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Abstract.
In this paper, we study the approximate controllability of quasilinear evolution equation with random

impulsive moments with less restriction and sufficient condition. The results are obtained by the theory of
C0 semigroup of bounded linear operators on evolution equations.

1. Introduction

Approximate controllability plays an important role in science and engineering. There exists differ-
ent types of controllability like null control, exact control, approximate control, feedback control, relative
control ect., which were studied in literature. The exact controllability is not always realizable in infinite
dimensional space, to overcome this situation we look for approximate controllability. Further, the quasilin-
ear evolution equation is one form of an evolution equation. The time dependent problems in physics can
represent by such evolution equation. For further study on quasilinear evolution equation and approximate
controllability see [1, 6–8, 13–18] and the reference therein.

The processes of short-term perturbations can be modelled by an impulsive systems. Many authors
studied different type of impulsive systems which have existed in the history see [12, 19]. Most of the
papers deal the problem with fixed time impulses, but in real time situation it need not be at fixed times
may be at random time. When the impulses exist at random times, then the solutions of the differential
equations are a stochastic process. It is very different from deterministic impulsive control systems and also
it is different from impulsive stochastic control systems. Thus the random impulsive system gives more
realistic than deterministic impulsive system.

There are few publications in this field, In [3], the author studied the existence and exponential stability
for a random impulsive semilinear functional differential equations through the fixed point technique
under non-uniqueness. The existence, uniqueness and stability results were discussed in [4] through
Banach fixed point method for the system of differential equations with random impulsive effect. In
[5, 20, 21] the author studied the existence results for the random impulsive neutral functional differential
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equations and differential inclusions with delays. In [2], the author detailed the stabilization nature for
random impulsive moments in differential equations with exponential distribution. Recently, in [24, 25],
the authors investigated the unstable continuous time delay systems controlled by the random impulses
and the effects of random impulses shown by the simulation results. Further, the inaccuracy in finding
expectation for the solution x(t) of the random impulsive differential systems [3, 4, 20–23] is rectified in this
paper.

Only a few papers study the existence result and controllability result of quasilinear evolution equation
sees [9–11] and the reference therein. Motivated by the above mentioned works, the main purpose of this
paper is to study the approximate controllability of random impulsive quasilinear control systems. We
extend the results with and without fixed impulsive term in quasilinear control systems to fill the gap in
the approximate controllability of abstract control systems. To the best of our knowledge, there is no paper
which study the random impulsive quasilinear control systems. We utilize the technique developed in
[12, 15, 17, 19].

The paper will be organized as follows: In section 2, we recall briefly the notations, definitions, prelim-
inary facts which are used throughout this paper. In section 3, we study the approximate controllability of
random impulsive quasilinear control systems. Further, we extend our results to fixed impulsive quasilinear
control systems and non-impulsive quasilinear control systems.

2. Preliminaries

Let X and Y be two real separable Hilbert spaces such that Y ↪→ X is dense and continuous and Ω a
nonempty set. Assume that {τk}

∞

k=1 be a sequence of independent exponentially distributed random variable

with parameter λ, and each random variable τk is defined from Ω to Dk
de f .
= (0, dk) for k = 1, 2, . . ., where

0 < dk < +∞. Let τ,T ∈ < be two constants satisfying τ < T. Let us denote <τ = [τ,T].
We consider quasi-linear control system with random impulses of the form

x′ − A(t, x)x = (Bu)(t) + f (t, xt), ξk < t < ξk+1, t ∈ [t0,T], (1)
x(ξk) = bk(τk)x(ξ−k ), k = 1, 2, . . . , (2)

xt0 = ϕ, (3)

where A(t, x) is a linear operator in X for each x in an open subset B̄ of X; f : [t0,T]×C → X, C = C([−r, 0],X)
is the set of piecewise continuous functions mapping [−r, 0] in to X with some given r > 0; u belongs to
L2[t0,T; U] be the control function. LetZ = L2[t0,T; X] and Y = L2[t0,T; U] be function spaces, B : Y → Z
is a bounded linear operator, xt is a function when t is fixed, defined by xt(s) = x(t + s) for all s ∈ [−r, 0];
ξ0 = t0 ≥ 0 and ξk = ξk−1 + τk for k = 1, 2, · · · , here t0 ∈ <τ is arbitrary given real number. The impulse
moments {ξk} form a strictly increasing sequence, ie., t0 = ξ0 < ξ1 < ξ2 < · · · < lim

