separable space A, |C(A,R2)| ≤ c where C(A,B) denotes the
collection of all continuous maps φ : A→ B. Therefore

|Pω(W)| ≤ |C([0, 1],W)| ≤ |C([0, 1],R2)| = c .

Now for all a = (an : n ∈N) ∈ {0, 1}N define fa : [0, 1]→W with:

fa(x) =



1
2n+1 e2πi(4n(n+1)x−(2n+1)+ 3

4 ) +
i

2n+1 +
1
n

2n + 1
4n(n + 1)

≤ x ≤
1

2n
, an = 1,n ∈N ,

4x −
1

n + 1
1

2(n + 1)
≤ x ≤

2n + 1
4n(n + 1)

, an = 1,n ∈N ,

2x
1

2(n + 1)
≤ x ≤

1
2n
, an = 0,n ∈N ,

0 x = 0 ,

2 − 2x
1
2
≤ x ≤ 1 ,

then fa : [0, 1] →W is an ω−loop, thus [ fa] ∈ Pω(W). We claim that ψ : {0, 1}N → Pω(X) with ψ(a) = [ fa]
(a ∈ {0, 1}N) is one to one. Let a = (an : n ∈ N), b = (bn : n ∈ N) ∈ {0, 1}N and a , b, then there exists
m ∈ N such that am , bm. Suppose am = 0 and bm = 1. Let W := { 1

2m+1 e2πiθ + 1
m + i

2m+1 : θ ∈ [0, 1]}. Since f W
a

is constant map 1
m , [ f W

a ] is null-homotopic. However [ f W
b ] is not null-homotopic, thus [ f W

a ] , [ f W
b ] which

leads to [ fa] , [ fb] according to Convention 4.1. Hence ψ : {0, 1}N → Pω(X) is one to one which leads to
|Pω(X)| ≥ |{0, 1}N| = c and completes the proof.

Counterexample 12.3 (A Distinguished Counterexample). Two groups π1(X) and π1(W) are isomorphic and
two groupsPω(X) andPω(W) are non-isomorphic. Brieflyπ1(X) � π1(W) andPω(X) � Pω(W) (use Lemma 12.1,
Lemma 12.2, and Corollary 11.11).

13. A diagram and a hint

Consider the following diagram:

∀α ≥ ωPα(X) � Pα(Y)
(I) // ∀α ≥ cPα(X) � Pα(Y)

(II) // ∀α ≥ 2c Pα(X) � Pα(Y)OO

(III)
��

π1(X) � π1(Y) oo
(IV)

//

(V)-

OO

∃α ≥ 2c Pα(X) � Pα(Y)
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Arrows (III) and (IV) are valid regarding Theorem 5.1 (1). However by Counterexample 12.3, there exist
X,Y such that π1(X) � π1(Y) and Pω(X) � Pω(Y), thus:

π1(X) � π1(Y) ∧ ¬(∀α ≥ ωPα(X) � Pα(Y))

Hence the above diagram is valid. We have the following arising problems:

Problem 13.1. Find a counterexample for arrow (I), i.e. find X, Y such that π1(X) � π1(Y), Pc(X) � Pc(Y) and
Pω(X) � Pω(Y) (Hint: is it true that Pc(X) � Pc(W)).

Problem 13.2. Find a counterexample for arrow (II), i.e. find X, Y such that π(X)1 � π1(Y) and Pc(X) � Pc(Y).

14. A Strategy for Future and Conjecture

Let’s extend of the idea of this text to homotopy group of order n. Let b ∈ Sn be a fixed point. For infinite
cardinal number α and ideal I on X which contains all finite subsets of X, if f , 1 : Sn

→ X are αImaps, with
f (b) = 1(b), then it is easy to see that f ∨ 1 : Sn

→ X is αImap too. So we may have the following definition.

Definition 14.1. For a ∈ X, by Pα(n,I)(X, a) we mean subgroup of πn(X, a) generated by αImaps with base point a.

It’s evident by the definition that for ideals I,J on X containing finite subsets, transfinite cardinal number
α, and a ∈ X, we have:

• If I ⊆ J , then Pα(n,I)(X, a) ⊆ Pα(n,J)(X, a);

• Pα(n,I∩J)(X, a) ⊆ Pα(n,I)(X, a) ∩Pα(n,J)(X, a).

Now we are ready to the following conjecture:
Conjecture. Arc connected spaces X and Y are homeomorph if and only if there exists a bijection f : X→ Y
such that for all nonzero cardinal number α and all ideal I on X, Pα

I
(X) � Pαf (I)(Y).

One more idea for future study. Let’s recall that in topological space Z and a, b ∈ Z for nonzero cardinal
number β, a collection Γ of maps f : [0, 1]→ Z with f (0) = a and f (1) = b, is called a β−separated family of
maps between a and b if for all distinct 1, h ∈ Γ we have |(1[0, 1] ∩ h[0, 1]) \ {a, b}| < β [2, Definition 2.5].
Now for cardinal numbers α, β > 0 and ideal I on X we may consider the collection S(I, α, β) consisting
of all families Γ such that Γ is a collection of αI loops with base point a and a β−separated family of maps
between a and a. Suppose

S(I, α, β) := {< {[ f ] : f ∈ Γ} >: Γ ∈ S(I, α, β)} ,

then S(I, α, β) is a “poset” under ⊆ and a collection of subgroups of π1(X). For arc connected spaces X
and Y one may compare these “type” of collections of their fundamental groups to discover “differents”
beween X and Y.

15. Conclusion

In this paper, for arc connected locally compact Hausdorff topological space X (with at least two elements),
a ∈ X, nonzero cardinal number α, and ideal I on X we introduce Pα

I
(X, a) as a subgroup of π1(X, a). We

prove that for transfinite α and a, b ∈ X two groups Pα
I

(X, a) and Pα
I

(X, b) are isomorphic, therefore for
transfinite α we denote Pα

I
(X, a) simply by Pα

I
(X) and Pα

{∅}
(X) simply by Pα(X). Moreover for α ≥ 2c we

have Pα
I

(X) = π1(X), hence the most interest is in ω ≤ α < 2c using GCH we prefer to study α ∈ {ω, c}.
We obtain that for Hawaiian earring (infinite earring) X, three groups Pω(X), Pc(X), and P2c

(X)(= π1(X))
are pairwise distinct. Also we introduce Y such that Pω

P f in(Y)(Y), Pc
P f in(Y)(Y), and P2c

P f in(Y)(Y)(= π1(Y)) are
pairwise distinct. We findW such that π1(X) � π1(W) and Pω(X) � Pω(W), this example leads us to the
fact that we can classify spaces with isomorphic first homotopy groups using the concept of Pα(−)s (first
homotopy groups with respect to α ≥ ω). However investigating the structure of our examples and specially
Section 12, shows remarkable role of the number of (locally) cut points their and order in α−arcs, αIarcs,
and our constructed subgroups of first fundamental group.
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