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Abstract. Suppose «a is a nonzero cardinal number, I is an ideal on arc connected topological space X,
and PE(X) is the subgroup of 17;(X) (the first fundamental group of X) generated by homotopy classes of

aZloops. The main aim of this text is to study P7(X)s and compare them. Most interest is in « € {w, c} and

I € {Prin(X), {2}}, where Py;,(X) denotes the collection of all finite subsets of X. We denote ‘BT@](X) with
B(X). We prove the following statements:

e for arc connected topological spaces X and Y if *(X) is isomorphic to P*(Y) for all infinite cardinal
number «, then 1;(X) is isomorphic to 771 (Y);

o there are arc connected topological spaces X and Y such that 77;(X) is isomorphic to 7;(Y) but P*(X) is
not isomorphic to P« (Y);

o for arc connected topological space X we have P (X) C B(X) C m1(X);
o for Hawaiian earring X, the sets B“(X), °(X), and m1(X) are pairwise distinct.

So P*(X)s and P$(X)s will help us to classify the class of all arc connected topological spaces with isomorphic
fundamental groups.

1. Introduction

The main aim of algebraic topology is “classifying the topological spaces”. One of the first concepts intro-
duced in algebraic topology is “fundamental group”. As it has been mentioned in [4, pagel], fundamental
groups are introduced by Poincaré. In this text we consider special subgroups of fundamental group.

Explicitly we pay attention to path homotopy classes induced by loops which are “enough one to one”. We
have the following sections:

1. Introduction
. What is an aZarc?
. New subgroups
. A useful remark
. Primary properties of BZ(X)s
Some preliminaries on Hawaiian earring
PB<(X) is a proper subset of 111(X)
;,fm ( y)(y ) is a proper subset of 111(Y)
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9. Main examples and counterexamples
10. Main Table
11. Two spaces having fundamental groups isomorphic to Hawaiian earring’s fundamental group
12. A distinguished counterexample
13. A diagram and a hint
14. A strategy for future and conjecture
15. Conclusion

Our main conventions located in section 2, although there are conventions in other sections too. Briefly, we
introduce our new subgroups in Section 3 and obtain their primary properties in Section 5. Sections 6, 7
and 8 contain basic lemmas for our counterexamples in Section 9. Regarding these three sections 7, 8, and
9 we see P(X) C P(X) C m1(X) where X is Infinite or Hawaiian earring and “C” means strict inclusion;
also we see ‘B;‘D’ﬂn (y)(y ) C ‘B;me W (YY) € mi(Y) (Y is introduced in Section 2). However Counterexamples
of Section 9 are essential for Main Table in Section 10, which shows probable inclusion relations between
different PZ(X) for a fix X (arc connected locally compact Hausdorff topological space), @ € {w,c} and
I € {{a}, Prin(X), P(X)} where P(X) is the power set of X and s13%()()(X) is just 711 (X) (the fundamental group
of X) by Section 5. We continue to discover the properties of “our new subgroups” in Sections 12 and 13,
as a matter of fact in Sections 11 and 12 we see 711(X) = 711(‘W) and P(X) # BY(W) (‘W is introduced in
Section 2), consequently we have a diagram and two problems in Section 13. As a matter of fact using the
diagram of Section 13 and “Distinguished Example” in Section 12, we try to show “these new subgroups”
can make meaningful subclasses of a class of arc connected locally compact Hausdorff topological spaces with the
isomorphic fundamental groups.

Remembering all the conventions during reading the text is highly recommended.

Convention 1.1. A topological space X is an arc connected space, if for all a,b € X with a # b there exists a
continuous one to one map f : [0,1] — X with f(0) = aand f(1) = b. In this text all spaces assumed to be Hausdorff,
locally compact, and arc connected with at least two elements.

Remark 1.2. Let X be an arbitrary set. We call I € P(X), an ideal on X, if:
o I £,
o fA,Bel, thenAUBeI,
o fBCAand Aec 1, thenBe 1.
The collection of all finite subsets of X, P fin(X), is one of the most famous ideals on X.

In this text ZFC+GCH (we recall that GCH or Generalized Continuum Hypothesis indicates that for transfinite
cardinal number B, there is not any cardinal number y with < y < 2, i.e. 2 = g* [3]) is assumed and by
“C” we mean strict inclusion. Whenever G is a group isomorphic to group H, we write G = H. Also G # H
means that G is not isomorphic to H. Whenever g € G and A C G, then < A > denotes the subgroup of G
generated by A, denote < {g} > simply by < g >. We recall that w is the cardinality of IN (the set of all natural
numbers {1,2,...}) and c is the cardinality of R (the set of all real numbers). We denote the cardinality of
A by |A|. For cardinal numbers (real numbers) a, § we denote the maximum of {«, f} by max(a, ) also we
denote the minimum of {«, 8} by min(«, f).

In addition for n € N, consider R"” under Euclidean norm. Also consider ! = {(x,y) e R : x> + y> = 1} asa
subspace of R? (or {¢"? : 6 € [0,2n]} as a subspace of C, the set of all complex numbers).

2. What is an aZarc?

The concept of alarcisa generalization of a—arc which is originated from [1] and then in [2]. However a
1-arc or briefly arc is a one to one map f : [0,1] — X.
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Definition 2.1. For nonzero cardinal number «, and ideal T on X, the continuous map f : Y — X is called an
aLmap if there exists A € T such that for all x € X \ A, |f~'(x)| < a + 1. In particular for infinite cardinal number
a, the continuous map f : Y — X is an aLmap if there exists A € T such that forall x € X \ A, |f ' (%)| < a.

We call aLmap f:10,1] = X, aLarc. We call oclmap f:10,1] = X with f(0) = f(1) =a, an aLloop with base
point a.

We use briefly terms a—map, a—arc, and a—loop respectively instead of a'@ map, a ©lare, and a@oop.

We want to study subgroups of m1(X) generated by path homotopy equivalence classes of a—loops and
aLloops for nonzero cardinal number a and ideal I on X. We pay special attention to aZloops for a € {w, c}
and I € {P;,(X), {@}}. We use the following spaces and loops in most counterexamples in this text.

Convention 2.2. Suppose p € N, let
X = fzemslinen0ep)
n n

(= U {(X, YeER : ¥+ (y— %)2 = %}) (Hawaiian earring)
nelN

VRS U{2n+1X+_ neNpUlo1]
Z = {1e2m<x +h ! k kel plxe [0,1]}
W {2n+1 o0y zniH neN,0€011}u[0,1]
{%ez’“t tefo,11)
{(x,y €R?:x +(y——)2 1})

1 .
(circle with radius - and center %(n € IN))

1 1 1
— 3..2 _te_ L 1
Vo= U{(x,y,z)e]R.y +e-3) n2/\0SxSn}
nelN
moreover define fx :[0,1] = X, fy :[0,1] = Y and fz : [0,1] —» Z with:
162ni(n(n+1)x—n7—)+ = 1 <x< 1,I’l€N,
fr(x) = n n n+l n
0 x=0,
fx(@xnn+1)-(2n+1)) 1 2n+1 1
— Ty < =
2n+l T dn(n +1) =rs 2n'n€N'
1 2n+1
2n+1)(2n - 1)x + (2 — 2n) —<x<—n€NN,
fy(x) — 2(1’1 + 1) 41’1(1/1 + 1)
2-2x l<x<1
2 - - 7
0 x=0,
and
i k-1 k
fz(x) = 2”’(”" Do (= <x<Ske(l,.p).
ko op p
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Note: Consider 0 as the base point of all spaces in this convention

Y

(Figure of X = fx[0,1]) (Fzgure ofy fyl0,1])

0l

(Figure of W) (Figure of V)

Example 2.3. 1) The map fx : [0,1] — X is an a—loop if and only if @ > w, since:

|fX1<x>|={ Loy

In addition for each nonzero cardinal number o and ideal T on X with {0} € I, fx : [0,1] — X is an aLloop.
2) The map fy : [0,1] — Y is an aLloop if and only if “a > ©” or “a > 2and {1 : n € N} € I”, since:

w XE€ { :n €N},
fy Y @l = { otherwise.

In particular fy :[0,1] - Y isan awloop ifand only if a > c.
3) The map fz :[0,1] — Zis an a—loop if and only if « > p. In addition for all nonzero cardinal number o and ideal
TonXwith{0} eI, fx:[0,1] = Xisan azloop.

3. New subgroups

In this section we introduce T7(X) as a subgroup of 711 (X).

We recall that for continuous maps f,g : [0,1] — X with f(1) = g(0), we have f +g : [0,1] — X with
frg(t) = f2t) fort € [0,1] and f * g(t) = g(2t — 1) for t € [3,1]. If f : [0,1] — X is a continuous map, [f]
denotes its path homotopy equivalence class, where loops f, g : [0,1] — X with same base point a are path
homotopic (or [f] = [g]) if there exists continuous map F : [0,1] X [0, 1] — X with F(s,0) = f(s), F(s, 1) = g(s)
and F(0,s) = F(1,s) = a for all s € [0, 1].

In the rest of this paper simply we use term “homotopy” or “homotopic” respectively instead of “path
homotopy” or “path homotopic”.

In addition for two loops f, g : [0, 1] — X with same base point a, we define [f]+[g] as [f *g]. The class of all
homotopy equivalence classes of loops with base point a under operation * is a group which is denoted by
111(X, a). Whenever X is arc connected and a,b € X we have 111(X, a) = 711(X, b) so 711(X, a) is denoted simply
by 11(X).
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Definition 3.1. For nonzero cardinal number a and ideal 1 by B7(X, a) we mean subgroup of 11(X, a) generated by
homotopy classes of aLloops with base point a.

Theorem 3.2. For infinite cardinal number a and ideal T on X, if f,g : [0,1] — X are aarcs with f(1) = g(0),
then f » g :[0,1] = Xis an aZarc. Moreover f : [0,1] — X with f(t) = f(1 — t) is an aLarc too.
Proof. Use the fact that forallx € X, (f*g)"!(x) = ( f‘l(x) )U(3g71(x)+ 1), thus I(f*g)‘l(x)l <1 ) +1g7 ).
Also note to the fact that for all x € X we have f (x) —t:te f(x)}, hence | f (x)I =) O
Theorem 3.3. For infinite cardinal number a, a € X and ideal 1 on X, we have:

PrX,a) =A{[f]: f:10,1] - Xisan aLloop with base point a}.

