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Abstract. In this paper, for finding a fixed point of a nonexpansive mapping in either uniformly smooth or
reflexive and strictly convex Banach spaces with a uniformly Gâteaux differentiable norm, we present a new
explicit iterative method, based on a combination of the steepest-descent method with the Ishikawa iterative
one. We also show its several particular cases one of which is the composite Halpern iterative method in
literature. The explicit iterative method is also extended to the case of infinite family of nonexpansive
mappings. Numerical experiments are given for illustration.

1. Introduction and preliminaries

Let E be a Banach space with the dual space E∗. For the sake of simplicity, the norms of E and E∗ are
denoted by the symbol ‖.‖. We use 〈x, x∗〉 instead of x∗(x) for x∗ ∈ E∗ and x ∈ E. Let Q be a closed convex
subset in E and let T be a nonexpansive mapping on Q, i.e., T : Q→ Q such that ‖Tx − Ty‖ ≤ ‖x − y‖ for all
x, y ∈ Q. The set of fixed points of T is denoted by Fix(T), i.e., Fix(T) = {x ∈ Q : x = Tx}.

Construction of fixed points of nonexpansive mappings is an important subject in the theory of nonlinear
analysis and its applications in a number of applied areas, in particular, in image recovery and signal
processing [1],[7]. Fundamental methods to find a fixed point of a nonexpansive mapping T on a closed
convex subset Q of a Hilbert space H are Krasnosel’skii-Mann method [21], [23],

xk+1 = (1 − βk)xk + βkTxk, k ≥ 1, (1)

Ishikawa method [18],

xk+1 = Tkxk, Tk = (1 − βk)I + βkT
(
(1 − αk)I + αkT

)
, k ≥ 1, (2)
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where I denotes the identity mapping of H and Halpern method [12],

xk+1 = tku + (1 − tk)Txk, k ≥ 1, (3)

with any u, x1
∈ Q andαk, βk, tk ∈ (0, 1). A modification of the Halpern method is the viscosity approximation

one,

xk+1 = tk f (xk) + (1 − tk)Txk, k ≥ 1, (4)

introduced by Moudafi in [25], by using a contraction f on Q instead of u in (3). Further, Kim and Xu [20]
provided a combination of the Krasnosel’skii-Mann and Halpern methods such as

xk+1 = tku + (1 − tk)((1 − βk)xk + βkTxk), k ≥ 1, (5)

and proved its strong convergence under conditions:
(t) tk ∈ (0, 1), limk→∞ tk = 0 and

∑
∞

k=1 tk = ∞,

∞∑
k=1

|tk+1 − tk| < ∞;
∞∑

k=1

|βk+1 − βk| < ∞,

and additional assumptions on βk. Next, Yao et al. [37] proposed a modified Krasnosel’skii-Mann iterative
method

xk+1 =
(
(1 − βk)I + βkT

)
(1 − tk)xk, k ≥ 1, (6)

and proved that if Q ≡ H, Fix(T) , ∅, the parameter tk and βk satisfy, respectively, conditions (t) and
(β) βk ∈ [a, b] ⊂ (0, 1) for all k ≥ 1,
then the sequence {xk

}, generated by (6), converges strongly to a fixed point of T. Shehu [28] extended
this result from the Hilbert space H onto a uniformly convex Banach space E, having a uniformly Gâteaux
differentiable norm. We know that both methods (1) and (2) have only weak convergence, in general (see,
[11], for example). Clearly, (2) is indeed more general than (1). But research has been concentrated on
(1) due probably to the reasons that (1) is simpler than (2) and that a convergence theorem for (1) may
possibly lead to a convergence theorem for (2) provided that the sequence {βk} satisfies certain appropriate
conditions. However, method (2) has its own right. As a matter of fact, method (1) may fail to convergence
while method (2) can still converge for a Lipschitz pseudocontractive mapping in a Hilbert space (see, [9]).
Reich [27] showed that if E is a uniformly convex Banach space, having a Fréchet differentiable norm, and
if the sequence {βk} in (1) is such that

∑
∞

k=1 βk(1−βk) = ∞, then the sequence {xk
}, generated by (1), converges

weakly to a point in Fix(T). An extension of this result was presented in [32], where Tan and Xu proved
weak convergence of (2) under conditions:

