
Filomat 34:5 (2020), 1601–1609
https://doi.org/10.2298/FIL2005601C

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we introduce the q-analogue of modified Gamma operators preserving linear
functions. We establish the moments of the operators using the q-Gamma functions. Next, some local
approximation for the above operators are discussed. Also, the rate of convergence and weighted approx-
imation by these operators in terms of modulus of continuity are studied. Furthermore, we obtain the
Voronovskaja type theorem.

1. Introduction

It is well known that the modified Gamma operators are given by

Gn( f ; x) =
xn+1

n!

∫
∞

0
e−uxun f

(n
u

)
du (1)

In 2007, Xu and Wang [6] introduced and estimated approximation properties for functions satisfying
exponential growth condition of Gn defined above. They obtained the approximation properties to the
locally bounded functions and absolutely continuous functions by using some inequalities and results of
probability theory with the method of Bojanic-Cheng.

The q-calculus has attracted attention of many researchers because of its application in various fields
such as numerical analysis, CAGD, differential equations, and so on. In the field of approximation theory,
the application of q-calculus has been the area of many recent researches, it seems there are no papers
mentioning the q-analogue of these operators defined in (1), which motivates us to introduce the q-analogue
of this of modified Gamma operators.
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Before introducing the operators, we recall some concepts of q-calculus, details can be founded in
([1],[3],[4]). For q > 0 the q-integer [n]q is defined by

[n]q =


1 − qn

1 − q
, if q , 1;

n, if q = 1,

for n ∈N. Also, the q-factorial [n]q! is defined as

[n]q! =

{
[1]q[2]q · · · [n]q, if n = 1, 2, · · · ;

1, if n = 0.

The q-improper integrals are defined as∫
∞/A

0
f (x)dqx = (1 − q)

∞∑
−∞

f
(

qn

A

)
qn

A
,A > 0,

provided the sums converge absolutely.
The q-exponential function Eq(x) is given as

Eq(x) =

∞∑
k=0

qk(k−1)/2 xk

[k]q!
, |q| < 1.

The q-Gamma integral is defined as

Γq(t) =

∫
∞/A

0
xt−1Eq(−qx)dqt, t > 0,

which satisfies the following functional equations: Γq(n + 1) = [n]q!.

Definition 1.1. For f ∈ C[0,∞), q ∈ (0, 1) and n ∈N, we introduce a kind of modified q-Gamma operators Gn,q( f ; x)
as follows:

Gn( f ; x) =
xn+1

Γq(n + 1)

∫
∞/A

0
Eq(−qux)un f

(
[n]q

u

)
dqu. (2)

Obviously, Gn,q( f ; x) are positive linear operators. It is observed that for q → 1−, Gn,1− ( f ; x) become the
modified Gamma operators defined in (1).

The paper is organized as follows: In the first section, we give the basic notations and the definition
of modified q-Gamma operators. In the second section, we obtain the moments of these operators. In the
third section and the fourth section, we study the local approximation and rate of convergence for these
operators. In the fifth section and the sixth section, we establish weighted approximation and voronovskaja
type theorem.

2. Auxiliary Results

In this section, we give some basic lemmas which will be useful to prove our main results.

Lemma 2.1. For q ∈ (0, 1), x ∈ [0,∞) and k = 0, 1, · · · , we have

Gn(tk; x) =
[n]k

q[n − k]q!

[n]q!
xk (3)
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Proof. Direct computation gives

Gn(tk; x) =
xn+1

Γq(n + 1)

∫
∞/A

0
Eq(−qux)un

(
[n]q

u

)k

dqu

=
[n]k

qxk

Γq(n + 1)

∫
∞/A

0
Eq(−qux)(ux)n−kdq(ux)

=
[n]k

qxk

Γq(n + 1)
Γq(n − k + 1) =

[n]k
q[n − k]q!

[n]q!
xk.

Lemma 2.1 is proved.

Lemma 2.2. For the operators Gn,q( f ; x) as defined in (2), the following equalities hold:
1. Gn,q(1; x) = 1;
2. Gn,q(t; x) = x;
3. Gn,q(t2; x) =

[n]q

[n−1]q
x2, for n > 1;

4. Gn,q(t3; x) =
[n]2

q

[n−1]q[n−2]q
x3, for n > 2;

5. Gn,q(t4; x) =
[n]3

q

[n−1]q[n−2]q[n−3]q
x4, for n > 3.

Proof. The proof of this Lemma is an immediate consequence of Lemma 2.1. Hence the details are omit-
ted.