Proof. Choose b € X\ {a}. There exists a contmuous one toonemap g : [0,1] = X with g(0) = aand ¢(1) =
Using Theorem 3.2, g#7 : [0,1] — X is an aZarc. Thus [g+g] € {[f]: f:[0,1] = X is an aZloop with base

pointa}, and {[f] : f:[0,1] = Xis anafloop with base pointa} # @. Using Theorem 3.2, {[f]: f:[0,1] = X
is an aZloop with base point a} is a subgroup of 7t1(X, a) which completes the proof. [

Note 3.4. Using Theorem 3.3 for a € X and infinite cardinal number o, for the loop g : [0, 1] — X with base point a,
[g] € BLH(X, a) if and only if there exists an aLloop f:10,1] — X with base point a homotopic to g : [0,1] — X.

Theorem 3.5. Foralla,b € X, ideal T on X and infinite a, ‘B“ (X,a) and ‘JS“ (X, b) are isomorphic groups.

Proof Fora # b, suppose f :10,1] — Xis a continuous one to one map (1-arc) such that f(0) =aand f(1) =
andf [0,1] = Xis f(f) = f(1 —t) for all t € [0,1]. Using Theorem 3.2, g : [0,1] — X is an aZarc if and only
if f g=*f:[0,1] = Xisan aLarc too, which leads to the desired result (note: Q: ‘Bf;(X, a) — ‘Bi';(X, b), with
@([g]) = [f * g * f]is an isomorphism). []

By the following counterexample the infiniteness of & in Theorem 3.5 is essential.

Counterexample 3.6. Consider X = $' U [1,2] as a subspace of R?) (X and 9 are homeomorph). If a € $' and
be(l, 2] then:

1. Pf (X)(X a) = m(X,a) =

2. ‘Bpf (X)(X, b) = {e} (where e is the identity of 71(X, D)).

In particular ‘B;,f (X)(X, a) and ‘B;) _ (X)(X, b) are nonisomorphic (although X is linear connected).

Proof. (1) By definition ‘B (X)(X a) € mi(X,a)(= Z). On the other hand f : [0,1] » X is a 1205

toe2mit
(X, a) =< [f] >C ‘B;,f (X)(X, a), which completes the proof.
(2) Suppose f : [0,1] = X with f(0) = f(1) = bis a continuous map. If f # b, then there exists ¢ € [1,2] \ {b}
with ¢ = inf[0, 1]. Lets := min(c, b) and  := max(c, b). Forall y € (s, t) we have |f'(y)| > 2, and (s, t) ¢ me(X)

(since (s, t) is infinite). Therefore f is not a 1wloop, and the constant loop b is the unique 1-+—— Fn) —loop
with base point b, thus ‘B;,F X b) ={bl}={¢ O

arc and

Definition 3.7. Regarding Theorem 3.5 for infinite cardinal number o and ideal I on X, we denote BL(X, a) simply
by PL(X) (subgroup of 1(X) generated by homotopy classes of aLloops). We denote Pl (X) by B*(X) (subgroup of
nl(X) generated by homotopy classes of a—loops).

So for infinite cardinal number o we have (use Note 3.4 and above discussion):

YX) ={[f]: f:10,1] = X is an aLloop},
and
PAX) ={[f]: f:10,1] —» X is an a—loop}.
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4. A useful remark

For the remain of this text we use the following useful convention.

Convention 4.1. Suppose X and Y are closed subspaces of Z such that X N'Y = {t}. For f : [0,1] = X U Y define:

_ ) f feX,
fX(x)_{t ey,

Remark 4.2. Suppose X and Y are closed (linear connected) subspaces of Z such that X 'Y = {t}. For loops
g,h :[0,1] = X U Y with base point t we have:

A. If g,h : [0,1] = X U Y are homotopic loops, then g%,h* : [0,1] — X are homotopic loops (therefore
g%, h% : [0,1] = X U Y are homotopic too).

B. Let g[0,1] € X and h[0,1] C Y. g,k : [0,1] — X U Y are homotopic if and only if they are null-homotopic.
C. Let g[0,1] U K[0,1] € X. g,h : [0,1] — X U Y are homotopic if and only if g, h : [0,1] — X are homotopic.

D. mi(X,t) and 11(Y, t) are subgroups of m1(X U Y, t) and m1(X, t) N m1(Y, t) = {[t]} where t denotes the constant
arc with value t (as a matter of fact the map 11(X,t) = m1(X U Y, t) is a group embedding).
[f1-1f1

Proof. (A) Suppose g,h : [0,1] — X U Y are homotopic loops, then there exists a continuous map F :
[0,1] x [0,1] — X U Y such that F(s,0) = g(s), F(s,1) = h(s) and F(0,s) = F(1,s) = t for all s € [0, 1]. Define
continuous map P : XUY — X with P(z) = zforz € Xand P(z) = tforz € Y. Themap PoF : [0,1]X[0,1] = X
is continuous, moreover P o F(s,0) = g%(s), P o F(s,1) = h*(s) and P o F(1,s) = Po F(0,s) = t for all s € [0,1],
thus gX, hX:[0,1] = XU Y are homotopic.

(B) If g,h : [0,1] — X U Y are homotopic, then by (A), gX,hX :[0,1] = X U Y are homotopic. On the other
hand g% = t (constant function t) and h* = h, since [0, 1] € X and h[0,1] C Y. Therefore  : [0,1] -» X U Y
is null homotopic which leads to the desired result. [

5. Primary properties of ‘B;(X)s

In this section we study primary properties of B7(X)s. It is wellknown that @ : m1(X, x0) X 71 (Y, yo) —
(X X Y, (xo, yo)) with ®([f],[g]) = [(f, g)] is an isomorphism (for example see [5, Theorem 60.1]) where
for f : [0,1] —» X and g : [0,1] — Y we have (f,9) : [0,1] —» X x Y with (f, g)(f) = (f(t), g()) (¢t € [0,1]).
For transfinite cardinal numbers a, 3, ideal 7 on X and ideal J on Y we prove (D(“J.?i';(X, X0) X “I.?g(Y, Yo)) C

iBmax(a,ﬁ)

fa (X XY, (x0, Y0)), hence * “I(X, X0) X ‘Bﬁj(Y, Yo) is isomorphic to a subgroup of ‘Bmax(“’ﬁ)(X XY, (x0, Y0))-

Ixg

Theorem 5.1. For topological spaces X and Y we have (we recall that X and Y are arc connected locally compact
Hausdorff topological spaces with at least two elements, moreover consider xg € X, and yy € Y):

1. For all a > ¢, nonzero  and ideal 1 on X we have BL(X) = m1(X) = SBEP(X)(X),

2. For nonzero cardinal numbers a, , xo € X, and ideals 1, on X we have:

Ifa < B, then ® 7(X,x0) € ‘B?(X, X0).

IfT €9, then PHX x0) € g(X, X0).

Therefore for infinite o we have (base point is xo, whenever it is necessary):

Ifa < B, then B&X) € P-(X).
IfTCJ, then BUX) € P (X);
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o P7,4(X) S PLX) NPLX).

3. For infinite cardinal numbers a, p and ideals I on X and J on Y we have

DPE(X, x0) X By (¥, y0) € By (X X Y, (x0, o)),

where I X [ is ideal on X XY generated by {AxB : A € I,B € J}and ©([f],[g]) = [(f, 9)] for loops f : [0,1] = X
and g :[0,1] = Y. Hence $(X) x B%(Y) is isomorphic to a subgroup of B (X x Y).
4. For infinite cardinal numbers «, B, ideal I on X, and isomorphism @ : m1(X) X m1(Y) = mi(X X Y) with

O([f1,[9D) = [(f, 9], we have:
a. D(PIX, x0) X 11 (Y, o)) € BT, i, (X X Y, (0, 10)),

b. O(PHX, x0) X PE(Y, yo)) € PF(X X Y, (x0, Yo));

c. O(P(X, x0) X PA(Y, yo)) € PP (X XY, (x0, o).

5. For infinite cardinal numbers o, B, ideal T on X, ideal S on Y, K :={AUB:AecI,Be J}ifXNY = {t}and
X, Y are (linear connected) closed subspaces of Z, then we have (note that K is an ideal on X U'Y) (see Convention 4.1

(D)):

a. PLXHBEYH S PRP XU Y,

b. PAX, HPF(Y, 1) € Pa@HX U Y, ).

Proof. (1) and (2) are clear by definition.

() If £ : [0,1] = X is an aZarc with base point xo and ¢ : [0,1] — Y is a fLarc with base point 1o, then there
exist A € 7 and B € J such that forall x € X\ Aand y € Y \ B we have |f}(x)| < a and |g7(y)| < B. For
h=(fg) :10,1] = XX Y with h(t) = (f(t), 9(t)) and (z, w) € (X X Y) \ (A X B) we have:

(zw)ye XXY)\(AXxB) = zeX\AVvweY\B

= '@l <aVvig@)<p
= |7z w) < min(f ()], l97 (w)]) < max(a, p)

therefore (f,g) : [0,1] —» X X Y is a max(a, ,B)Marc, and

O£, [91) = [(f, 9)] € BTy P (X XY, (x0, 90))

(4) (a) is a special case of item (3), since 71 (Y, o) = ‘B;‘)m(Y, Yo)-
For rest note that for all (x,y) € X X Y, continuous maps f : [0,1] — X, and g : [0,1] — Y we have
(f,9) 7 (x,y) = f1x) N g~ (y), thus |17 (x, )| < min(|f~1(x)], |97 (W)
(b) If f : [0,1] — X is an aZarc and g : [0,1] — Y is a p—arc, then for all (x,y) € X x Y we have
I(f, )72, )| < min(|f 1)1, 197 (W)D) < 1971 ()| < B. Therefore (f,g) : [0,1] = X X Y is a f—arc.

() If f:1[0,1] - X is an a—arc and g : [0,1] — Y is a B—arc, then for all (x,y) € X X Y we have
I(f, 9)"1(x, )| < min(|f~1(x)], |97 (y)]) < min(e, B). Therefore (f, g) : [0,1] = X X Y is a min(«, )—arc.