k→∞
ξk = ∞; bk : Dk → X

for each k = 1, 2, · · · ; x(ξ−k ) = lim
t↑ξk

x(t) according to their paths with the norm ‖x‖t = sup
t−r≤s≤t

|x(s)| for each t

satisfying t ≥ t0, ‖ · ‖ is any given norm in X; ϕ is a function defined from [−r, 0] to X.
Denote {Bt, t ≥ 0} the simple counting process generated by {ξn}, that is, {Bt ≥ n} = {ξn ≤ t}, and denote

Ft the σ-algebra generated by {Bt, t ≥ 0}. Then (Ω,P, {Ft}) is a probability space. Let L2 = L2(Ω,Ft,X) denote
the Hilbert space of all Ft - measurable square integrable random variables with values in X.

Assume that T > t0 is any fixed time to be determined later and let B denote the Banach space
B

(
[t0 − r,T],L2

)
, the family of all Ft-measurable, C-valued random variables ψ with the norm

‖ψ‖B =

 sup
t0≤t≤T

E‖ψ‖2t

1/2

.

Let L0
2(Ω,B) denote the family of all F0 - measurable, B - valued random variable ϕ.
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Remark 2.1. For any given time t > 0 and integer n ≥ 1, ξn and Bt are related by {Bt ≥ n} = {ξn ≤ t}. It is
understood that, {ξn ≤ t} is the event that the nth arrival occurs by time t, implies that Bt, the number of arrivals by
time t, must be at least n. Similarly, {Bt ≥ n} implies {ξn ≤ t}, yielding the equality. The counting process {Bt, t ≥ 0}
is a stochastic process in time. The given filtration Ft represents the evolution of knowledge about the random system
through time. The information at time t carried by filtration Ft determines the value of the random variable ξk.

lemma 2.2. [2] The probability that there will be exactly k impulses until the time t, t ≥ t0,where impulse mo-
ments ξk, k = 1, 2, · · · follow exponential distribution with parameter λ, is given by the equality P(I[ξk,ξk+1)(t)) =
λk(t−t0)k

k! e−λ(t−t0). where the events I[ξk,ξk+1)(t) = {ω ∈ Ω : ξk(ω) < t < ξk+1(ω)}, k = 1, 2, · · · .

Remark 2.3. From [2], expected value of the solution x(t) for the random impulsive differential equations given as

E[‖x(t)‖] =

∞∑
k=0

E[‖x(t)‖|I[ξk ,ξk+1)(t)]P(I[ξk ,ξk+1)(t)),

where the impulse moments ξk, k = 1, 2, · · · follow exponential distribution with parameter λ.

The following definition for the evolution family of operators. For further read on quasilinear operator
and evolution operator see monograph [17] and [1, 9] and the references therein.

Definition 2.4. A two parameter family of bounded linear operators S(t, s), t ≥ s ≥ 0, on X is called an evolution
system if

(i) S(s, s) = I and S(t, r)S(r, s) = S(t, s), t ≥ r ≥ s ≥ 0;
(ii) (t, s)→ S(t, s) is strongly continuous for t ≥ s ≥ 0.

If u ∈ B and the family {A(t,w), (t,w) ∈ [t0,T]×X}, then there exists an evolution system Sh(t, s) in X satisfying for
any fixed h ∈ B:

(iii) ‖Sh(t, s)‖B(X) ≤M, for t ≥ s ≥ 0, where M is a constant,
(iv) Sh(t, t) = I, Sh(t, s)Sh(s, r) = Sh(t, r), (t, s, r) ∈ [t0,T] × [t0,T] × [t0,T], and moreover,
(v) ∂Sh(t,s)

∂t = Ah(t)Sh(t, s), for almost all t ∈ [t0,T], for all s ∈ [t0,T].