∞∑
k=1

βk(1 − βk) = ∞,
∞∑

k=1

βk(1 − αk) < ∞

and lim supk→∞ αk < 1. Next, Qin et al. [26], by using Tk in (2), considered the following iterative method,

xk+1 = tku + (1 − tk)Tkxk, k ≥ 1, (7)

that is a combination of the Ishikawa method with the Halpern one. They proved that the sequence,
generated by (7), converges strongly to a point in Fix(T) in uniformly smooth Banach spaces, when tk, βk
and αk satisfy the conditions: (t), βk → 0, αk ≤ a ∈ (0, 1), i.e., lim supk→∞ αk < 1, and

∞∑
k=1

|tk+1 − tk| < ∞,
∞∑

k=1

|αk+1 − αk| < ∞,
∞∑

k=1

|βk+1 − βk| < ∞. (8)
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Li [22] proposed a modification of (7), that is the viscosity approximation Ishikawa method,

xk+1 = tk f (xk) + (1 − tk)Tkxk, k ≥ 1, (9)

and proved a strong convergence result of (9) under the conditions: (t), (β) and |αk+1 − αk| → 0.
In this paper, we will show that (7) is a special case of an explicit iterative method, based on a combination

of the steepest-descent method with the Ishikawa one, for solving the variational inequality problem: find
a point p∗ ∈ E such that

p∗ ∈ C : 〈Fp∗, j(p∗ − p)〉 ≤ 0 ∀p ∈ C = Fix(T), (10)

where T is a nonexpansive mapping and F is an η-strongly accretive and γ-strictly pseudocontractive
mapping on E. We will give a strongly convergent modification for Ishikawa method (2), that is similar
to (6) for Krasnoselskii-Mann method (1.1), and a new variant of the viscosity approximation Ishikawa
method.

Variational inequalities over the fixed point set of nonexpansive mappings have an important role in
solving practical problems such as the signal recovery problem, beamforming problem, power control
problem, bandwidth allocation problem and finance problem (see, e.g., [[13]-[17]). In order to solve the
class of variational inequalities, in 2001, Yamada [36] introduced the hybrid steepest-descent method,

xk+1 =
(
I − tk+1µF

)
Txk, k ≥ 1, (11)

and proved a strong convergence theorem, when the parameter tk satisfies (t) with additional assumptions,
µ ∈ (0, 2η/L2) and the mapping F in (11) is η-strongly monotone and L-Lipschitz continuous on a Hilbert
space H.

Clearly, when C ≡ E (T ≡ I, the identity mapping of E), (10) is the operator equation Fx = 0, in fact. In
order to find a solution of an η-strongly accretive and Lipschitz continuous mapping F, whose domain of
definition is whole a uniformly smooth Banach space E, we can use the steepest-descent method, x1

∈ E
any element and

xk+1 = (I − tkF)xk, k ≥ 1, (12)

where tk satisfies the condition (t) (see, [33],[34],[38], for details). When E is an either uniformly smooth or
strictly convex reflexive Banach space with a uniformly Gâteaux differentiable norm, a combination of the
steepest-descent method with the Krasnoselskii-Mann one, for solving the class of variational inequalities
with an η-strongly accretive and γ-strictly pseudocontractive mapping F, was given in [2]. Following the
result, the explicit iterative method, investigated in this paper, is

xk+1 = (I − tkF)Tkxk, k ≥ 1, (13)

where Tk is defined in (2). We will prove a strong convergent result for (13) under conditions (t), (β) and
(α) αk ∈ [0, a] for all k ≥ 1 and αk → 0 as k→∞.
Further, we will consider the case that C = ∩i≥1Fix(Ti) , ∅, where {Ti} is an infinite family of nonexpansive
mappings on E. In this case, Tk is defined by

Tk = (1 − βk)I + βkWk
(
(1 − αk)I + αkWk

)
, (14)

where {Wk
} is a sequence, satisfying the following conditions:

(i) there exists Wx := limk→∞Wkx for any x ∈ E and if ∩i≥1Fix(Ti) , ∅ then we have that Fix(W) =
∩i≥1Fix(Ti) and

(ii) limk→∞ supx∈B ‖W
kx −Wx‖ = 0, for any bounded subset B.
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As particular case, we obtain a steepest-descent Krasnoselskii-Mann method, an extension of the result in
[2] to the case of infinite family of nonexpansive mappings.

Now, we list some facts that will be used in the proof of our result.