(5)Since P4 (X, 1) € P3(X, 1) € P “P(X, 1) ¢ PP (XUY, t) and similarly B’ (v, 1) € P “P(xuy, 1. O
Example 5.2 (P4(X) for some well-known spaces X). We may find the following easy examples:
1. It's evident that for any contractible space X, nonzero cardinal number a and ideal 1 on X, we have BL(X) = {e}.

2. Let X = {¢™ : 0 € [0,1]}(= S'). Then PUX) = m(X), for all @ > 2 and ideal T on X (since for
f:10,1] — 8! with f(t) = e*™ we have [f] € B*(S') € BUS') € m1(S') and [f] is a generator of T (8"),
thus B(8') = 11 (8") = Z).
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3. With a similar method described in item (2), for all a > 2 and ideal T on R? \ {0} (punctured space), we have
PHR*\ {0}) = i (R?\ {0}) = Z

4. Using (2) and a similar method described in Theorem 5.1 for all a > 2 and ideal T on T = §! X $! (Torus) we
have BL(T) = 711(T).

6. Some preliminaries on Hawaiian earring

In this section we bring some useful properties of Infinite earring (Hawaiian earring) (see [5, page 500,
Exercise 5] too)

Lemma 6.1. Ifloop f : [0,1] — $* is not null-homotopic and f(0) = f(1) = 1, then there exist a, b € [0, 1] such that
f(a,b) =S\ {1} and f(a) = f(b) = 1.

Proof. In the following proof for g : [u, v] — X with g, 41 : [0,1] = X we mean g, (t) = g(t(v —u) +u). Since
f:10,1] — S! is uniformly continuous,there exists ¢ > 0 such that for all s, t € [0, 1] with |s — | < € we have
f(s) = f(O] < 3.

Let T ={t€[0,1]: f(0) = f(t) = 1 and fjo, : [0,1] — S! is not null-homotopic}. We have T # @, since 1 € T.
Suppose T = inf(T). Since f is continuous and T C f~!(1), thus f(7) = 1. We claim that 7 € T.There exists
te Tsuchthat0<t-17 <¢, if r =t €T we are done, otherwise since fi4([0,1]) = fI7,t] C {x € Sl:x—1] =
lx — ()l < 3} € §'\ {1}, thus fi4 is null-homotopic. On the other hand [fjo,] = [fio,]] * [fir1] = [fio,] and
fi0,17 is not null-homotopic, which indicates T € T.

Let S ={s € [0,7] : f(s) = f(r) = 1 and f{sq) : [0,1] — S! is not null-homotopic}, so 0 € Sand S # @. let
o = sup(S). Similar to first part of proof, o € S. It is clear that ¢ < 7. Moreover [ fio]] = [fio,01] * [fis,11] and
using the way of choose of 7, fjo,] : [0,1] = $! is null-homotopic, thus [fjo«]] = [fis.;]] and fie : [0,1] — Slis
not null-homotopic.

Since fisq) : [0,1] = S! is not null-homotopic, f[o, 7] = fis.71([0,1]) = '

On the other hand if there exists C € (o, T) such that f(C) = 1. Respectively using the way of choose of t
and o, two maps fjo : [0,1] = $' and fic : [0,1] — §! are null-homotopic. Using [fio,.]]1 = [foal * Lfical,
f0,01[0,1] — sl s null-homotopic, which is a contradiction. Therefore for all C € (g, t) we have f(C) # 1,
which shows f(o,7) =S\ {1}. O

Lemma 6.2. If X = (S' — 1) U (8! + 1) (X and Figure 8 are homeomorph), p : [0,1] — X with p(t) = *™ — 1
for t € [0,3] and p(t) = —e*™* + 1 for t € [3,1], and loop f : [0,1] — X with f(0) = f(1) = 0 is homotopic
to p : [0, ] — X, then there exist a,b,c,d € [0,1] such that a < b < c < d, f(a) = f(b) = f(c) = f(d) =0,
f(a,b) = (8 = 1)\ {0} and f(c,d) = (S' + 1)\ {0}

Proof. Let:

1) = {f(t) fyest -1 psl_l(t)z{ p) p)es' ~1

otherwise 0 otherwise

otherwise 0 otherwise

) = {f(t) fhest+1 psm(t):{ p(H) p(H) €S +1

Two maps 1,081 1 [0,1] = S' — 1 are homotopic, since f,p : [0,1] — X are homotopic. Since

p §'-1 : [0,1] — 8! — 1 is not null-homotopic, by Lemma 6.1 there exists 4,b € [0,1] with fSl‘1 (a,b) =
(' - 1)\ }and f%1(a) = f¥-1(b) = 0. For all t € (a,b) we have f5'-1(t) # 0, therefore f(t) = f5'-1(f).
Thus f(a,b) = f5(a,b) = 8' =1\ {0}. Moreover f5 () = f&-1(b) = 0, thus f(a), f(b) € 8! + 1. Using
the continuity of f we have f(a), f(b) € f(a,b) = $! —1, therefore f(a), f(b) € S' =1 NS +1 = {0} and
f@a) = f(b) =0. Let:

Iy :={(a,b) € [0,11%[0,1] : f(a,b) = (S — 1)\ {0}, f(a) = f(b) =
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I = {(a,b) € [0,1] X [0,1] : f(a,b) = (8" + 1)\ {0}, f(a) = f(b) = O} .
By the above discussion, I'; # @. Itis evident that for all distinct (4, b), (a’, V") € I'; wehave (a,0)N(a’, V') = @
Since f : [0,1] — X is uniformly continuous there exists 6 > 0 such that:

Yu,ve€[0,1] (u-vl<0o=|f(u) - f(v)|<1)
which leads to:
Vu,0€[0,1] (u—v/<6= f(u,0) 8 -1)

so for all (a,b) e I'y we have b —a > 6.

Thus I’y is finite, since I'; is a nonempty collection of disjoint subintervals of [0, 1] with b —a > ¢ for all
(a,b) eTy.

In a similar way I'; is a nonempty finite collection of disjoint subintervals of [0, 1].

It is evident that for all (a,b) € I'1 and (c,d) € T, we have (a,b) N (c,d) # @ (since f(a,b) N f(c,d) =
(' =1) NS+ 1))\ {0} = @), thereforea <b<c<dorc<d<a<bh.

If there exist (a,b) € I'1 and (c,d) € I'; witha < b < ¢ < d, we are done, otherwise suppose for all (a,b) € I';
and (c,d) e, wehavec <d <a<b. Let

rl = {(allbl)l"‘l(aﬂl bn)} 7 FZ = {(Clldl)/'- '/(Cmrdm)} .
and suppose
01<d1§C2<d2S"'SCm<dea1<b1Sﬂz<b2§"'§ﬂn<bn

Using the same notations as in Lemma 6.1, if d; < ¢, then fi, ) : [0,1] — X is null-homotopic (use
Lemma 6.1 and consider I't, I'2). if p € [0, 1] suppose f,, : [0,1] — X is constant 0 function. So

Joes fiaeals fids.csty - o fidus enls fidan)s fiorants fiovaal Sy 2 10,11 = X
are null-homotopic. Thus
£ = Uteranl * - # Uienut] * o] # - * Ufian,]
For all i, j we have f, 4] € 8! +1and f[u,,bj] C S! — 1. thus there exist Gis -1 GmsP1s- - -, Pn = 0 with
[fie,aa] = [y l® (U< i < m) and [fis 1] = [yl (1< j < )

we recall that 711(X) = 71(S' = 1) * (S + 1) =< [pyo 111 > * < [py1 111 >, by van Kampen Theorem). Thus
Pro,] P y p

[po) * ol = [p] = [f1 = [p[%lu]q1+...+qm . [p[ol%]]l)1+...+p”
which is a contradiction since 771(X) is nonabelian free group over two generators [p, ;] and [p;1 1. O

Lemma 6.3. If loop f : [0,1] = Z with f(0) = f(1) = 0 is homotopic to fz : [0,1] — Z, then there exist
s, t1,82,t,...,8p,tp € [0,1] such that s1 < t; < 8o < tp < ... < 55 < 1y, f(s;) = f(t;)) = 0, f(sj,t)) =
{§e2m'<x—f—i> +4:xe[0,1)\(0) forall j € (1,...,p).

Proof. Use the same method described in Lemma 6.2 and note to the fact that 771 (<) is nonabelian free group
over p generators [h[ 1k ]] fork =1,...,p where h := fz and using the notations of Lemma 6.1. O
pp

Note 6.4. Consider loops f,g : [0,1] — X such that f(0) = f(1) = g(0) = g(1) = 0. For nonempty subset ' of N
and h : [0,1] = X let:

| h(x) h(x) e U{C, : n €T},
hr(x)‘{o h(x) € (X\ U(Cy : n € T}) U {0}

(As a matter of fact we denote hV\C"<) (see Convention 4.1) briefly by h")
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1. If f,g : [0,1] — X are homotopic, then f*,g" : [0,1] — U{C, : n € T} are homotopic (equivalently
f1, 4" 1 [0,1] = X are homotopic).

2. Forloop h : [0,1] — X with h(0) = k(1) = 0 define:
A(h) := {n € N : h" :[0,1] — C, is not null — homotopic} .
Then A(h) is a subset of:
{neIN:3a,bel0,1] (h(a,b) = C,\ {0} A h(a) = h(b) =0)}.
Moreover if f, g : [0,1] — X are homotopic, then A(f) = A(g).
3. For loop h : [0,1] = X with h(0) = h(1) = 0, we have |h=1(0)| > |A(h)|.
4. If [f] € P(X), then |A(f)| < w and A(f) is finite.
Proof.

1. Note to the fact that A = |J{C, : n € T} and B = (X \ A) U {0} are closed (linear connected) subsets of
X. Moreover A N B = {0}. Now use the same argument as in Convention 4.1.

2. If n € A(h), then i : [0,1] — C, is not null-homotopic. By Lemma 6.1 there exist a,b € [0,1] with
h(a) = h(b) = 0 and h(a, b) = C,, \ {0}. Use item (1) to complete the proof.

3. By (2) for all n € A(h) there exists a,, b, € [0,1] with h(a,, b,) = C,, \ {0} and h(a,) = h(b,) = 0. We claim
that A(h) — h~1(0) is one to one. Suppose n # m and n,m € A(h). By

nea,

h(an/ bn) N h(umr bm) = (Cn \ {0}) N (Cm \ {O}) =
we have (a,, b,,) N (ay, by) = @, thus a,, # ay,.