Moreover, there exist a constant µ > 0 such that for every u, v ∈ B with values in B̄ and every y ∈ Y we have

‖Su(t, s)y − Sv(t, s)y‖2 ≤ µ‖y‖2Y

∫ t

s
‖u(τ) − v(τ)‖2dτ.

3. Main result

We consider quasi-linear differential equations with random impulses of the form

x′ − A(t, x)x = f (t, xt), ξk < t < ξk+1, t ∈ [t0,T], (4)
x(ξk) = bk(τk)x(ξ−k ), k = 1, 2, . . . , (5)

xt0 = ϕ, (6)

Definition 3.1. For a given T ∈ (t0,+∞), a stochastic process {x(t) ∈ B, t0 − r ≤ t ≤ T} is said to be a mild solutions
to equation (4) -(6) in (Ω,P, {Ft}), if

(i) x(t) ∈ B is piecewise continuous and Ft−adapted for t ∈ [t0,T);
(ii) x(t0 + s) = ϕ(s) ∈ L0

2(Ω,B), when s ∈ [−r, 0],
and

x(t) =

+∞∑
k=0

 k∏
i=1

bi(τi)Sx(t, t0)ϕ +

k∑
i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

Sx(t, s) f (s, xs)ds

+

∫ t

ξk

Sx(t, s) f (s, xs)ds
]

I[ξk,ξk+1)(t), t ∈ [t0,T],

(7)
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where
n∏

j=m
(·) = 1 as m > n,

k∏
j=i

b j(τ j) = bk(τk)bk−1(τk−1) · · · bi(τi), and IA(·) is the index function, i.e.,

IA(t) =

{
1, if t ∈ A,
0, if t < A.

Now we introduce following hypotheses used in our discussion:
(H1): The function f : [t0,T] ×C → X satisfy the Lipschitz conditions: that is, there exit constants L1 > 0 for
ζ, ς ∈ X and for every t0 ≤ t ≤ T such that∥∥∥ f (t, ζ) − f (t, ς)

∥∥∥2
≤ L1 ‖ζ − ς‖

2
t ,

and
∥∥∥ f (t, 0)

∥∥∥2
≤ κ1, κ1 > 0

(H2): sup{‖Ux(t, s)‖2B(X) = M, (t, s) ∈ [t0,T] × [t0,T]}

(H3): E
max

i,k

 k∏
j=i

∥∥∥b j(τ j)
∥∥∥ is uniformly bounded, that is, there is C > 0 such that

E

max
i,k


k∏

j=i

∥∥∥b j(τ j)
∥∥∥

 ≤ C for all τ j ∈ D j, j = 1, 2, · · · .

lemma 3.2. E‖ψ(t)‖2 ≤ κ, where ψ(t) =

∫ t

t0

f (s, ys)ds.

Proof.

E‖ψ(t)‖2 ≤ 2E
∫ t

t0

[
‖ f (s, ys) − f (s, 0)‖2 + ‖ f (s, 0)‖2

]
ds

≤ 2L1

∫ t

t0

E‖y‖2s ds + 2κ1(T − t0)ds.

Hence the result.

Theorem 3.3. Assume that hypotheses (H1)-(H3) be hold. Then, the system (4) -(6) has unique mild solution on
[−r,T].

Proof. Let T be an arbitrary number T > t0 such that

Λ(T) =
[
3(T − t0){e−λ(1−C)(t−t0)µ‖ϕ‖2 + e−λ(1−max{1,C})(t−t0)(T − t0)(M2L1 + µκ)}

]
< 1.

(8)

In order to apply the contraction principle, we define the nonlinear operator Φ : B → B as follows

(Φx)(t) = ϕ(t − t0), for t ∈ [−r, t0]

and for t ∈ [t0,T]

(Φx)(t) =

+∞∑
k=0

 k∏
i=1

bi(τi)Sx(t, t0)ϕ +

k∑
i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

Sx(t, s) f (s, xs)ds +

∫ t

ξk

Sx(t, s) f (s, xs)ds
]

I[ξk ,ξk+1)(t),

It is easy to prove the continuity of Φ. Now, we have to show Φ is a contraction mapping. For any x, y ∈ B,
we have
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E‖(Φx)(t) − (Φy)(t)‖2 ≤ 3E‖Sx(t, t0)ϕ − Sy(t, t0)ϕ‖2