A mapping J from E into E∗, satisfying the condition,

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖ and ‖x∗‖ = ‖x‖},

is called a normalized duality mapping of E. It is well known that if x , 0, then J(tx) = tJ(x), for all t > 0
and x ∈ E, and J(−x) = −J(x). Let F : E → E be an η-strongly accretive and γ-strictly pseudocontractive
mapping, i.e., F satisfies, respectively, the following conditions:

〈Fx − Fy, j(x − y)〉 ≥ η‖x − y‖2,

and
〈Fx − Fy, j(x − y)〉 ≤ ‖x − y‖2 − γ‖(I − F)x − (I − F)y‖2,

for all x, y ∈ E and some element j(x − y) ∈ J(x − y), where η and γ ∈ (0, 1) are some positive constants.
Clearly, if F is γ-strictly pseudocontractive mapping, then ‖Fx− Fy‖ ≤ L‖x− y‖with L = 1 + 1/γ and, in this
case, F is called L-Lipschitz continuous. In addition, if L ∈ [0, 1), then F is called contractive.

Let S1(0) := {x ∈ E : ‖x‖ = 1} and S(0, r) := {x ∈ E : ‖x‖ ≤ r} for a positive constant r. The space E is said
to have a Gâteaux differentiable norm if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ S1(0). Such an E is called a smooth Banach space. The space E is said to have a
uniformly Gâteaux differentiable norm if the limit is attained uniformly for x ∈ S1(0). The norm of E is
called Fréchet differentiable, if for all x ∈ S1(0), the limit is attained uniformly for y ∈ S1(0). The norm of E is
called uniformly Fréchet differentiable (and E is called uniformly smooth) if the limit is attained uniformly
for all x, y ∈ S1(0). It is well known that every uniformly smooth real Banach space is reflexive and has a
uniformly Gâteaux differentiable norm (see, [10]).

Recall that a Banach space E is said to be
(i) uniformly convex, if for any ε ∈ (0, 2], the inequalities ‖x‖ ≤ 1, ‖y‖ ≤ 1, and ‖x − y‖ ≥ ε imply that there
exists a δ = δ(ε) ≥ 0 such that ‖(x + y)/2‖ ≤ 1 − δ;
(ii) strictly convex, if for x, y ∈ S1(0) with x , y, then

‖(1 − λ)x + λy‖ < 1 ∀λ ∈ (0, 1).

It is well known that each uniformly convex Banach space E is reflexive and strictly convex; If the norm of
E is uniformly Gâteaux differentiable, then J is norm to weak star uniformly continuous on each bounded
subset of E; and if E is smooth, then duality mapping is single valued. In the sequel, we shall denote the
single valued normalized duality mapping by j.

Lemma 1.1. ([8]) Let E be a real smooth Banach space and F : E → E be an η-strongly accretive and γ-strictly
pseudocontractive with η + γ > 1. Then, we have:
(i) for any t ∈ (0, 1), I − tF is a contraction with contractive constant 1 − λτ, where τ = 1 −

√
(1 − η)/γ.

(ii) when t = 1, I − F also is contractive with constant τ1 =
√

(1 − η)/γ.

Lemma 1.2. Let E be a real smooth Banach space. Then, the following inequality holds

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, ∀x, y ∈ E.
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Lemma 1.3. ([35]) Let {ak} be a sequence of nonnegative real numbers satisfying the following condition ak+1 ≤

(1 − bk)ak + bkck + dk, where {bk}, {ck} and {dk} are sequences of real numbers such that
(i) bk ∈ [0, 1] and

∑
∞

k=1 bk = ∞;
(ii) lim supk→∞ ck ≤ 0;
(iii)

∑
∞

k=1 dk < ∞.
Then, limk→∞ak = 0.

Lemma 1.4. ([31]) Let {xk
} and {wk

} be bounded sequences in a Banach space E such that xk+1 = hkxk + (1 − hk)wk

for k ≥ 1, where {hk} satisfies the condition

0 < lim inf
k→∞

hk ≤ lim sup
k→∞

hk < 1.

Assume that
lim sup

k→∞

(
‖wk+1

− wk
‖ − ‖xk+1

− xk
‖

)
≤ 0.

Then, limk→∞ ‖xk
− wk
‖ = 0.

Lemma 1.5. ([2],[3]) Let F be an η-strongly accretive and γ-strictly pseudocontractive mapping on an either uni-
formly smooth or real reflexive and strictly convex Banach space E, having a uniformly Gâteaux differentiable norm,
such that η + γ > 1 and let T be a nonexpansive mapping on E with C := Fix(T) , ∅. Then, for a bounded sequence
{xk
} in E with limk→∞ ‖xk

− Txk
‖ = 0, we have

lim sup
k→∞

〈Fp∗, j(p∗ − xk)〉 ≤ 0, (15)

where p∗ is the unique solution of (10).