4. If [f] € P“(X), then by Note 3.4 there exists w—loop k : [0,1] — X with k(0) = k(1) = 0 homotopic to
f:10,1] - X. By (3) we have |A(k)| < [k"}(0)] < w. By item (2) we have A(f) = A(k) which leads to
A = 1AK)] < k7(0)] < @.

|

Note 6.5. For (m,n) € N x N and loop h : [0,1] — Y with base point 0, define:

1 1
W) h() € 5 Cot
h(m'")(t) -
1 1 1
— k()¢ 5 Gt

(As a matter of fact we denote h7T S (see Convention 4.1) briefly by h"")
Moreover for loop h : [0,1] — Y we define:

B(h) := {(m n) e NxIN: 1™ :[0,1] » —C, + % isnot null — homotopic} ,

2m+1

then B(h) is a subset of:

{(m,n) € NxN:3a,be[0,1] (h(a,b) = (2,,1?

1 1 1
Cut )\ o AB@ = ) = =)
and for loops f, g : [0,1] = Y with f(0) = f(1) = g(0) = g(1) = 0, we have:

1. If f,9 : [0,1] = Y are homotopic, then B(f) = B(g).
2. For m € N, we have:
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a. |f7'G)l 2 l{n € N : (m,n) € B(f)}.
b. If[f] € BU(Y), then |{n € N : (m,n) € B(f)}| < w.

c. If I'is anideal on Y and [f] € B (Y), then there exists F € I such that for all k € N with 1 € Y\ F, we have
{n € N : (k,n) € B(f)}] < w.

Proof. 1f (m,n) € B(h), then h™™ : [0,1] — Zn}ﬂ C, + - is not null -homotopic, thus by Lemma 6.1 there exist
aberhmthb)_Qmﬁf+%)Hmzmdmm hw)

1) Suppose f,g:[0,1] - Y are homotopic For m,n € N, two sets 51xCy + + and (Y \ (55Cn + 3)) U (L} are
closed (linear) subsets of Y with (5 Cpy + ) N((Y \ (57 Fo Cu+1)U{L}) = {L}. Thus using the same argument
as in Convention 4.1 (note to the fact that base point in the proof of Convention 4.1 is not important) two
maps £, gm" :[0,1] — 51:C, + 1 are homotopic, therefore (m,n) € B(f) if and only if (m, 1) € B(g). So

2m+l
B(f) = B(9)-
2-a) For all (m, n) € B(f) there exists a,u), byn,ny € [0, 1] with f(@gm,ny, bonny) = ( 2,,}“ Co+ L )\ }and f(agmn)) =

f(bonmy) = +. We claim that
1,1
(nelN:(m,n)eB(f)} = f (%)
N=Am,n)

is one to one. Suppose n # k and (m, k), (m, n) € B(f). By

F@gn,ny, bmmy) O f(@gn oy, i)

1 1 1
= ((ch + a)\{a})n((zmlck"' —) \{ }) @

we have (@gun), banm) N @iy, Donjo) = D, thus g # Agn k. Therefore |[f71(L)] > |{n € N : (m,n) € B(f)}|
2-b) This item is a special case of (c) for 1 = {@}.

2-c) If [f] € qs;’(y ), then by Note 3.4 there exists a)iloop h:[0,1] = Y homotopic to f : [0,1] — VY also we
may suppose h(0) = h(1) = 0. Thereexists F € I suchthatforallz € ¥\Fwehave [i"!(z)| < w+1. Inparticular

for all k € IN with ]l( € Y\ F we have |h‘1(%)| < w,which leads to |{n € N : (k,n) € B(h)}| < |h‘1(%)| < w by (a).
Using (1) we have B(f) = B(h), thus {n e N : (k,n) e Bh)}| =[{n e N : (k,n) e B(f )}l <w. O

7. PB(X) is a proper subset of 11(X)

Here we want to prove 711(X) \ ¥°(X) # @ step by step.
Consider the following conventions in this section:
Usually in order to construct Cantor set, one may remove the following intervals step by step from [0, 1]:

(‘%/d%) - (%/% 7

(C§,d1) =33, @B =011,

(C}l/d}l)_(:S 13) (C%rd%)_(§+%r§+%)r /(E 1rd% 1)_(1_%11_%)1

SoM = [0,1]1\ U{(c,, d}) : n € N,i € {1,...,2""1}} is Cantor set. Now suppose:
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(alrbl) = (C%/ d%) ’

(a2,b2) = (c3,d3) , (a3, b3) = (c3,d3),

’ n-1 on-1
(a1, bp) = (6, ), (@141, bpm40) = (6, ), o, (@2, b)) = (5, d7 ),

Define g : [0,1] — X with:

]_ - x—ap l
_€2ﬂlbn,an + — X € (an, bn)/n € IN
n n
g(x) =
0 otherwise

Suppose the loops g, f : [0,1] — X are homotopic with f(0) = f(1) = 0. Consider the above mentioned f
and g in this section.
It is well-known that (see [6]):

ooxn.
Mz{z{g.\!neﬂ\l xne{O,Z}}.

[e9]

For x = 2 ;C—Z € M with x,, € {0,2} (n € IN). For m € IN choose 7}, € IN such that:

n=1

- minf{ci, :1<i<2™ 1, x<c} x,=0
"7 maxfch, 1 1<i<2md <x} x,=2

also let

Ef:=neN:x,=0}, F:={neN:x, =2}.
Finally consider:

K:={x € M : E* and F* are infinite} .

We have the following sequel of lemmas and notes.

Lemma 7.1. Forx = Z ;C—Z € M with x, € {0,2} , we have:

n=1
k k

x, 1 X, 2

E ?7 + ? x =0, 3_11 3k Xk 0,

ar =4 " and by =4 " *)

Xn 1 Xn
3_" - § Xk = 2, 3_71 X = 2

n=1 n=1

And:

2 2
|2 — x| < x and  |byy — x| < = (forallk € IN). **
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Proof. For each k € IN suppose

k
Ak:{ %5%/---/%6{0/2}}/

n=1

then we may suppose Ay = {w], ..., w?} with w! <w? <--- <w?". Itis easy to see that:

2 1
1_ 1 4 _ 1, L 1_ .2
Ck wk+Z3n_wk+3k , d = w
n2k+12 1
2_ .3 2 _ 3.1 2 _ 4
Ck_wk+23n_wk+3k ;=
n>k+1

. . 2 . 1 . .
C;(ZZUZl_l-i- Z 3_ :w21—1+_ , d;(:wZz

k 2 k 1 k-1 k
=w2‘1+23—:w2‘1+— , A2 =u?

n>k+1

so (c,di) = (X' + &, wk).
X .
Now for x = Z 3—2 € M with x1,x,,... € {0,2} we have:
nelN

e For p € N we have x, = 0 and x,41 = xp2 = -+ = 2 if and only if there exists i € {1,...,2°71} with
x = c;,.

e For p € N we have x, = 2 and X1 = Xpsp = --- = 0 if and only if there exists i € {1,...,2""'} with
x=d.
P

° xeKifandonlyifforallpE]Nwehavepqé{c;:1si$2”_1}u{d§,:1SiSZP_l}(andxeM).

k
in other words if w}( = Z ;C—:, then i = 2j — 1 is odd and

k
X 1
In particular if x; = 0, then a,: = Z 3_Z + 7
n=1 n=1
k
2j-1 1 X 1

k
_ o . _ Xn . .
P ¥ 3 + ¥ c,- Also if x; = 2, then E T € Ay and there exists even i = 2j such that
n=1 n=1

ani =w

k
Xn _ 2§ b = 2j
30 = W, moreover by = wi’.
n=1
complete the proof:

k
n
= Lagn

n=1

So we have (*), moreover considering the following inequalities will

(e8] (o8]

n=k+1 n=k+1

=

an; —X| <
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and:
k-1
X, 2
b — x| = 237 Tk
n=1
2 — Xk i Xn
— - on
3 n=k+1 3
00 xn (o] 2 ~
Lyl iy y 1
— n=k+1 o n=k+1
2 Xy 2
" Lmsy  u=0
n=k+1

which shows (**). O

Lemma 7.2. Let x = Z % € M with x,, € {0,2} (n € IN), then we have:
nelN

1. lima, = lim b,x = x.

k—ooco K k—oo K
2. Fori<jifxi= x; =0, then x < A < bn}t <ap < bn;
3. Fori<jifx;=xj=2,then (S bnf <ay < b,,.jy <x

Proof. Use (**) in Lemma 7.1 in order to prove (1).
2) Suppose i < j and x; = x; = 0, then by (*) in Lemma 7.1 we have:

n=1 n= n=i+1 n=1 n=i+1
-1
X y X, 2 / X, 2 / x, 1
> — + —+—.=E —+—,=bny>anv=z —+ =
" no3 3" 3 i i 3n 3

3) Use a similar method described in the proof of (2), to prove (3). O

Lemma 7.3. There exists a sequence ((pn, gn) : 1 € IN) such that for all n,m € IN we have:

e 0<p,<qy S1,f(r7n,l7n)=Cn\{0}ﬂ”df(r7n)=f(%)=0;

o ifa, <b, <ay <by, thenp, < gy, < pm < G-

Proof. For all n € N, by Note 6.4 we have f, 4" : [0,1] — C, are homotopic loops, therefore f :
[0,1] — C, is not null-homotopic. By Lemma 6.1 there exist 4,b € [0,1] with f{”}(a, b) = C, \ {0} and
@) = f"i(b) = 0, therefore f(a,b) = C, \ {0} and f(a) = f(b) = 0. On the other hand f : [0,1] — X is
uniformly continuous, thus

Ly :={(a,b) € [0,1] X [0,1] : f(a,b) = C, \ {0}, f(a) = f(b) = 0}

is a finite nonempty set. For k € IN, by considering f* : [0,1] — C; U --- U Ck, Note 6.4 and Lemma 6.3
there exist (uq,v1) € I'y, ..., (g, ;) € Ty such thatifa; < b; < aj < b]', thenu; < v; < uj <v;j foralli,j ell,... k}.
Using the above mentioned note and finiteness of I';, there exists (p1,41) € I'1 such that sup{k € IN : there



F. Ayatollah Zadeh Shirazi et al. / Filomat 34:5 (2020), 1403-1429 1417

exist up, vp, U3, vs, ..., g, vk € [0,1] such that for u; = p;y and vq = gy and all i, j € {1,...,k} we have (u;, v;) € T;
and if a; < b; <aj <b]-,thenui <0 2U;j< Z)]'} = o0.