×

+∞∑
k=0

( k∏
i=1

E‖bi(τi)‖2|I[ξk,ξk+1)(t)
)
P(I[ξk ,ξk+1)(t))

+ 3
+∞∑
k=0

E
[

max
i,k

1,
k∏

j=i

∥∥∥b j(τ j)
∥∥∥2

 ]
×

( ∫ t

t0

{‖Sx(t, s)‖‖ f (s, xs) − f (s, ys)‖}dsI[ξk ,ξk+1)(t)
)2

P(I[ξk,ξk+1)(t))

+ 3
+∞∑
k=0

E
[

max
i,k

1,
k∏

j=i

∥∥∥b j(τ j)
∥∥∥2

 ]
×

( ∫ t

t0

‖Sx(t, s) f (s, ys) − Sy(t, s) f (s, ys)‖}dsI[ξk ,ξk+1)(t)
)2

P(I[ξk ,ξk+1)(t)).

By (H3), lemma 2.2 and lemma 3.2,

E‖(Φx) − (Φy)‖2t ≤ 3µ‖ϕ‖2(T − t0)E‖x − y‖2t e−λ(1−C)(t−t0)

+ 3M2L1(T − t0)2E‖x − y‖2t e−λ(1−max{1,C})(t−t0)

+ 3µκ(T − t0)2E‖x − y‖2t e−λ(1−max{1,C})(t−t0).

E‖(Φx) − (Φy)‖2t ≤ 3(T − t0){e−λ(1−C)(t−t0)µ‖ϕ‖2

+ e−λ(1−max{1,C})(t−t0)(T − t0)(M2L1 + µκ)}E‖x − y‖2t

Hence,

‖(Φx) − (Φy)‖2
B
≤ Λ(T) ‖x − y‖2

B
.

By (8), we get Λ(T) < 1.
Then we can take a suitable 0 < T1 < T sufficient small such that Λ(T1) < 1, and hence Φ is a contraction

on BT1 ( BT1 denotes B with T substituted by T1). Thus, by the well-known Banach fixed point theorem
we obtain a unique fixed point x ∈ BT1 for operator Φ, and hence Φx = x is a mild solution of (4) − (6).
This procedure can be repeated to extend the solution to the entire interval [−r,T] in finitely many similar
steps, thereby completing the proof for the existence and uniqueness of mild solutions on the whole interval
[−r,T].

From the above result, a mild solution for the control system (1)-(3) can be written as follows

Definition 3.4. For a given T ∈ (t0,+∞), a stochastic process {x(t) ∈ B, t0 − r ≤ t ≤ T} is said to be a mild solution
to equation (1)-(3) in (Ω,P, {Ft}), if

(i) x(t) ∈ B is piecewise continuous and Ft−adapted for t ∈ [t0,T);
(ii) x(t0 + s) = ϕ(s) ∈ L0

2(Ω,B), when s ∈ [−r, 0];
and

x(t) =

+∞∑
k=0

 k∏
i=1

bi(τi)Sx(t, t0)ϕ +

k∑
i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

Sx(t, s)
[
Bu(s) + f (s, xs)

]
ds

+

∫ t

ξk

Sx(t, s)
[
Bu(s) + f (s, xs)

]
ds

]
I[ξk ,ξk+1)(t), t ∈ [t0,T],

(9)
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where
n∏

j=m
(·) = 1 as m > n,

k∏
j=i

b j(τ j) = bk(τk)bk−1(τk−1) · · · bi(τi), and IA(·) is the index function, i.e.,

IA(t) =

{
1, if t ∈ A,
0, if t < A.

Definition 3.5. The control system (1)-(3) is said to be approximately controllable on [t0,T] if for any ε > 0, the
initial function ϕ ∈ C, there exist a control u ∈ Y such that the mild solution x(·) of (1)-(3) satisfies

E‖x(T) − x1‖
2
≤ ε.