The rest of the paper is organized as follows. In Section 2, we present the theoretical results. In Section
3, we give two numerical experiments for illustration.

2. Main results

First, we consider the case that C = Fix(T), where T is a nonexpansive mapping on E such that Fix(T) , ∅.
We have the following result.

Theorem 2.1. Let E,F and T be as in Lemma 1.5. Assume that tk, βk and αk satisfy conditions (t), (β) and (α),
respectively. Then, the sequence {xk

}, defined by (13) with Tk in (2), converges strongly to p∗, solving (10).

Proof. Since Tkp = p for any point p ∈ Fix(T) and k ≥ 1, by Lemma 1.1,

‖xk+1
− p‖ = ‖(1 − tkF)Tkxk

− (1 − tkF)Tkp − tkFp‖

≤ (1 − tkτ)‖xk
− p‖ + tkτ‖Fp‖/τ ≤ max {‖x1

− p‖, ‖Fp‖/τ}.

Therefore, {xk
} is bounded. So, are the sequences {Txk

}, {Txk+1
}, {Tkxk

}, {Tk+1xk
}, {FTkxk

} and {Tyk
} where

yk = (1 − αk)xk + αkTxk. Without any loss of generality, we assume that they are bounded by a positive
constant M1. Further, it is easy to see that

xk+1 = tk(I − F)Tkxk + (1 − tk)Tkxk

= tk(I − F)Tkxk + (1 − tk)
[
(1 − βk)xk + βkTyk

]
= hkxk + (1 − hk)wk,

(16)
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where hk = (1 − tk)(1 − βk) and

wk =
tk(I − F)Tkxk

1 − hk
+

(1 − tk)βkTyk

1 − hk
.

Clearly, from conditions (t) and (β) we have 0 < lim infk→∞ hk ≤ lim supk→∞ hk < 1. Next, we can write that

tk+1(I − F)Tk+1xk+1

1 − hk+1
−

tk(I − F)Tkxk

1 − hk

=
tk+1

1 − hk+1

[
(I − F)Tk+1xk+1

− (I − F)Tk+1xk
]

+
tk+1

1 − hk+1

[
(I − F)Tk+1xk

− (I − F)Tkxk
]

+
[ tk+1

1 − hk+1
−

tk

1 − hk

]
×(I − F)Tkxk,

(1 − tk+1)βk+1Tyk+1

1 − hk+1
−

(1 − tk)βkTyk

1 − hk

=
(1 − tk+1)βk+1

1 − hk+1

[
Tyk+1

− Tyk
]

+
[ (1 − tk+1)βk+1

1 − hk+1
−

(1 − tk)βk

1 − hk

]
Tyk.

Thus,

‖wk+1
− wk
‖ ≤

tk+1(1 − τ1)
1 − hk+1

[
‖xk+1

− xk
‖ + 2M1

]
+

∣∣∣∣∣ tk+1

1 − hk+1
−

tk

1 − hk

∣∣∣∣∣2M1

+
(1 − tk+1)βk+1

1 − hk+1

(
‖xk+1

− xk
‖ + M1(αk+1 + αk)

)
+

∣∣∣∣∣ (1 − tk+1)βk+1

1 − hk+1
−

(1 − tk)βk

1 − hk

∣∣∣∣∣M1

=
[ tk+1(1 − τ1)

1 − hk+1
+

(1 − tk+1)βk+1

1 − hk+1

]
‖xk+1

− xk
‖ + c̃k,

=
tk+1(1 − τ1) + (1 − tk+1)βk+1

tk+1 + βk+1 − tk+1βk+1
‖xk+1

− xk
‖ + c̃k,

≤ ‖xk+1
− xk
‖ + c̃k,

where c̃k is the sum of the remain terms and, by conditions (t), (β) and (α), c̃k → 0 as k→∞. Therefore,

lim sup
k→∞

(
‖wk+1

− wk
‖ − ‖xk+1

− xk
‖

)
≤ 0.