Form € Nif (p1,91) € I'1, ..., (Pm, gm) € I'y aresuch thatsupik € IN : there exist ty41, Ups1, U2, U2, - - -, Uk, Uk €
[0,1] such that for uy = p1,v1 = g1, U2 = P2, V2 = G2, ..., Uy = Pm,Um = qm for all i,j € {1,...,k} we have
(uj,v;) € Ty and if a; < b; < a; < bj, then u; < v; < u; < vj} = oco. Since Iy is finite, there exists
(Pm+1,Gm+1) € Tme1 such that sup{k € IN : there exist Uy+2, U2, Um+3, Ums3, - - -, Uk, Uk € [0,1] such that for
U =P1,01 =q1,U2 = P2, 02 = G2, .., Ul = Pm+1, Um+1 = Gme1 foralli, j € {1,...,k} we have (u;,v;) € I'; and if
a; < b; <aj <b]-,thenu1- <0 S Uj <Z)]‘} = oo.

The sequence ((pn, g,) : n € IN) is our desired sequence. [

Lemma 7.4. Let x = Z % € K(c M) with x,, € {0,2} (n € IN), and
nelN

Ef=mnelN:x,=0}={u:kelN},
FF=nelN:x,=2}={v:keN}

such that u; < up < --- and vy < vy < ---, and consider the sequence ((pn,qn) : n € IN) as in Lemma 7.3, then we

have:

1. The sequences {a,: :k € N} and tkelN
}

{ { are strictly decreasing to x.
. The sequences {a,: :k € N} and {b,x :k €N
{ {
{

are strictly increasing to x.
are strictly decreasing.
are strictly increasing.

—_ =

2
3. The sequences pnu :k € N} and q tkeN
4. The sequences {pn» k € N} and qn» keIN
5. lim pyx = hm 0 G, < lim p: = hm 0 G, -

k—co k—oo Uk

Proof.
Use Lemma 7.2 in order to prove (1) and (2).
3) By Lemma 7.2 (2), for all k € N we have

—_— =

gy <bpr <ap <by,

k41

which leads to Py, <Gmy <Pmy <4,

g

4) Lemma 7.2 (3), for all k £ IN we have

Lln;k < bn«;k < an;kﬂ < bnx ,

Uk+1

which leads to py: < quwy <pur = <{u; -

5) Using (3) and (4), we have ]}ng puy = ]}an}o Gy, and ]}1_)r£10 P = I}l_)rg qnz - On the other hand for all k € N we

have gz < b”ék <x<ag < b”ﬁk’ thus
Py, < Gny < Pm < qn; ,
which leads to I}l_)n; Pmy, < I}l_)n; Py - O
Lemma 7.5. For x = Z ;C—Z € Kwithx, € {0,2}and EX ={neN:x, =0} ={up : ke N} withuy <up < ---

nelN
under the same notations as in Lemma 7.3, by Lemma 7.4, {p; - k € N} is an strictly decreasing sequence (in [0,1]).

Let n(x) = lim pyx , then n : K — [0, 1] is strictly increasing, and for all x € K we have f(n(x)) =0
n 0 P n Y 8 n

Proof. Consider x, y € K with x < y. Suppose x = 3—n andy = Z with x,,, y, € {0,2} for alln € IN. Let
nelN nEIN

EfE=mnelN:x,=0}={u:kelN},
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EV={neN:y,=0}={u ke N},
with
up <up <--- and wup<uy<--

By Lemma7.4 (1), {ay; : k € N}is astrictly decreasing sequence to x, and {a,r, : k € N}is a strictly decreasing
Ilk
sequence to y. Since x < y, there exists m € IN such that

< e P < e
xs < an;mﬂ < anf‘mﬂ < anﬁ”” < y - < anzl +2 < ani:’ +1 < ani;’/n '
n m:

Thus

X S ...<anx

X
n
Um+2 Um+2

< Apx < bnx <y < bnx
Um+1 U4 um um

< <---<ay <by <ay <by <ay <by .
n n’, n n’, n n

7 ’ ’ ’
u u u u u u
m+2 m+2 m+1 m+1 m m

Using Lemma 7.3 we have:

< P

e < x < gux < x < (x < (x
pn"n1+2 qn“WHZ pn“nx+l qn”nH—l tm qn“'”

S SPe, <Aw, <P, <4w, <P, <4 -
T

m+2 m+2 m+1 m+1 t m

Therefore

@) = hm puy <pu; <pw, < limp, =n(y),
(o9 —00 llk

Um+1 tm

and 1 : K — [0,1] is strictly increasing. Since f(pnﬁk) = 0 for all k € IN and f is continuous, we have
f(@))=0. O
Lemma 7.6. |f~(0)| > cand f is not a c—arc.

Proof. Consider 17: K — [0,1] as in Lemma 7.5. By Lemma 7.5 we have | f~(0)| > [(K)| and by Lemma 7.4 7
is one to one, therefore [1(K)| = |K| = c. Thus |f~!(0)| > cand f is nota c—arc. [

Theorem 7.7. We have
PEX) € T(X), By (X) € BUX),
PEX) C P o (X) and B (X) € BX)

Proof. Using Note 3.4, and Lemma 7.6, [g] ¢ B(X), thus P(X) € m1(X). Using [g] € * ;;fm(x)(X) shows
‘IB;‘;fm(X)(X) Z P(X). Also [g] € P(X) \ ‘B;‘;MX)(X), thus B¥(X) is a proper subgroup of ‘B;‘;ﬂn(x)(z\’). Using

[g] € ‘;ﬁn(x)(/\’) \ P¢(X) will complete the proof. [J

8. ¢ (Y) is a proper subset of 71; (V)

Prin(Y)

In this section we prove 11(Y) \ ¢ ;)f W) (Y) # @. We use the same notations as in Section 7.
Define G : [0,1] — Y with:

gdxnn+1)-(2n+1)) 1 2n+1 1

= — _<x<—,neN,
21+l T 4n(n+1)_x_2n "
2n+1
2+ 1)2n—-1x+ (2 -2 <x< ,nelN,
_ | 2naD@n=Dx+2=2m)  Fomey <xs pay "
G(x) =
2—-2x ! <x<1
2 = =1,
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where g : [0,1] — X as in section 7 is:

1 i
znlhn—ﬂn + — X € (an, bn),n € N 7
n
g(x) =
0 otherwise .

Lemma 8.1. Let K, G : [0,1] — Y are homotopic and m € IN, then IK‘l(%)l =c.

Proof. Choose 0 € (=1 + 515 2,,,H) Consider i, h : [0,1] — Y with h(x) = Ox and h(x) = 6(1 — x). Since

mil T
K,G : [0,1] — Y are path homotopic with base point 0, 71+ K+ h,h G+ I : [0,1] — Y are path homotopic
with base point 6. Using Convention 4.1 two maps

(1 K« )\ VY20 (o G o p)l <200 10 1] — {(x,y) € Y : x > 6}
are path homotopic with base point 0. Let
— (E* K * h)[(x,y)ey:xzﬂ} and Gl — (E e h){(x,y)ey:xze] )

Ifm=11letK, = K; and G, = G;.
If m > 1, choose u € (% L ) Consider hl,h1 [0,1] —» VY with hy(x) = (u—0O)x + 0 and

2 1 o
I (x) = (y 0)(1 — x) + 6. Since K3, G : [0,1] = {(x, y) € Y : x > 6} are path homotopic with base point 6,
h1 * Ky *hl,hl +Gi+hy 1 [0,1] = {(x, y) € Y : x > O} are path homotopic with base point u. Using Convention 4.1
two maps (J1; = Ky = hp){@0Y0<xstl and (b « Gy = by ){@0<Y0=x<u1) from [0,1] to {(x, y) € Y : 6 < x < u} are path
homotopic with base point yi. Let hp(x) = (1 — p)x + g and In(x) = (£ - p)(1 - x) + p for x € [0, 1].
Now let:

K, = ha # (g + Ky # )\ CDSY0S3sid gy > 1,
2T K m=1,

and

Gy = o % (% Gy x ) CVYO=S iy > 1,
5 Gl m=1 ’

also in order to be more convenient, whenever m = 1lety = 1. Then K>, G, : [0,1] = {(x,y) € Y : 6 < x < u}
(€ (ZW}TX + 1)U [6, u]) are path homotopic with base point 1. Hence there exists a continuous map
F:[0,1] x[0,1] = {(x,y) € ¥ : 6 < x < u} such that F(0,s) = F(1,s) = %,F(S, 0) = Ky(s) and F(s, 1) = Ga(s) for
alls € [0,1].

Define K,G : [0,1] » Xand ¥ : [0,1] X [0,1] —» X with:

2" (Ky(x) - 3) Ka(x) € 5im X + &,
‘K(x) = { iK1 2

—ie~ 2z +1i 0 <Kp(x)<u,

Gy () - )

G = { 2+(Gy(x) — %) Gy(x) € =X + L
—je— 2 +1 QSGz(x)Sy,

2" (E(s, 1) = 3) FGs,t) € mX + 5,

7:S,t = in s,t—%
&) {—ie“‘z”n O<Fs <.

Using the gluing lemma, K, G and ¥ are continuous, moreover by the above definition, for all s € [0, 1] wi
have:
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e the equality F(0,s) = F(1,s) = 1mp11es

1_1
G =)

F0,5) = F(1,5) = —ie" 5" 4+i=0,

e two equalities F(s, 0) = Ky(s) and F(s, 1) = Ga(s), imply ¥ (s,0) = K(s) and F (s, 1) = G(s).

So K,G;[0,1] — X are path homotopic with base point 0. One could verify that G, g : [0,1] — X are
homotopic, thus K,g : [0,1] — X are homotopic and by Lemma 7.6 in which we proved |f~1(0)| = ¢
whenever f, g : [0,1] — X are homotopic, we have [K~!(0)| > c. Since K~!(0) and K™'() differs in a finite
set, we have [K'(1)|=c. O

Theorem 8.2. We have [G] € 1(Y) \ ‘B;ﬁn(y) ).