Remark 2.3. For every q ∈ (0, 1), we have

Gn,q(t − x; x) = 0;

A(x) := Gn,q((t − x)2; x) =
qn−1

[n − 1]q
x2;

Gn,q

(
(t − x)4; x

)
=

3qn−3(1 − q)2[n]2
q + 3q2n−5(6 − 3q − 2q2)[n]q + 18q3n−6

[n − 1]q[n − 2]q[n − 3]q
x4.

Remark 2.4. The sequences (qn) satisfying 0 < qn < 1 such that qn → 1, qn
n → a and [n]qn → ∞ as n → ∞ where

a ∈ [0, 1], then
1. lim

n→∞
[n − 1]qn Gn,qn

(
(t − x)2; x

)
= ax2;

2. lim
n→∞

[n − 1]qn Gn,qn

(
(t − x)4; x

)
= 0.

Lemma 2.5. For f ∈ CB[0,∞) (space of all bounded and uniformly continuous functions on [0,∞) endowed with
norm ‖ f ‖ = sup{| f (x)| : x ∈ [0,∞)}, one has

|Gn,q( f ; x)‖ ≤ ‖ f ‖.

Proof. In view of (2) and Lemma 2.2, the proof of this lemma easily follows.

3. Local Approximation

In this section we establish direct local approximation theorem in connection with the operators Gn,q( f ; x).
Let us consider the following K-functional:

K( f , δ) = inf
1∈C2

B[0,∞)
{‖ f − 1‖ + δ‖1′′‖},
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where δ > 0 and C2
B[0,∞) = {1 ∈ CB[0,∞) : 1′, 1′′ ∈ CB[0,∞)}. By [2],(p.177, Theorem 2.4), there exists an

absolute constant C > 0 such that

K( f , δ) ≤ Cω2

(
f ,
√

δ
)

(4)

where

ω2( f , δ) = sup
0<|h|≤δ

sup
x∈[0,∞)

| f (x + 2h) − 2 f (x + h) + f (x)|

is the second order modulus of smoothness of f . By

ω( f , δ) = sup
0<|h|≤δ

sup
x∈[0,∞)

| f (x + h) − f (x)|.

we denote the usual modulus of continuity of ∈ CB[0,∞).
Our first result is a direct local approximation theorem for the operators Gn,q( f ; x):

Theorem 3.1. Let f ∈ CB[0,+∞), q ∈ (0, 1), then for every x ∈ [0,∞) and n > 2 we have

|Gn,q( f ; x) − f (x)| ≤ Cω2

(
f ,

√
A(x)

)
,

where C is some positive constant.

Proof. Let for all 1 ∈ C2
B[0,∞), using the Taylor’s expansion for x ∈ [0,∞), we have

1(t) = 1(x) + 1′(x)(t − x) +

∫ t

x
(t − u)1′′(u)du.

Applying the operators Gn,q to both sides of above equality and using Remark 2.3, we get∣∣∣Gn,q(1; x) − 1(x)
∣∣∣ =

∣∣∣∣∣∣Gn,q

(∫ t

x
(t − u)1′′(u)du; x

)∣∣∣∣∣∣
≤ Gn,q

(∣∣∣∣∣∣
∫ t

x
(t − u)1′′(u)du

∣∣∣∣∣∣ ; x
)

≤ Gn,q

(
‖1′′‖(t − x)2; x

)
≤ A(x)‖1′′‖.

By Lemma 2.5 , we have∣∣∣Gn,q( f ; x) − f (x)
∣∣∣ ≤ ∣∣∣Gn,q( f − 1; x) − ( f − 1)(x)

∣∣∣ +
∣∣∣Gn,q(1; x) − 1(x)

∣∣∣
≤ 2

∥∥∥ f − 1
∥∥∥ + A(x)‖1′′‖

Lastly, taking infimum on both side of the above inequality over all 1 ∈ C2
B[0,∞)∣∣∣Gn,q( f ; x) − f (x)

∣∣∣ ≤ 2K
(

f ; A(x)
)

for which we have the desired result by (4). This completes the proof of Theorem 3.1.

Theorem 3.2. Let 0 < γ ≤ 1 and E be any bounded subset of the interval [0,∞). If f ∈ CB[0,∞) is locally in Lip(γ),
i.e., the condition

| f (x) − f (t)| ≤ L|x − t|γ, t ∈ E and x ∈ [0,∞)

holds, then, for each x ∈ [0,∞), we have

|Gn,q( f ; x) − f (x)| ≤ L
{
(A(x))

γ
2 + 2(d(x; E)γ)

}
,

where L is a constant depending on γ amd f ; and d(x; E) is the distance between x and E defined by

d(x; E) = inf{|t − x| : t ∈ E}.
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Proof. From the properties of infinum, there is at least an point t0 in the closure of E, that is t0 ∈ E, such that

d(x; E) = |t0 − x|.