By virtue of Lemma 1.4,

lim
k→∞
‖xk
− wk
‖ = 0. (17)

Noting (16) and (17),

lim
k→∞
‖xk+1

− xk
‖ = lim

k→∞
(1 − hk)‖xk

− wk
‖ = 0. (18)
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According to (13), ‖xk+1
− Tkxk

‖ ≤ tkM1 → 0, as k→∞. This together with (18) implies that

lim
k→∞
‖xk
− Tkxk

‖ = 0. (19)

Now, we prove that

lim
k→∞
‖xk
− Txk

‖ = 0. (20)

To do this, first we proved that limk→∞ ‖xk
− Tyk

‖ = 0. Indeed, from the definition of Tk and yk, we know
that xk

− Tkxk = βk(xk
− Tyk), and hence, by virtue of condition (β),

1. Theorem 2.1 has still value for the following method: y1
∈ E is any element and

yk+1 = Tk(I − tkF)yk, k ≥ 1, (21)

with the same conditions on E,F,T, tk, βk and αk. Indeed, putting yk = Tkxk in (13) we obtain that yk+1 =
Tk+1xk+1 = Tk+1(I − tkF)yk. Re-denoting βk := βk+1 and αk := αk+1, we obtain (21). Moreover, if tk → 0
then {xk

} is convergent if and only if {yk
} is so and their limits coincide. Indeed, from (13), it follows that

‖xk+1
− yk
‖ ≤ tk‖Fyk

‖. Therefore, when {xk
} is convergent, {xk

} is bounded, and hence {yk
} is bounded.

Consequently, {Fyk
} is also bounded. Since tk → 0 as k → ∞, from the last inequality and the convegence

of {xk
} it follows the convergence of {yk

} and that their limits coincide. The case, when {yk
} converges, is

similar.
2. We take F = I − f with f = a′I for a fixed number a′ ∈ (0, 1). Then, F is an η-strongly accretive and
γ-strictly pseudocontractive mapping on E with some positive numbers η and γ such that η+γ > 1. Indeed,
since

〈Fx − Fy, j(x − y)〉 = (1 − a′)‖x − y‖2

= ‖x − y‖2 −
1
a′
‖a′x − a′y‖2 = ‖x − y‖2 −

1
a′
‖ f x − f y‖2

= ‖x − y‖2 −
1
a′
‖(I − F)x − (I − F)y‖2

≤ ‖x − y‖2 − γ‖(I − F)x − (I − F)y‖2, γ ∈ [0, 1),

a fixed number. Clearly, η+γ > 1 for η = 1− a′ and any fixed γ ∈ (a′, 1). Now, replacing F by I− f = (1− a′)I
in (13), we obtain the following algorithm,

xk+1 = (1 − t′k)Tkxk, k ≥ 1, (22)

where t′k = tk(1 − a′), and have the following result.

Theorem 2.2. Let T be a nonexpansive mapping on an either uniformly smooth or strictly convex reflexive Banach
space E with a uniformly Gâteaux differentiable norm. Assume that tk, βk and αk satisfy conditions (t), (β) and (α),
respectively. Fix a real number a′ ∈ (0, 1). Then, the sequence {xk

}, generated by (22), converges strongly to a point
in Fix(T).

3. Next, we consider the case, when T is a nonexpansive mapping on a closed and convex subset Q of E.
Clearly, with the starting point x1

∈ Q, for any point xk
∈ Q, Tkxk

∈ Q. Thus, if the set Q contains the original
point of E then xk+1

∈ Q, because xk+1 = τkTkxk with τk = 1 − t′k ∈ (0, 1). It means that method (22) is well
defined for any x1

∈ Q, and hence, Theorem 2.2 has value in this case. In the case that the set Q does not
contain the original point of E, we take f = a′I + (1 − a′)u with a fixed u ∈ Q. It is easy to see that F = I − f
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is also η-strongly accretive and γ-strictly pseudocontractive such that η + γ > 1. Then, instead of (22), we
obtain the Halpern Ishikawa method,

x1
∈ Q, any element,

xk+1 = t′ku +
(
1 − t′k

)
Tkxk, k ≥ 1,

(23)

that is method (7) with re-denoting tk := t′k. Clearly, tk satisfies condition (t) if and only if t′k is so. Method
(23), by Theorem 2.2, converges strongly in a uniformly smooth or strictly convex reflexive Banach space E,
meantime, method (7) needs stronger conditions on tk, βk and αk (additional condition (8) than that in our
method.

4. Let ã > 1 and let f be an ã-co-coercive accretive mapping on E, i.e.,

〈 f x − f y, j(x − y)〉 ≥ ã‖ f x − f y‖2, ∀x, y ∈ E.