Proof. 1f [G] € ¢ ;)f‘ (y)(y), then by Note 3.4, there exists cwloop K :[0,1] -» Y with K(0) = K(1) = 0

and [F] = [G]. Since G : [0,1] — Y is not null-homotopic, K : [0, 1] — VY is not constant. Thus there exists

k € N such that for all m > k we have l € K[0,1]. By Lemma 8.1, for all m > k we have IK‘l( )| = ¢, thus

{x € Y : [K"'(x)| £ c} is infinite, which is a contradiction, since K : [0,1] —» Y is a Frn¥)

Gl ¢ ‘Bp PR

loop Therefore

9. Main examples and counterexamples

Now we are ready to present examples.

Example 9.1. Using Note 6.4 (4), since A(fx)(= IN) is infinite, thus [fx] ¢ B*(X). On the other hand, using
Example 2.3 (1), fx : [0,1] = X is a c=loop, thus [fx] € P(X) \ B(X) and P (X) is a proper subgroup of P(X).
Therefore by Theorem 2.3, we have:

PUUX) € PUX) € Ti(X) .

Also using Theorem 2.3 again we have P (X) C ‘B“’ ( X)(X) which leads to B (X) B, o X)(X), since P o X)(X ) C
X)(X) We recall that according to Theorem 2. 3 w X)(X) ¢ PBE(X), which leads to B » X)(X) Z ‘B (X) since

k w )(X) - Pfin(X) (X)

The followmg Example deal with Theorem 5.1. We again recall that @ : 11(X) X m1(Y) — 71(X X Y), with
(1, [9) = [(f, 9)] (where (£, )(t) = (£(2), g(t)) (for t € [0,1] and loops f : [0,1] = X, g : [0,1] = Y))is a
group isomorphism. Moreover as it was proved in Theorem 5.1 (4c), for infinite cardinal number a we have
D(PH(X)XPA(Y)) € PH(XxY). In the following we bring an example in which @(P*(X) x P(Y)) # PH(XxY),
in particular we prove that @ [ypex)xpex): P(X) X PY(X) = PY(X x X) is a group monomorphism but it
is not an isomorphism.

Example 9.2. Define ]_CX [0,1] = X with ?X(t) = fx(1-1). (fX,]_CX) [0,1] = X X X is an w—arc since for all
(x,y) e Xx X, zfl(fX,fX) Yx,y)| > 1, thenx =y = 0. Moreover(fx,fx) 10,00c{te01]:t,1-tefl:ne
N} u{0,1} = {0, 1 }. Therefore for all (x,y) we have |( fX,fX) Yx,y) <3 < wand (fX,fX) [0,1] » X x X
is an w—arc. Thus CD ([fx] ,[fX = [(fx,fX) € PUX x X). Since © : m1(X) X m11(X) — m1(X X X) is a group
isomorphism, there exist unique ([g], [1]) € 11(X) X 71(X) with (D([g [H]) = [(fx, fX) therefore [g] = [fx] and
[H] = [fx]. Using Example 9.1, [ fx] ¢ B (X), so (Ig], [1]) = ([fx], [fX]) ¢ PY(X) X B(X). So (note: O is one to

one):

[(fx, f01 = D([g], [h]) = O(fx], [fx]) & DB (X) x B(X))
which shows O(P(X) X P2(X)) # BY(X x X).
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Example 9.3. Using the same notations as in Note 6.5 we have B(fy) = IN X IN, therefore for all m € IN, {n € IN :
(m,n) € B(fy)}(= N) is infinite. If F € Pfin(Y), then F is finite and there exists k € IN with % e Y\ F. Using
infiniteness of {n € IN : (k,n) € B(fy)} and Note 6.5 (c) we have [fy] ¢ ° ;jf_ (y)(y). On the other hand using
Example 2.3 (2), fy : [0,1] = Y is a c—loop, thus [ fy] € P(Y). So ;;f (y)(y) is a proper subgroup of B(Y) and
71(Y) (Hint: We can prove B (Y) is a proper subgroup of ‘B;ﬂn(y)(y), thus B (Y) C ‘B;")ﬁ”(y) (Y) c m(Y)).

Example 9.4. Map fz : [0,1] — Zis a p + 1—arc and it is not homotopic with any k—arc g : [0,1] — Z for
k < p+1. However for all @ > 2 and ideal 1 on Z we have BL(LZ) = m1(Z). For this aim, for all k € {1, ..., p}, define

fi: 10,11 = Zwith fi(t) = 1e¥™=D + L. Forall & > 2 and ideal I on Z, we have [f] € BX(Z) C BUZ) € (D).
Since {[f1], ..., [ fu]} generates m1(Z), thus ‘B (D) = m(2D).

Example 9.5. We recall that 11(Y) \ 337) (y)(y) # @ by Theorem 8.2. However [fy] € ‘B;,f_ (y)(ll) (since
fy :[0,1] = Y isa c—loop, thus [fy] € ‘B () One may show [fy] ¢ ‘B;‘;f_ w)\Y), thus:

‘B;J)ﬂ”(y)(y) < gB;)f,,,(y)(‘y) c nl(y) .

10. Main Table

Table 10.1. We have the following Table:
K

H $a’(X) me X)( ) SBC(X) me(X)( ) 7'[1(X)
%"’( ) c c c c c
%(X)( ) 9.1 c 9.1 C c
TX) 91 9.3 C c c
0™ 9.1 9.3 9.1 c c
0(X) 9.1 9.3 9.1 95 c

In the above table “C” means that in the corresponding case we have H C K.
In addition the number i.j means that in Example i.j there exists an example such that H ¢ K in the corresponding
case.

11. Two spaces having fundamental groups isomorphic to Hawaiian earring’s fundamental group

In this section we prove in a sequel of Lemmas, that X (Hawaiian earring) and ‘W are homeomorph with
two deformation retracts of V. Thus we have 71(X) = m1(V) = n1(‘W), which is important for our main
counterexamples in next section.

We recall sign map sgn : R — {1, 0} with sgn(x) = 7 for x # 0 and sgn(0) =

Note: In a connected topological space A, we call x € A a cut point of A 1f A \ {x} is disconnected. It is
evident that X and ‘W are not homeomorphic since X has just one cut point and ‘W has infinitely many cut
points.

Lemma 11.1. For x € [0, 1], the map @, : [0, %] - {we[-1,1]:x+w <0} = [-1,1]N (-0, —x] = [-1, —x] with:

() = { (1 -sinnt)(1 - 25) =1 £e10.D)
-2

is a homeomorphism.

Proof. Suppose z € (-1,1] and z + x < 0. The map ¢ : [0,3) — R with ¢(t) = (1 —sin(nt))(1 - %5 ) — 1
is continuous, moreover (0) = —x and lim ¢(f) = -1. By -1 < z < —x and the mean value theorem

t—)E

there exists ¢ € [0, 1) with ¢(f) = z. In addition @, Moo= - [0, 1) - Riis strictly decreasing, therefore
@, : [0, 3] = [-1, —x] is a bijective continuous map which completes the proof. [



F. Ayatollah Zadeh Shirazi et al. / Filomat 34:5 (2020), 1403-1429 1422

Lemma 11.2. Using the same notations as in Lemma 11.1, o {(x,w) € [0,1] x[-1,0] : x+ w < 0} — [0, %] with
D(x, w) = D7 (w) is continuious.

Proof. Using Lemma 11.1, @ {(x,w) € [0,1] x[-1,0] : x +w < 0} = [0, %] is well-defined. Let A := {(x,w) €

[0,1] x [-1,0] : x+ w < 0}. Consider (x,w) € A, s € [O,%], and sequence {(x,,w,) : n € IN} such that

lim x, = x, lim w, = w, lim a(xn,wn) =s. Lett = a(x, w) and t, = a(xn,wn) (n € N). We show s =1, i.e.
n—o00

n—o00 n—o0

Iim ®(x,, w,) = O(x, w).

n—oo

We have the following cases:
Case 1. s # 3. In this case we may suppose for all n € N we have t, # 1. For all n € N we have
wy, = Dy, (t,) = (1 — sin(nt,))(1 — Z5-) — 1 moreover:

n
ty

DO (t) = w=limw, = lim O, (t,)
. : xn
= lm(-sin(t))(1 - 775~ 1
. x —
= (I-sin(ms))(1 - 7757) = 1= 0u(s)

and s = t since @, is one to one according to Lemma 11.1.
Case 2. s = 1 and for infinitely many of ns we have t, = 1. In this case we may suppose for all n € N we
have t, = % Thus we have:
O (t) = w=limw, = lim &, (t,)
n—oo

n—00
1 1
= lim @, (=) = lim —1 = -1 = B(=)
n—oo "D n—oo 2

and s = % = t since @, is one to one according to Lemma 11.1.
Case 3. s = 1 and for infinitely many of ns we have t, # 1. In this case we may suppose for all n € N we
have t,, # % Thus we have:

Ot) = w= y}g{}o Wy = 321010 Dy, (En)
T o X _
= 1}1_1)1010(1 sin(7tt,,))(1 = Ztn) 1

1 - sin(nt,
= i D) @ — o v -1

n—oo 1-— t‘rl n—o0

= 0><(1—s—x)—1:—1:®x(%)

and s = % = t since @, is one to one according to Lemma 11.1.

Using the above cases s = t and D : {(x,w) € [0,1] X [-1,0] : x + w < 0} — [0, %] is continuous (otherwise
since [0, %] is compact, there exists (x, w) € A and sequence {(x,, wy) : n € N} converging to (x, w) such that
the sequence {a(xn,wn) :n € IN} converges to a point s € [0, %] \ {a(x, w))). O

Lemma 11.3. Consider X = {(x,y,2) e R®>: y* +z2 = 1,0 < x < 1} and @ as in Lemma 11.2. Let M; = {(x, y,2) €
X :x+2z <0}, themap Fy : [0,1] X My — X with F1(u, (x,y,2)) = (x',y’,2") for:

X =x+1-2(1 —x)@(x,z) - XU,
Z=Q1-wz-u,
Y =sgn(y) V1 -2z72,

is continuous.
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Proof. Let (u, (x,y,2)) € [0,1] x M;, since a(x, z) € [0, %], we have 1 — 25(95, z) € [0,1] which leads to (use
x, 1 €[0,1]):
0<x(1-p) x+(0—x)y§x’:x+(1—2(1—x)5(x,z)—x)y
x+(1-x)u<x+(1-x)=1

IA

thus x” € [0,1]. Moreover using p € [0,1] and z € [-1, 0] we have:

-1=0-wWE)-p<Q-pwz-p<Q-p0-—pu=-p<0,

thus z’ € [-1,0] using y? + 22 = 1, F; : [0,1] X M; — X is well-defined.
Using Lemma 11.2, F; : [0,1] X M; — X is continuous. [

Lemma 11.4. For x € [0,1], the map ¥, : [0, %] - {ze[-1,1]:x+z >0} =[-1,1] N [-x, +00) = [—x, 1] with
W, (t) = sin(nt) — (1 + sin(nt) — 4t)x is a homeomorphism.