Let xt(ϕ(t0),u) denotes state value of the system (1)-(3) at time t corresponding to the control u ∈ Y and
the initial value ϕ(t0). The set of all possible trajectories, denoted by

Kα( f ) = {xα(ϕ(t0),u) ∈ C([α,T],X) : u ∈ Y, 0 < α ≤ T} (10)

is called the trajectory reachable set of system (1). In particular, the reachable set of the system (1)-(3) at
terminal time T is defined by

KT( f ) = {xT(ϕ(t0),u) : u ∈ Y}. (11)

A control system is said to be approximately controllable on [t0,T], if KT( f ) = X.

Now we define
(i) the solutionW fromZ to C([t0,T],X) can be defined by (Wu)(t) = x(ϕ(t0),u)(·), u ∈ Z.
(ii) the continuous operator Q fromZ to C([t0,T],X) is

(Qp)(t) =

∫ t

t0

Sx(t, s)p(s)ds, p ∈ Z, t ∈ [t0,T].

(iii) the functions, F : L2[t0,T;C] → Z as (Fx)(t) = f (t, xt(·)); x ∈ L2[t0,T;C] and B̂ : Y → L2[t0,T; X], as
(B̂u)(t) = Bu(t).

Now we introduce additional hypotheses used in our following discussion:
(H4): For any given ε > 0, p(·) ∈ Z, there exists some control u(·) ∈ Y such that

E‖Qp − QBu‖2 < ε.

(H5): R(F) ⊆ R(B̂).
In the following lemma, we prove the approximate controllability of the following linear system of the

form

x′ − A(t, x)x = (Bu)(t), ξk < t < ξk+1, t ∈ [t0,T], (12)
x(ξk) = bk(τk)x(ξ−k ), k = 1, 2, . . . , (13)

xt0 = ϕ, (14)

lemma 3.6. Under hypothesis (H4), Kα(0) = X.

Proof. Since, D(A) is dense in X, it is sufficient to prove that D(A) ⊆ Kα(0), that is, for given ε > 0, and
O ∈ D(A) there exists a control function u(·) ∈ Y such that

E‖O − Ô − QBu‖2 < ε,

where Ô =

+∞∑
k=0

 k∏
i=1

bi(τi)Sx(t, t0)ϕ

 I[ξk ,ξk+1)(t), t ∈ [α,T].
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Let us take O ∈ D(A) , then O − Ô ∈ D(A). It can be seen that there exists some function p(·) ∈ Z such
that O − Ô = Qp.

By the assumption (H4), for any given ε > 0, there exists some control u(·) ∈ Y such that E‖Qp−QBu‖2 < ε.
Since ε is arbitrary, we infer that Kα(0) ⊆ D(A). The denseness domain D(A) in X implies the approximate

controllability of the linear system (12) − (14).

In the following theorem, we prove the approximate controllability of the quasi-linear control system (1)−(3)

Theorem 3.7. Let the hypotheses (H1) − (H5) be hold. Then we have Kα(0) ⊆ Kα( f ).

Proof. Let x(·) ∈ Kα(0), there exists a u ∈ Y, which can be written as

x(t) = ϕ(t − t0), for t ∈ [−r, t0],

for t ∈ [t0,T],

x(t) =

+∞∑
k=0

[ k∏
i=1

bi(τi)Sx(t, t0)ϕ

+

k∑
i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

Sx(t, s)Bu(s)ds +

∫ t

ξk

Sx(t, s)Bu(s)ds
]
I[ξk ,ξk+1)(t),

Since Fx ∈ R(B) for a given ε > 0 there exists a w ∈ Y such that

E‖Fx − B̂w‖2
B
≤ ε. (15)

Now, let y(t) be mild solution of (1)-(3) corresponding to the control u − w, then

x(t) − y(t) =

+∞∑
k=0

[ k∏
i=1

bi(τi)Sx(t, t0)ϕ

+

k∑
i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

Sx(t, s)Bu(s)ds +

∫ t

ξk

Sx(t, s)Bu(s)ds
]
I[ξk,ξk+1)(t)

−

+∞∑
k=0

[ k∏
i=1

bi(τi)Sy(t, t0)ϕ

+

k∑
i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

Sy(t, t0)[Fy](s)ds +

∫ t

ξk

Sy(t, t0)[Fy](s)ds
]
I[ξk ,ξk+1)(t)