It is easily seen that f is a contraction with constant 1/ã ∈ (0, 1), and hence, F := I − f is an η-strongly
accretive mapping with η = 1 − (1/ã). Moreover,

〈Fx − Fy, j(x − y)〉 = ‖x − y‖2 − 〈 f x − f y, j(x − y)〉

≤ ‖x − y‖2 − ã‖ f x − f y‖2

≤ ‖x − y‖2 − γ‖(I − F)x − (I − F)y‖2,

for any γ ∈ (0, ã]. Taking any fixed γ ∈ ((1/ã), ã], we get that F is a γ-strictly pseudocontractive mapping
with η + γ > 1. Next, by replacing F by I − f in (21), we obtain a new viscosity approximation Ishikawa
method,

yk+1 = Tk(tk f yk + (1 − tk)yk), y1
∈ E, k ≥ 1, (24)

that is an improved modification of (7) and different from (9). Obviously, if f is an ã-co-coercive accretive
mapping on Q, a closed convex subset of E, then method (24) is also well defined for any y1

∈ Q.
For a given α-co-coercive accretive mapping f , we can obtain an α̃-co-coercive accretive mapping f̃ with

α̃ > 1 by considering f̃ := β f with a positive number β < α. Indeed, α̃ = α/β > 1 and

〈 f̃ x − f̃ y, j(x − y)〉 = 〈β f x − β f y, j(x − y)〉

≥ βα‖ f x − f y‖2 = α̃‖ f̃ x − f̃ y‖2.

Now, in the case when ∩i≥1Fix(Ti) , ∅, we have the following result.

Theorem 2.3. Let E,F, tk, βk and αk be as in Theorem 2.1. Let {Ti} be an infinite family of nonexpansive mappings
on E such that C := ∩i≥1Fix(Ti) , ∅. Then, any sequence, generated by (13) and (14), converges strongly to the point
p∗ in (10).

Proof. As in the proof for Theorem 2.1, the sequence {xk
}, generated by (13) and (14), is bounded. Therefore,

there exists a positive constant M2 such that the sequences {xk
}, {Tkxk

},{Tk+1xk
}, {FTkxk

}, {Wkxk
} and {Wk+1xk

}

belong to S(0,M2). Moreover, we have equality (16) with the same hk, yk = (1 − αk)xk + αkWkxk and

wk =
tk(I − F)Tkxk

1 − hk
+

(1 − tk)βkWkyk

1 − hk
.

In order to estimate the value ‖wk+1
− wk

‖, first of all we need compute the value ‖Tk+1x − Tkx‖ for any
x ∈ S(0,M2). Set ỹk = (1 − αk)x + αkWkx. It is easy to verify that ỹk

∈ S(0,M2) and Wk ỹk
∈ S(0,M2) for any
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x ∈ S(0,M2). Consequently,

‖Tk+1x − Tkx‖ = ‖(1 − βk+1)x + βk+1Wk+1 ỹk+1
− ((1 − βk)x + βkWk ỹk)‖

≤ |βk+1 − βk|‖x‖ + βk+1

(
‖ỹk+1

− ỹk
‖

+ ‖Wk+1 ỹk
−Wk ỹk

‖

)
+|βk+1 − βk|‖Wk ỹk

‖,

where
‖ỹk+1

− ỹk
‖ ≤ |αk+1 − αk|‖x‖ + αk+1‖Wk+1x −Wkx‖ + |αk+1 − αk|M2.

Therefore,

‖Tk+1x − Tkx‖ ≤ 2|βk+1 − βk|M2 + βk+1

[
2|αk+1 − αk|M2

+ αk+1‖Wk+1x −Wkx‖ + ‖Wk+1 ỹk
−Wk ỹk

‖

]
.

(25)

From conditions (β) and (α), we can deduce that there exists a subsequence {km} of {k} such that βkm → β′ as
m → ∞. Then, |βkm+1 − βkm | → 0 and |αkm+1 − αkm | → 0 as m → ∞. Now, replacing x and k in 25) by xkm and
km, respectively, and using condition (ii) with B = S(0,M2) for Wkm , we obtain that

lim
m→∞

‖Tkm+1xkm − Tkm xkm‖ = 0.

Consider the procedure

xkm+1 = hkm xkm + (1 − hkm )wkm , (26)

where hkm = (1 − tkm )(1 − βkm ) and

wkm =
tkm (I − F)Tkm xkm

1 − hkm

+
(1 − tkm )βkm Wkm ykm

1 − hkm

.