Using the triangle inequality, we have

|Gn,q( f ; x) − f (x)| ≤ Gn,q(| f (t) − f (x)|; x)
≤ Gn,q(| f (t) − f (t0)|; x) + Gn,q(| f (t0) − f (x)|; x)

≤ L
(
Gn,q(|t − t0|

γ; x) + Gn,q(|t0 − x|γ; x)
)

≤ L
(
Gn,q(|t − x|γ; x) + 2|t0 − x|γ

)
Choosing a1 =

2
γ

and a2 =
2

2 − γ
and using the well-known Hölder inequality

|Gn,q( f ; x) − f (x)| ≤ L
{(

Gn,q(|t − x|γa1 ; x)
) 1

a1
(
Gn,q(1aa ; x)

) 1
a2 + 2|t0 − x|γ

}
≤ L

{(
Gn,q((t − x)2; x)

) γ
2

+ 2|t0 − x|γ
}

≤ L
{
A

γ
2 (x) + 2(d(x; E))γ

}
This completes the proof.

4. Rate of convergence

Let Cρ[0,∞) be the set of all functions defined on (0,∞) satisfying the condition | f (x)| ≤ C fρ(x), where
C f > 0 is a constant depending only on f and ρ(x) is a weight function. Let C0

ρ[0,∞) be the space of all contin-

uous functions in Cρ[0,∞) with the norm ‖ f ‖ρ = sup
x∈[0,∞)

| f (x)|
ρ(x)

and C0
ρ[0,∞) =

{
f ∈ Cρ[0,∞) : lim

x→∞

| f (x)|
ρ(x)

< ∞

}
.

We consider ρ(x) = 1 + x2 in the following two theorems. Meantime, we denote the modulus of continuity
on f on the closed interval [0, a], a > 0 by

ωa( f , δ) = sup
|t−x|≤δ

sup
x,t∈[0,a]

| f (t) − f (x)|.

Obviously, for the function f ∈ Cρ[0,∞), the modulus of continuity ωa( f , δ) tends to zero. Now we give a
rate of convergence theorem for the operators Gn,q( f ; x).

Theorem 4.1. Let f ∈ Cρ[0,∞), q ∈ (0, 1) and ωa+1( f , δ) be its modulus of continuity on the finite interval
[0, a + 1] ⊂ [0,∞), where a > 0. Then, for every n > 2,

‖Gn,q( f ; x) − f (x)‖C[0,a] ≤ 4Cρ(1 + a2)A(x) + 2ωa+1

(
f ,

√
A(x)

)
Proof. For all x ∈ [0, a] and t > a + 1, we easily have (t − x)2

≥ (t − a)2
≥ 1, therefore,

| f (t) − f (x)| ≤ | f (t)| + | f (x)| ≤ Cρ(2 + x2 + t2)

= Cρ
(
2 + x2 + (x − t − x)2

)
≤ Cρ

(
2 + 3x2 + 2(x − t)2

)
≤ Cρ(4 + 3x2)(t − x)2

≤ 4Cρ(1 + a2)(t − x)2.

(5)

and for all x ∈ [0, a], t ∈ [0, a + 1] and δ > 0, we have

| f (t) − f (x)| ≤ ωa+1( f , |t − x|) ≤
(
1 +
|t − x|
δ

)
ωa+1( f , δ) (6)
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From (5) and (6) , we get

| f (t) − f (x)| ≤ 4Cρ(1 + a2)(t − x)2 +
(
1 +
|t − x|
δ

)
ωa+1( f , δ).

By Schwarz’s inequality and Remark 2.3, we have

|Gn,q( f ; x) − f (x)| ≤ Gn,q(| f (t) − f (x)|; x)

≤ 4Cρ(1 + a2)Gn,q((t − x)2; x) + Gn,q

((
1 +
|t − x|
δ

)
; x

)
ωa+1( f , δ)

≤ 4Cρ(1 + a2)Gn,q((t − x)2; x) + ωa+1( f , δ)
(
1 +

1
δ

√
Gn,q((t − x)2; x)

)
≤ 4Cρ(1 + a2)A(x) + ωa+1( f , δ)

(
1 +

1
δ

√
A(x)

)
by taking δ =

√
A(x), we get the proof of Theorem 4.1.