Proof. Suppose z € [-1,1] and z + x > 0. Since W,(0) = —x and W,(3) = 1 by the mean value theorem there
exists t € [0, %] with W,(¢) = z. Thus W, : [0, %] — [—x, 1] is a bijection continuous map which completes the
proof. [

Lemma 11.5. Using the same notations as in Lemma 11.4, . {(x,w) € [0,1] x[-1,1]: x +w > 0} — [0, %] with
W(x, w) = W (w) is continuous.

Proof. Using Lemma 11.4, v {(x,w) € [0,1] x[-1,1] : x+w > 0} — [0, %] is well-defined. Let B := {(x, w) €
[0,1]1x[-1,1] : x+w > 0}. Consider (x,w) € B, s € [0, %], and sequence {(x,, w,) : n € N} such that lim x, = x,

lim w, = w, lim @(x,1,wn) =s. Lett = E’(x, w) and ¢, = \/f’(xn,wn) (n € IN). We have:
n—oo

11—
Wh = w= limw, = lim W, (£,)
= r}l_r};o sin(mtt,) — (1 + sin(mtt,,) — 4t,)x,
= sin(ns) — (1 + sin(7ms) — 4s)x = W (s)
and s = t since Wy is one to one according to Lemma 11.4. Using the above discussion and the compactness
of [0, %], W {(x,w) €[0,1] x[-1,1] : x +w > 0} — [0, %] is continuous. [J

Lemma 11.6. Consider X = {(x,y,z) € R3: y2 +22=1,0<x<1}and W as in Lemma 11.5. Let M; ={(x,y,2) €
X:x+z>0}, themap F, : [0,1] X My — X with Fo(u, (x,y,2)) = (x',y',2") for:

¥ =x+1-xu,
zZ=(1-pz+@¥Ykx,z)-Du,
Yy =sgn(y) Vi-z72,

is continuous.

Proof. Let (u, (x,y,2)) € [0,1] X My, since x,u € [0,1]] wehave 0 < x < x+(1-x)u <x+(1-x) =1and
x’ € ]0,1]. Since W(x, z) € [0, %]We have1-4W¥(x,z) € [-1,1]. Now using u € [0,1] and 1-4W¥(x, z),z € [-1,1]
we have

1= -wE)+(Du<A-pz+ @Yz - Du<l-u+pu=1

therefore z’ € [-1,1] using y'z +2z?2=1,F:[0,1] x M, — X is well-defined.
Using Lemma 11.5, F, : [0,1] X M, — X is continuous. [
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Construction 11.7. Consider X = {(x,y,2) e R® : * + 22 =1,0<x < 1}, Y = {(x,y,z2) € X: x =1V z = -1},
M ={xyz2)eX:x+z2<0land My = {(x,y,z2) € X :x+2z20}. F:[0,1] XX — X with F [y,= F1 as in
Lemma 11.3 and F Ty;,= Fy as in Lemma 11.6. Then we have:

1. F:[0,1] x X — X is continuous.
2. Forall (x,y,z) € X we have F(0, (x, y,z)) = (x,y,z) and F(1,(x, y,z)) € Y

3. Forall (x,y,z) € Yand u € [0, 1] we have F(u, (x, y,2)) = (x, Y, 2).

Proof. (1) For all x € [0,1] we have Eﬁ(x, -x) = \/I\’(x, —x) = 0, so using Lemma 11.3, Lemma 11.6 and gluing
lemma the map F : [0,1] X X — X is continuous.

(2) For (x,y,2z) € X, F(O,(x,y,2)) = (x,y,2) is clear by definition of F; and F,. Suppose F(1,(x,y,z)) =
(x1,y1,21). If (x,y,2) € My, thenz; = (1-1)z—1 = -1and F(1,(x, y,2)) = (x1,y1,2z1) € Y. If (x, y,2) € M>, then
x1=x+(1-x)1=1and F(1,(x,y,2)) = (x1,y1,21) € Y.

(3) Suppose (x,y,z) € Y, u € [0,1] and F(y, (x, y,2)) = (x', ', z"). We have the following cases:

Casel. z=-1. Inthiscasey =0, (x, y,z) € M; anda(x,z) = a(x,—l) = % Thusx’ = x+(1—2(1—x)%—x)/,1 =X,
Z=1-p(-1)—pu=-1=zand y =sgn(y) V1 -z2 =sgn(y) V1-1=0=y

Case 2. x = 1. In thiscase y = 0, (x,y,z) € M, and \T’(x,z) = ‘f’(l,z) = t implies z = Wy(t) = 4t -1, i.e.
‘T’(l,z) = %. Thusx' =1+ (1-Nu=1=x,2=1-uz+4x % -y =z and y =sgn(y) V1 —z2 =
sgn(y) V1 —z2 = sgn(y)lyl = v.

Considering the above cases we are done. [J
Construction 11.8. For n € IN let
1

_ 3.2 ¢ Llo_ 1
Xy ={(x,y,2) e R” : y* + (z n) =3 0

IA

Iy

x <

S|

and Xo = U{X,, : n € N}, in this construction we want to define a map Fy : [0,1] X Xy — Xo.
Considering the same notations as in Construction 11.7 for m € N and (x, y, z) € X,, we have (mx, my, mz — 1) € X.
For ue[0,1]if

F(u, (mx, my, mz — 1)) = (x,, Y., Z,) € X,

2 2 _ oo 1
then 0 < x;, < land y,; +z; =1,thus 0 < 2 < .- and

(y;ﬂ)z (z;n+1 1)2 1
z +|— = — = —,
m m m m2

therefore(ﬁ Y Z’,”Jrl) € Xon, let Fru(p, (x,y,2)) = (x—”“ Y Z’,”Jrl), ie.

m’ m’ m m’ m’ m

1 1
Fm([.l, (x/ ]// Z)) = ZF(H/ (mx/ m]// mz — l)) + (0/ 0/ %) .

It is clear that F,, : [0,1] X X,y — X, is continuous. Suppose s,t € N, s < t, u € [0,1] and (x,y,z) € F; N Fy, then:

11, 1, 1 1,
<x< - VAP + =P == AV +Ez->) ==
O_x_mm(t,s) Y +(z s) 2 Y +(z t)

which leads to 0 < x < %(< %) and y = z = 0. Now, since (sx,0,—1), (tx,0, 1) € Y (in Construction 11.8), we have:

F(u, (sx,0,-1)) = (sx,0,-1), F(u,(tx,0,-1)) = (sx,0,-1),
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and:

1 1
Fs(‘U, (x/ Y, Z)) = FS(['l/ (X, Or 0)) = ;F(‘U, (SX, Or _1)) + (O/ Or g)
= %(SX,O, -1)+ (0,0, é) =(x,0,0) = %(tx,O, -1)+ (0,0, %)

1 1
= ;F([.l, (txr 0/ _1)) + (Or 0/ ?) = Ff(f'l/ (x/ Or 0)) = Ff(nul (X, Y, Z))
Therefore for Fy = \J{F, : n € N}, Fo : [0,1] X Xo — X is well-defined.

Note: We recall that for A € B, we call A a deformation retract of B if there exists a continuous map
v:]0,1] X B » A withv(0,b) = b, v(1,b) € A, and v(t,a) = a (forallb € B,a € A, t € [0,1]). It is well-known
that if A is a deformation retract of B (and a9 € A), then Y : m1(A, a0) — m1(B, ap) is a group isomorphism, in
[kl—[k]
particular m1(A) = 111(B) [5, Theorem 58.3].
Lemma 11.9. For n € IN let
1 1
_ 3.,2 2 _
Xp={x,y,2)eR’:y +(Z—;) = E,OSxS

}/

S|

and
1
Yn:{(x/]/,Z)EXn:x: ZVZ:O}’

then Yo = \U{Y,, : n € N} is a deformation retract of Xo = U{X,, : n € N}
Proof. Consider Fy : [0,1] X Xy — Xj as in Construction 11.8. We prove the following claims:

e Claim 1. Fy : [0,1] X Xy — Xj is continuous.

e Claim2. V(x,5,2) € Xo  (Fo(0,(x,¥,2) = (x,%,2) A Fo(L, (x,,2)) € Yo).

e Claim 3. Y(x,y,z) € Yo Yu €[0,1] Fo(u, (x, y,2)) = (x, y,2).
Proof of Claim 1. Since for all n € IN, F,, : [0,1] X X, — X, is continuous, using the gluing lemma,
UIFi:1<i<n}: [0, 1] x U{X;i:1<i<n} - U{Xi:1<i<n}is continuous.
If (x,y,z) € X0\ {(0,0,0)}, then there exist n € IN and open neighborhood V of (x,y,z) in X such that
VaUXi:1<i<n) Since U{Fi:1<i<n} fpoixv: [0, 1] xUXi:1<i<n} - UXi:1<i<n}is
continuous, (J{F; : 1 <i<n}:[0,1] X V — Xy is continuous, i.e. Fy [jo1xv: [0,1] X V — X is continuous,
therefore Fy is continuous in all points of [0, 1] X {(x, y, z)}.
In order to show the continuity of Fy : [0, 1] X Xy — Xo, we should prove that it is continuous in all points
(4,(0,0,0)) (u € [0,1]). Consider ¢ > 0 there exists nn € IN such that %5 < eforall(x,y,z) € Xoand u, A €[0,1]

we have (consider [0, 1] X X, and X respectively under Euclidean norm of R* and R?):
(e, (0,0,0)) = (A, (x, y, 2Dl < 7

= x< -

= (yyz2)e€ U{Xi ti>n)

= Fod, (y,2) = | JFi:i2n(A, (v, y,2))

= Fo(A,(x,v,2) € U{Fi 2i > n}([0,1] x U{Xi 1<i>n))
= Fod, (y,2) € | JIFQ011xX) iz n) = | JiXizizn)

n

IFo(A, (x,y,2))I] < max{? ri>n)= V6

U
v

= HFO(/\/ (X, ]//Z)) - FO(”/ (0,0,0))” = ”FO(/\/ (X, }/,Z))H < # <¢
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(note to the fact that X, C [0, %]x[—%, %]X[O, %],thus forall (1, v, w) € X, wehave||(u, v, w)|| < 1/% + % + % =
%6) therefore Fy : [0,1] X Xy — Xj is continuous in (u, (0,0, 0)) as well as it is continuous in other points of
[0, 1] X Xop.