It is easily to see that

(1 − tkm+1)βkm+1Wkm+1ykm+1

1 − hkm+1
−

(1 − tkm )βkm Wkm ykm

1 − hkm

=
(1 − tkm+1)βkm+1

1 − hkm+1

[
Wkm+1ykm+1

−Wkm+1ykm
]

+
(1 − tkm+1)βkm+1

1 − hkm+1

[
Wkm+1ykm −Wkykm

]
+

[ (1 − tkm+1)βkm+1

1 − hkm+1
−

(1 − tkm )βkm

1 − hkm

]
Wkm ykm .

Thus, as in the proof of Theorem 2.1,

‖wkm+1
− wkm‖ ≤

[ tkm+1(1 − τ1)
1 − hkm+1

+
(1 − tkm+1)βkm+1

1 − hkm+1

]
‖xkm+1

− xkm‖ + ckm ,

=
tkm+1(1 − τ1) + (1 − tkm+1)βkm+1

1 − βkm+1 + tkm+1βkm+1
‖xkm+1

− xkm‖ + ckm ,

≤ ‖xkm+1
− xkm‖ + ckm ,
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ckm → 0 as m→∞. Therefore, we have the same equality (17) with k replaced by km, i.e., ‖xkm−wkm‖ → 0, and
hence, by Lemma ?? and (26), we get that ‖xkm+1

−xkm‖ → 0, which together with ‖xkm+1
−Tkm xkm‖ ≤ tkm M1 → 0

as m→∞ implies that

lim
m→∞

‖xkm − Tkm xkm‖ = 0. (27)

Now, we prove that

lim
m→∞

‖xkm −Wkm xkm‖ = 0. (28)

For this purpose, first, we prove that limm→∞ ‖xkm−Wkm ykm‖ = 0,where the point ykm = (1−αkm )xkm+αkm Wkm xkm .
Since xkm − Tkm xkm = βkm (xkm −Wkm ykm ), and hence, by virtue of condition (β),

‖xkm −Wkm ykm‖ ≤ ‖xkm − Tkm xkm‖/a,

which together with (27) implies the last limit. On the other hand,

‖xkm −Wkm xkm‖ ≤ ‖xkm −Wkm ykm‖ + ‖Wkm ykm −Wkm xkm‖

≤ ‖xkm −Wkm ykm‖ + ‖ykm − xkm‖

= ‖xkm −Wkm ykm‖ + ‖(1 − αkm )xkm + αkm Wkm xkm − xkm‖

= ‖xkm −Wkm ykm‖ + αkm‖x
km −Wkm xkm‖

we obtain the inequality ‖xkm −Wkm xkm‖ ≤ ‖xkm −Wkm ykm‖/(1 − a), from which and the last limit, we get (28).
Now, from (28), the following inequality,

‖xkm −Wxkm‖ ≤ ‖xkm −Wkm xkm‖ + sup
x∈S(0,M2)

‖Wkm x −Wx‖,

and again condition (ii) for Wkm , we have that limm→∞ ‖xkm −Wxkm‖ = 0. As in the proof of Theorem 2.1,
the sequence {xkm } converges strongly to p∗ in (10) as m → ∞. By the similar argument, any convergent
subsequence of {xk

} converges to p∗. As the point p∗ in (10) is unique, all the sequence {xk
} converges to p∗.

This completes the proof.

Remarks
5. All remarks 1-4 have still a value, when Tk is defined by (14).
6. Taking αk = 0 in (13) and (14), we obtain the steepest-descent Krasnoselskii-Mann method in [26] and

its extension to an infinite family of nonexpansive mappings Ti on E, that is the method

xk+1 = (I − tkF)((1 − βk)I + βkWk)xk, k ≥ 1,

and its equivalent formula is

xk+1 =
(
(1 − βk)I + βkWk

)
(I − tkF)xk, k ≥ 1, (29)

(see, remark 1). Replacing F in (29) by (1 − a′)I, we get the method

yk+1 =
(
(1 − βk)I + βkWk

)
(1 − t′k)yk, k ≥ 1,

strong convergence of which was proved in [29] in uniformly convex and uniformly smooth Banach spaces
under conditions (t), (β),

∞∑
k=1

lim
k→∞

sup
x∈B
‖Wk+1x −Wkx‖ = 0
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Table 1: Computational results by (23) and (14) with Wk = Tk.