As is known, if f is not uniformly continuous on the interval (0,∞), the usual first modulus of continuity
ω( f ; δ) does not tend to zero as δ → 0. For every f ∈ C0

ρ[0,∞), we would like to take a weighted modulus
of continuity Ω( f ; δ) which tends to zero as δ→ 0.

Let

Ω( f ; δ) = sup
0<h≤δ,x≥0

| f (x + h) − f (x)|
1 + (x + h)2 , for every f ∈ C0

ρ[0,∞).

The weighted modulus of continuity Ω( f ; δ) was defined by Yuksel and Ispir in [7]. It is known that Ω( f ; δ)
has the following properties.

Lemma 4.2. Let f ∈ C0
ρ[0,∞), then:

i) Ω( f ; δ) is a monotone increasing function of δ,
ii) For each f ∈ C0

ρ[0,∞), lim
δ→0+

Ω( f ; δ) = 0,

iii) For each m ∈N \ {0}, Ω( f ; mδ) ≤ mΩ( f ; δ),
iv) For each λ ∈ R+, Ω( f ;λδ) ≤ (1 + λ)Ω( f ; δ).

Theorem 4.3. Let f ∈ C0
ρ[0,∞) and q = qn ∈ (0, 1) such that qn → 1 as n→∞, then there exists a positive constant

K such that the inequality

sup
x∈[0,∞)

|Gn,qn ( f ; x) − f (x)|

(1 + x2)
5
2

≤ KΩ

 f ;
1

√
[n − 1]qn

 (7)

holds.

Proof. For t > 0, x ∈ (0,∞) and δ > 0, by the definition of Ω( f ; δ) and Lemma 4.2, we get

| f (t) − f (x)| ≤ (1 + (x + |x − t|))2 Ω
(

f ; |t − x|
)

≤ 2(1 + x2)
(
1 + (t − x)2

) (
1 +
|t − x|
δ

)
Ω( f ; δ).

Since Gn,qn is linear and positive, we have∣∣∣Gn,qn ( f ; x) − f (x)
∣∣∣ ≤ 2(1 + x2)Ω( f ; δ)

{
1 + Gn,qn

(
(t − x)2; x

)
+

Gn,qn

((
1 + (t − x)2

) |t − x|
δ

; x
) }
.

(8)
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Using Remark 2.3, we have

Gn,qn

(
(t − x)2; x

)
≤ K1

1 + x2

[n − 1]qn

, (9)

for some positive constant K1. To estimate the second term of (8), applying the Cauchy-Schwartz inequality,
we have

Gn,qn

((
1 + (t − x)2

) |t − x|
δ

; x
)
≤ 2

(
Gn,qn

(
1 + (t − x)4; x

)) 1
2

(
Gn,qn

(
(t − x)2

δ2 ; x
)) 1

2

.

By Remark 2.3 and (9), there exist two positive constants K2,K3 such that(
Gn,qn

(
1 + (t − x)4; x

)) 1
2
≤ K2(1 + x2)

and (
Gn,qn

(
(t − x)2

δ2 ; x
)) 1

2

≤
K3

δ

√
1 + x2

[n − 1]qn

.

Now we take K = 2+2K1 +4K2K3 and δ = 1√
[n−1]qn

. Combining the above estimates, we obtain the inequality

(7). The proof is completed.

5. Weighted Approximation

Now, we obtaion the weighted approximation theorem as follows:

Theorem 5.1. Let the sequence q = {qn} satisfy qn ∈ (0, 1), qn → 1 and [n]qn →∞ as n→∞. Then for f ∈ C0
ρ[0,∞),

we have

lim
n→∞
‖Gn,qn ( f ) − f ‖ρ = 0.

Proof. Using Korovkin’s theorem (see[5]), it is sufficient to verify the following three conditions:

lim
n→∞
‖Gn,qn (tk) − xk

‖ρ = 0, k = 0, 1, 2. (10)

Since Gn,qn (1; x) = 1, Gn,qn (t; x) = x, (10) holds for k = 0, 1.
By Lemma 2.2, we have,∥∥∥Gn,qn (t2; x) − x2

∥∥∥
ρ

= sup
x∈[0,∞)

1
1 + x2

∣∣∣Gn,qn (t2; x) − x2
∣∣∣

= sup
x∈[0,∞)

x2

1 + x2

∣∣∣∣∣∣ [n]qn

[n − 1]qn

− 1

∣∣∣∣∣∣
=

qn−1
n

[n − 1]qn

= 0,n→∞.

which implies that

lim
n→∞

∥∥∥Gn,qn (t2; x) − x2
∥∥∥
ρ

= 0.