=

+∞∑
k=0

[ k∏
i=1

bi(τi)[Sx(t, s)ϕ − Sy(t, s)ϕ] +

k∑
i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

Sx(t, s)[B̂w − Fx](s)ds

+

∫ t

ξk

Sx(t, s)[B̂w − Fx](s)ds
]
I[ξk,ξk+1)(t)

+

+∞∑
k=0

[ k∑
i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

Sx(t, s)[Fx − Fy](s)ds +

∫ t

ξk

Sx(t, s)[Fx − Fy](s)ds
]
I[ξk,ξk+1)(t)

+

+∞∑
k=0

 k∑
i=1

k∏
j=i

b j(τ j)
∫ ξi

ξi−1

[Sx(t, s)Fy(s) − Sy(t, s)Fy(s)]ds +

∫ t

ξk

[Sx(t, s)Fy(s) − Sy(t, s)Fy(s)]ds

 I[ξk ,ξk+1)(t)



A. Vinodkumar et al. / Filomat 34:5 (2020), 1611–1620 1618

‖x(t) − y(t)‖2 ≤ 4
[ +∞∑

k=0

[ k∏
i=1

‖bi(τi)‖‖Sx(t, s)ϕ − Sy(t, s)ϕ‖
]
I[ξk ,ξk+1)(t)

]2
P(I[ξk,ξk+1)(t))

+ 4
[ +∞∑

k=0

[ k∑
i=1

k∏
j=i

‖b j(τ j)‖
∫ ξi

ξi−1

‖Sx(t, s)‖‖[B̂w − Fx](s)‖ds

+

∫ t

ξk

‖Sx(t, s)‖‖[B̂w − Fx](s)‖ds
]
I[ξk ,ξk+1)(t)

]2
P(I[ξk ,ξk+1)(t))

+ 4
[ +∞∑

k=0

[ k∑
i=1

k∏
j=i

‖b j(τ j)‖
∫ ξi

ξi−1

‖Sx(t, s)‖‖[Fx − Fy](s)‖ds

+

∫ t

ξk

‖Sx(t, s)‖‖[Fx − Fy](s)‖ds
]
I[ξk ,ξk+1)(t)

]2
P(I[ξk,ξk+1)(t))

+ 4
[ +∞∑

k=0

[ k∑
i=1

k∏
j=i

‖b j(τ j)‖
∫ ξi

ξi−1

‖Sx(t, s)Fy(s) − Sy(t, s)Fy(s)‖ds

+

∫ t

ξk

‖Sx(t, s)Fy(s) − Sy(t, s)Fy(s)‖ds
]
I[ξk ,ξk+1)(t)

]2
P(I[ξk,ξk+1)(t))

E‖x − y‖2t ≤ 4µ‖ϕ‖2(T − t0)E‖x − y‖2t e−λ(1−C)(t−t0)

+4e−λ(1−max{1,C})(t−t0)M2(T − t0)
∫ t

t0

E‖[B̂w − Fx](s)‖2ds

+4e−λ(1−max{1,C})(t−t0)M2(T − t0)
∫ t

t0

E‖[Fx − Fy](s)‖2ds

+4e−λ(1−max{1,C})(t−t0)µκ(T − t0)E‖x − y‖2t
≤ 4Je−λ(1−max{1,C})(t−t0)M2(T − t0)2ε

+4Je−λ(1−max{1,C})(t−t0)M2(T − t0)L1

∫ t

t0

E‖x − y‖2s ds

Taking supremum over t, and by Grownwall’s inequality we get,

‖x − y‖2
B
≤ 4Je−λ(1−max{1,C})(t−t0)M2(T − t0)2ε exp(4Je−λ(1−max{1,C})(t−t0)M2(T − t0)2L1),

where J = 1
1−4µ(T−t0){e−λ(1−C)(t−t0)‖ϕ‖2+κe−λ(1−max{1,C})(t−t0)}

> 0. From the above inequality it is clear that ‖x − y‖2
B

can
be made arbitrarily small by choosing suitable w. Hence the theorem is proved.

Theorem 3.8. Under assumption of the above theorem, system (1) − (3) is approximately controllable if its corre-
sponding linear system is approximately controllable.