k xk+1
1 xk+1

2 k xk+1
1 xk+1

2
10 1.1363636364 0.6411155490 100 1.0148514851 0.9431215161
20 1.0714285714 0.7700827178 200 1.0074626866 0.9707901594
30 1.0483870968 0.8326554114 300 1.0049833887 0.9803526365
40 1.0365853659 0.8687796127 400 1.0037406484 0.9851987678
50 1.0294117647 0.8921748170 500 1.0029940120 0.9881273689

and (i) in the definition of Wk. Marino and Muglia [24], replacing (ii) in the definition of Wk by limk→∞ ‖Wk+1x−
Wkx‖ = 0 uniformly in x ∈ B and combining the steepest-descent method with the Krasnosel’skii-Mann
one, studied the methods

xk+1 = βkxk + (1 − βk)(I − tkD)Wkxk and

xk+1 = βk(I − tkD)xk + (1 − βk)Wkxk, k ≥ 1,
(30)

in a setting Hilbert space H, where D is η-strongly monotone and L-Lipschitz continuous. Strong con-
vergence of (30) is proved under conditions (t) with limk→∞ |tk − tk+1|/tk+1 = 0, βk ∈ (0, a] with limk→∞ |βk −

βk+1|/βk+1 = 0 and additional condition on constructing Wk from the given family {Ti}. We note that the map-
pings Vk = T′1 · · ·T

′

k where T′i = γiI+(1−γi)Ti with γi ∈ (0,∞) such that
∑
∞

i=1 γi = γ̃ < ∞ and Sk =
∑k

i=1 γiTi/γ̃k

with γ̃k = γ1 + · · · + γk also satisfy conditions (i) and (ii) in the definition of Wk (see, [3]- [6]). In [3], the first
author et al. introduced the methods,

xk+1 = (1 − βk)xk + βkSk(I − tkF)xk and

xk+1 = (1 − βk)Skxk + βk(I − tkF)xk,

strong convergence of which have been investigated in strictly convex reflexive Banach spaces with a
Gâteaux differentiable norm under conditions (t) and (β).
7. Li [22] studied also method (9) where Tk is defined in (14) with Shimoji and Takahashi’s Wk-mapping
(see, [30]). Katchang and Kumam [19] proposed the method,

xk+1 = tkγ f (xk) + (I − tkA)Tkxk, k ≥ 1,

a modification of (9), and proved that it converges in the Banach space with a weak continuous duality
mapping j under conditions (t), limk→∞ βk = 0 and limk→∞ αk = 0, where A is a strongly positive bounded
linear mapping on E and γ is a some positive constant.

3. Numerical experiments

Obviously, for the family of nonexpansive mappings Ti = (1 − 1/(i + 1))I with E = R1, we have that
∩i≥1Fix(Ti) = {0} and limk→∞ Tkx = Ix for each x ∈ R1. Thus, condition (i) in the definition of Wk is not
satisfied, because Fix(I) = R1.

It is easy to see that the family {Ti = PCi }, where PCi is the metric projection of H = E2, an Euclidian space,
onto the set Ci = {x = (x1, x2) ∈ H : ai ≤ x2 ≤ bi}with ai = 1−1/(i+1) and bi = 2+1/(i+1) for all i ≥ 1, satisfies
conditions (i) and (ii) in the definition of Wk. In this case, we have that C = ∩∞i=1Ci = {x ∈ E2 : 1 ≤ x2 ≤ 2}
and we can take Wk = Tk for all k ≥ 1. Taking u = (1.0; 0.0), we have that the solution of (1.10) p∗ = (1.0; 1.0).
The computational results by method (23) and Tk in (14) with starting point x1 = (2.5; 2.5), tk = 1/(k + 1), βk =
0.2 + 1/(k + 1) and αk = 1/(k + 1) are given in Table 1.



N. Buong et al. / Filomat 34:5 (2020), 1557–1569 1568

Table 2: Computational results by (23) and (14) with Wk = Sk.

k xk+1
1 xk+1

2 k xk+1
1 xk+1

2
10 0.8226906920 0.9967100188 100 0.8216765320 1.3503455533
20 0.8116106625 1.1196844726 200 0.8261485102 1.4207098495
30 0.8123975068 1.1852032060 300 0.8280615950 1.4464230799
40 0.8142620005 1.2298614455 400 0.8291386059 1.4595495405
50 0.8160321266 1.2628985966 500 0.8298349294 1.4675113528

In the case that ai = 1 + 1/(i + 1), we have C = {x ∈ E2 : 1.5 ≤ x2 ≤ 2} and p∗ = (1.0; 1.5). Moreover,
condition (i) in the definition of Wk for Tk, i.e. Wk = Tk, does not hold. For computation by (23), we use
Wk = Sk in (14) where Sk is defined in Remark 6 with γi = 1/i(i + 1). The results of computation are given
in Table 2.

The numerical results show the effectiveness of the method.
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