Thus the proof is completed.
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Now, we present a weighted approximation theorem for function in Cρ[0,∞).

Theorem 5.2. Let q = qn ∈ (0, 1) satisfies qn → 1 as n→∞. For every f ∈ Cρ[0,∞) and α > 0, we have

lim
n→∞

sup
x∈[0,∞)

|Gn,qn ( f ; x) − f (x)|

(1 + x2)1+α
= 0.

Proof. Let x0 ∈ [0,∞) be arbitrary but fixed. Then

sup
x∈[0,∞)

|Gn,qn ( f ; x) − f (x)|

(1 + x2)1+α
= sup

x∈[0,x0]

|Gn,qn ( f ; x) − f (x)|

(1 + x2)1+α
+ sup

x∈(x0,∞)

|Gn,qn ( f ; x) − f (x)|

(1 + x2)1+α

≤ ‖Gn,qn ( f ; x) − f (x)‖C[0,x0] + ‖ f ‖ρ sup
x∈(x0,∞)

|Gn,qn ((1 + t2); x)|

(1 + x2)1+α

+ sup
x∈(x0,∞)

| f (x)|
(1 + x2)1+α

(11)

Since | f (x)| ≤ ‖ f ‖ρ(1 + x2), we have sup
x∈(x0,∞)

| f (x)|
(1+x2)1+α ≤

‖ f ‖ρ
(1+x2

0)ρ . Let ε > 0 be arbitrary. We can choose x0 to be so

large that

‖ f ‖ρ
(1 + x2

0)ρ
< ε. (12)

In view of Lemma 2.2, while x ∈ (x0,∞), we obtain

‖ f ‖ρ lim
n→∞

|Gn,qn ((1 + t2); x)|

(1 + x2)1+α
=

(1 + x2)
(1 + x2)1+α

‖ f ‖ρ =
‖ f ‖ρ

(1 + x2)
≤
‖ f ‖ρ

(1 + x2
0)
< ε.

Using Theorem 3.1, we can see that the first term of the inequality (11), implies that

‖Gn,qn ( f ; x) − f (x)‖C[0,x0] < ε, as n→∞. (13)

Combining (11)-(13), we get the desired result.

6. Voronovskaja Type Theorem

In this section, we give a Voronovskaja-type asymptotic formula for Gn,qn ( f ; x) by means of the second
and fourth central moments.

Theorem 6.1. Let q = qn ∈ (0, 1) satisfying qn → 1, qn
n → a ∈ [0, 1], [n]qn → ∞. For f ∈ C2

B[0,∞), the following
equality holds

lim
n→∞

[n − 1]qn

(
Gn,qn ( f ; x) − f (x)

)
=

a
2

f ′′(x)x2 (14)

for every x ∈ [0,A], A > 0.

Proof. Let x ∈ [0,∞) be fixed. In order to prove this identity, we use Taylor’s expansion

f (t) − f (x) = (t − x) f ′(x) + (t − x)2

(
f ′′(x)

2
+ Φqn (t, x)

)
,
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where Φqn (x, t) is bounded and lim
t→x

Φqn (t, x) = 0. By applying the operator Gn,qn ( f ; x) to the above relation,

we obtain

Gn,qn ( f ; x) − f (x) = f ′(x)Gn,qn ((t − x); x) +
1
2

f ′′(x)Gn,qn

(
(t − x)2; x

)
+ Gn,qn

(
Φqn (t, x)(t − x)2; x

)
=

1
2

f ′′(x)Gn,qn

(
(t − x)2; x

)
+ Gn,qn

(
Φqn (t, x)(t − x)2; x

)
.

Since lim
t→x

Φqn (t, x) = 0, then for all ε > 0, there exists δ > 0 such that |t − x| < δ implies |Φqn (t, x)| < ε for all

fixed x ∈ [0,∞) where n large enough. While if |t − x| ≥ δ, then |Φqn (t, x)| ≤
C
δ2 (t − x)2, where C > 0 is a

constant. Using Remark 2.3, we have

lim
n→∞

[n − 1]qn Gn,qn ((t − x)2; x) = ax2

and

[n − 1]qn

∣∣∣∣Gn,qn

(
Φqn (t, x)(t − x)2; x

)∣∣∣∣ ≤ ε[n − 1]qn Gn,qn

(
(t − x)2; x

)
+

C
δ2 [n − 1]qn Gn,qn

(
(t − x)4; x

)
→ 0 (n→∞).

The proof is completed.
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