Proof. The proof is a particular case of Theorem 3.7 at α = T.

The following remark generalize the system (1) − (3) with fixed impulsive system under sufficient
condition.

Remark 3.9. If the impulses are exist at fixed times in the system (1) − (3), then by the similar argument as in the
Theorem 3.8, the system (1) − (3) is approximately controllable.

When there is no impulse condition, then the problem becomes abstract quasilinear differential equations
with delay.
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Remark 3.10. If there is no impulses, then the system (1) − (3) becomes,

x′ − A(t, x)x = (Bu)(t) + f (t, xt), t ∈ [t0,T], (16)
xt0 = ϕ, (17)

Theorem 3.11. Let the hypotheses (H1)− (H2) and (H4)− (H5) be hold. Then the system (16)− (17) is approximately
controllable.

Proof. The proof is a particular case of Theorem 3.7 at α = T.

4. An application

Example 4.1. Consider the following partial differential control systems with random impulses of the form


∂z(x, t)
∂t

+
∂3z(x, t)

∂x3 + z(x, t)
∂z(x, t)
∂x

= Bu(x, t) + H(z(x, tsint), t), ξk < t < ξk+1,

z(x, ξk) = q(k)τkz(x, ξ−k ), t = ξk,
z(0, t) = z(π, t) = 0
z(x, t) = ϕ(x, t) 0 ≤ x ≤ π, − r < t ≤ 0, t ≥ 0.

(18)

where µ > 0 and q is a function of k; ξ0 = t0; ξk = ξk−1 + τk for k = 1, 2, . . .; τi and τ j are independent with each other
as i , j for i, j = 1, 2, . . . and follow exponentially distributed random variable with parameter λ.

For every reals s we introduce a Hilbert space Hs(R) as follows [17]. Let the linear space functions z ∈ L2(R) and
ẑ is the Fourier transform of z, then

‖z‖s =
( ∫

R
(1 + γ2)s

|ẑ(γ)|2dγ
) 1

2
.

Let the linear space functions z ∈ L2(R) with the inner product is defined as

< z, y >s=
( ∫

R
(1 + γ2)s

|ẑ(γ)|ŷ(γ)dγ
) 1

2
.

Denote Hilbert space Hs(R) with respect to the norm || · ‖s. From this, it is clear that H0(R) = L2(R).
Let us consider X = U = H0(R) = L2(R) and Y = Hs(R), s ≥ 3. Define an operator A0 by D(A0) = H3(R) and

A0z = D3z for z ∈ D(A0) where D = d/dx. Then A0 is the infinitesimal generator of a C0 group of isometries on X.
Now we define for every ν ∈ Y an operator A1(ν) by D(A1(ν)) = H1(R) and z ∈ D(A1(ν)),A1(ν)z = νDz. Then for
every ν ∈ Y the operator A(ν) = A0 + A1(ν) is the infintesimal generator of C0 semigroup Sx(t, 0) on X satisfying
‖Sx(t, 0)‖ ≤ eκt for every κ ≥ c‖ν‖s, where c is a constant independent of ν ∈ Y. Let Br be the ball of radius r > 0 in Y
and it is proved that the family of operators A(ν), ν ∈ Br, satisfies the conditions of definition (2.4) and H2 (see [17]).

Now we define an infinite dimensional control space U by U =

∞∑
n=2

unκn with
∞∑

n=2

u2
n < ∞ with the norm |u|U =

(
∞∑

n=2

u2
n)1/2. Define a continuous linear map from U to X as follows Bu = 2u2κ1 +

∑
∞

n=2 unκn, for u =
∑
∞

n=2 unκn ∈ U.

We assume the following conditions hold:

(i) E
[
‖q( j)(τ j)‖2

]
< ∞.

Assuming that condition (i) is verified. Further (H1) holds, then the problem (18) can be modeled as the abstract form
of the equations (1) by defining

f (t, xt) = H(z(x, tsint), t), bk(τk) = q(k)τk. and R(F) ⊆ R(B̂).

Proposition 4.2. Let the hypotheses (H1)-(H5) be hold. Then the mild solution z of the system (18) is approximately
controllable.

Proof. Condition (i) implies that (H3) holds.
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