Proof of Claim 2. Suppose (x, y,z) € Xy, there exists n € IN such that (x, y, z) € X,,, using Construction 11.7 (2),
we have:

R0, 0,9) = Fal0,(0,2) = O, (i my,nz = 1) + 0,0, )

1 1
E(nx,ny, nz—-1)+ (0,0, Z) =(x,Y,2)

and Fo(1,(x,v,2) = F.(1,(x,y,2) = L1F(1,(nx,ny,nz — 1)) + (0,0, 1), by Construction 11.7 (2) we have
F(1, (nx, ny,nz — 1)) € Y which leads to Fy(1, (x,y,2)) € %Y + (0,0, %) =Y, CY,.

Proof of Claim 3. Suppose p € [0, 1] and (x, y, z) € Xo, there exists n € N such that (x, y,z) € Y,, € X,;, now we
have (use Construction 11.7 (3)):

xyz2eY, = (xyzeX,Ax= %) V(lx,yz)€X, Az=0)

= (y2+(z_%)2=%/\x:%)v(Ost%/\y:zzo)

= (((ny)2+(nz—1)2=1/\nx:1)
VO<nx<1Any=0Anz-1=-1))

= (nx,nynz-1)€yY
= F(u, (nx,ny,nz - 1)) = (nx,ny,nz — 1)
thus
1 1
FO(‘ul (.X, y/ Z)) = FH(H/ (x/ }// Z)) = EF(‘ur (nx, ﬂy, nz — 1)) + (0/ 0/ ;)

1 1
- Z(nx/ ny,nz — 1) + (Or 0/ E) - (X, %Z)

Which completes the proof of Claim 3.
Using Claims 1, 2, and 3, Yy is a deformation retract of Xy. [J

Theorem 11.10. Under the same notations as in Construction 11.8 and
Lemma11.9,Zy = {(0, y,2) : Ix(x,y,z) € Xo} isadeformation retract of Xo. In particular 71(Yo) = 11(Xo) = m1(Zo).

Proof. The map [0,1] X Xo — Zo (¢, (x, y,2)) = (1 — w)x, y,z) shows that Z is a deformation retract of Xy
too. Now use [5, Theorem 58.3] to complete the proof. [

Corollary 11.11. Two sets X and W are homeomorphic with deformation retracts of V, therefore 11(X) = 11(V) =
US| (W)

Proof. Under the same notations as in Theorem 11.10, X and Z; are homeomorph, moreover Y, and ‘W are
homeomorph too, also Xy = V. Now by Theorem 11.10 we have m1(X) = m(V) = my(W). O

12. A distinguished counterexample

In Section 11 we have proved m1(X) = 71(‘W), in this section we prove P« (X) # B (W).

Lemma 12.1. We have |B¢(X)| = w.
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Proof. For n € N consider p, : [0,1] = C, with p,(t) = 1e¥™% + 1, then w-loops py, pm : [0,1] — X are
homotopic if and only if n = m. Therefore {[p,] : n € IN} is an infinite subset of B*(X) which leads to
[B(X)| = w. On the other hand as it has been mentioned in Note 6.4 (4), if [f] € P“(X), then |A(f)| < w,
which leads to P«(X) C #{r1(C,) : n € N}, thus
IBX) < [*{m(Cy) :n € N}
= I{Pﬁ % p1]22 I plj.:; cme N,il,j1,i2,j2,. ..,in,,j,n [S ZH

< WG ju e vim ) i 1o o € ZY] = @

melN

Hence [$(X)| = w. O
Lemma 12.2. We have |B<(W)| = c.

Proof. 1t is well-known that for all Hausdorff separable space A, |C(A, R?)| < ¢ where C(A, B) denotes the
collection of all continuous maps ¢ : A — B. Therefore

B(W)| < C([0,1], W)| < [C([0, 1], R*)| = c.

Now for all a = (a, : n € N) € {0, 1} define f, : [0,1] — W with:

1 oritnretye—@ns1)+2 i 1 2n +1 1 B
St ARG 4 ity 4n(n +1) SXS o = 1,neN,
1 1 2n+1
- — < < — =1 e N
e+l 2+ 1) S Sy T ERY
fax) = 1 1
2 <x< — = c
g a1 S ¥ S gy =OneEN,
0 x=0,

2-2x <x<1,

NI —

then £, : [0,1] > W is an w—loop, thus [f,] € B“(W). We claim that ¢ : {0, 1}N — B(X) with P(a) = [f.]
(a € {0,1}N) is one to one. Leta = (a, : n € N),b = (b, : n € N) € {0,1}N and a # b, then there exists
m € N such that a,, # by,. Suppose a,, = 0and by, = 1. Let W := {55e*0 + L 4 —L- : 6 € [0,1]}. Since £
is constant map -, [f;'] is null-homotopic. However [£}"] is not null-homotopic, thus [£¥] # [£}¥] which
leads to [f,] # [f»] according to Convention 4.1. Hence ¢ : {0, 1}N — $¢(X) is one to one which leads to
IB(X)] > {0, 1}N] = ¢ and completes the proof. [

Counterexample 12.3 (A Distinguished Counterexample). Two groups 11(X) and 71(‘W) are isomorphic and
two groups P« (X) and B« (‘W) are non-isomorphic. Briefly m11(X) = m1(W)and P (X) # P(W) (use Lemma 12.1,
Lemma 12.2, and Corollary 11.11).

13. A diagram and a hint

Consider the following diagram:

Vo> o PAX) = PAY) — L Va > ¢ PAX) = PAY) — s Va > 20 PA(X) = PA(Y)

V) (I

m1(X) = mi(Y) Ja > 2° PAX) = PA(Y)

av)
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Arrows (III) and (IV) are valid regarding Theorem 5.1 (1). However by Counterexample 12.3, there exist
X, Y such that 711(X) = 11(Y) and $¥(X) = B2(Y), thus:

m(X) = m(Y) A =(Va = 0 $9X) = BUY))
Hence the above diagram is valid. We have the following arising problems:

Problem 13.1. Find a counterexample for arrow (1), i.e. find X, Y such that 71(X) = m1(Y), B(X) = PBY) and
P (X) 2 BU(Y) (Hint: is it true that Pe(X) = P(W)).

Problem 13.2. Find a counterexample for arrow (1), i.e. find X, Y such that m(X)1 = 11(Y) and P(X) 2 B(Y).

14. A Strategy for Future and Conjecture

Let’s extend of the idea of this text to homotopy group of order n. Let b € 5" be a fixed point. For infinite
cardinal number « and ideal 7 on X which contains all finite subsets of X, if f, g : $" — X are almaps, with

f(b) = g(b), then it is easy to see that f V g : §" — X is aZmap too. So we may have the following definition.
Definition 14.1. Fora € X, by ‘13?” I)(X, a) we mean subgroup of 1,(X, a) generated by aLmaps with base point a.

It’s evident by the definition that for ideals 7, J on X containing finite subsets, transfinite cardinal number
a, and a € X, we have:

o If 7 C 7, then ‘Bf‘n,I)(X, a) CS f‘nJ)(X, a);

o B Xa) B (X a) NP 5 (Xa).

Now we are ready to the following conjecture:
Conjecture. Arc connected spaces X and Y are homeomorph if and only if there exists a bijection f : X — Y
such that for all nonzero cardinal number a and all ideal 7 on X, ‘B?(X) = ‘B?( I)(Y).

One more idea for future study. Let’s recall that in topological space Z and a,b € Z for nonzero cardinal
number g, a collection I of maps f : [0,1] — Z with f(0) = a and f(1) = b, is called a f—separated family of
maps between a and b if for all distinct g, 1 € I we have |(g[0, 1] N h[0, 1]) \ {a, b}| < B [2, Definition 2.5].
Now for cardinal numbers a, § > 0 and ideal 7 on X we may consider the collection S(Z, a, §) consisting
of all families T such that T is a collection of aZloops with base point a and a f—separated family of maps
between a and 4. Suppose

S, a,p) =< {[fl: feT} > T €SI, a,p),

then S(7, a, B) is a “poset” under C and a collection of subgroups of m1(X). For arc connected spaces X
and Y one may compare these “type” of collections of their fundamental groups to discover “differents”
beween X and Y.

15. Conclusion

In this paper, for arc connected locally compact Hausdorff topological space X (with at least two elements),
a € X, nonzero cardinal number a, and ideal 7 on X we introduce ‘Bj‘.(X, a) as a subgroup of m1(X,a). We
prove that for transfinite a and a,b € X two groups P7(X,a) and P7(X, b) are isomorphic, therefore for
transfinite a we denote B(X, a) simply by P7(X) and ‘IB?‘@](X) simply by B*(X). Moreover for a > 2° we
have P%(X) = m1(X), hence the most interest is in w < a < 2° using GCH we prefer to study a € {w,c}.
We obtain that for Hawaiian earring (infinite earring) X, three groups B¢ (X), $¢(X), and P (X)(= m1(X))

are pairwise distinct. Also we introduce Y such that %;;ﬁn ( y)(y ), ‘B;)ﬂﬂ( y)(y ), and ‘Bgﬂn W (M) (= m(Y)) are

pairwise distinct. We find W such that 711 (X) = m1(W) and P (X) 2 P (W), this example leads us to the
fact that we can classify spaces with isomorphic first homotopy groups using the concept of PB*(—)s (first
homotopy groups with respect to @ > w). However investigating the structure of our examples and specially
Section 12, shows remarkable role of the number of (locally) cut points their and order in a—arcs, aLarcs,
and our constructed subgroups of first fundamental group.
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