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Abstract. Quantum calculus or g—calculus plays an important role in hypergeometric series, quantum
physics, operator theory, approximation theory, sobolev spaces, geometric functions theory and others. But
role of g—calculus in the theory of harmonic univalent functions is quite new. In this paper, we make an
attempt to connect quantum calculus and harmonic univalent starlike functions. In particular, we introduce
and investigate the properties of g—harmonic functions and g—harmonic starlike functions of order a.

1. Introduction

Quantum calculus is the traditional calculus without the use of limits. Quantum calculus or g—calculus
dates back to Leonhard Euler (1707-1783) and Carl Gustav Jakobi (1804-1851). But g—calculus became

popular only after its usefulness in quantum mechanics after 1905 paper by Albert Einstein. In 1909 and
1910, Jackson initiated in-depth study of g—calculus (see [13-15]).

Throughout this paper, we shall assume that g satisfies the condition g € (0,1). The power series

converges for |z| <1 when g € (0,1) and this guarentees the analyticity of the power series in the open unit
disc; see for details [10].

Definition 1.1. Let q € (0,1) and A € C. The g—number, denoted by [A],, is defined by
1-¢"
Mo = 3=
When A =n € N, we obtain [n]; =1+ q +¢* + ... + "', and when q — 17, then [n], = n.
Applying the above g—number and motivated by Jackson [13], g—derivative is defined below.

Definition 1.2. The g—derivative (or q—difference operator) of a function f, defined on a subset of C, is given by

LR, 220
(Dgf)(2) = 1)
(0, z=0.

We note that lim,_,1-(D, f)(z) = f'(2) if f is differentiable at z.
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Note that such an operator plays an important role in the theory of hypergeometric series, quantum physics,
sobolev spaces, geometric functions theory; see for instance [6, 9, 10, 17].
For a function f(z) = z", we observe that

1-¢
It is obvious that g—derivative of a function f is a linear operator. That is, for any constants 2 and b, we have
Dy(af(z) + bg(2)) = aDy f(2) + bDyg(2).
It is also straight forward to verify that
Dy(f(2)-9(2)) = 92)Ds f(2) + f(q2)Dyg(2),

and

f(2)\ _ 9(q2)D,f(2) — f(qz)D49(2)
>5)= Ogg 0 19T

Jackson [14] also introduced the g—integral of any function f by

[ st ==1-0 Y s
n=0

provided that the series on right hand side converges.
Let A denote the class of normalized functions of the form

F(z) = Zanz”, a =1 )
n=1

which are analytic in the open unit disk D = {z : |z] < 1}. In view of (1) and (2), it follows that for any F € A,
we have

(o)

D,F(2) :Z[n]qa,,z”_l and D, (zD,F(z)) :Z[n]ganz"-l, 3)

n=1 n=1

where g € (0, 1).
A g—analog of the class of analytic starlike functions, denoted by PS,, was introduced and studied by
Ismail, Merkes and Styer in 1990 [12]. In fact, these authors defined the class

z2(DgF)z) 1 ‘ 1
F(z) C1- q

PSq={Fe.?I:

STz q' z € ]D}.

n [20], the researchers studied the following three types of classes of g—starlike functions of order «,
a€[0,1).

z(D,4F)(2)

S (@) = {F cA: Re(w

)>a,ze]D},

z(D,F)(z)
l&z) —a 1 ‘ < 1
=7 p

S;’Z(a):{Feﬂ:I ,ze]D},

1-a  1- q
z2(D4F)(2) _
F(z)

In [12], the researchers showed that the class PS; satisfies the property S* = (o.,<; PS;, where S” is the
well-known traditional class of starlike functions.

S 5(a) = {F cA: 1

Sl—a,zelD}.
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In order to connect g—calculus and harmonic univalent functions, we first need some notations and
terminology of harmonic univalent functions.

Let H denote the family of continuous complex-valued sense-preserving functions f = h + 7 in the unit
disc ID that are harmonic and where

W) =z+ Y a2, 9@ =Y b Il < L. @
n=2

n=1

Note that f = h + g is locally univalent and sense-preserving in ID if and only if |g’(z)/F’(z)] < 1in ID. We
also let Sy be a subclass of functions f in H that are univalent in ID. Clunie and Sheil-Small [7] observed
that S¢;, when b; = 0, is a compact family with respect to the topology of locally uniform convergence. We
observe that for g(z) = 0in ID, the class S/ reduces to the class S of normalized analytic univalent functions
in ID. For history of famous family S, one may refer to the survey article by the first author [1].

We also recall that convolution of two complex-valued harmonic functions

(o) (o] o0 (o)
filz) =z + Z az" + Z bzt and  fo(z) =z + Z ay,z" + Z by, z"
n=2 n=1 n=2 n=1

is defined by
A@* @) = (s f)@) =2+ ) a1z + Y biabnz", (z€D).
n=2 n=1

A comprehensive study for the theory of harmonic univalent functions may be found in Duren [8]. One
may also refer to the survey articles by the first author [2, 3].
In [5], Ahuja et al. defined the class H, consisting of g—harmonic functions in D.

Definition 1.3. A harmonic function f = h + g defined by (4) is said to be qg—harmonic, locally univalent and
sense-preserving in ID denoted by H,, if and only if the second dilatation w, satisfies the condition

Dqg(z)
Dgh(z)

<1, 5)

= |

where q € (0,1) and z € ID. Note that as g — 17, H,, reduces to the family H.

We now define a new subclass S}, (a) of the class H,.
q

Definition 1.4. A function f = h + g in H, is said to be in S*% (@) if

Re(Zth(Z) _ ﬁg(z)) >a, |lzl=r<]1, (6)
h(z) + g(2)

where g € (0,1) and a € [0,1). A function f in S}, (a) is called q—harmonic starlike function of order a .
q

It is easy to verify that
() Sy, (@) € Sy(@.

0<g<1
Remark 1.5. When q — 17, then the class STH () reduces to the traditional class Sj‘H(a). This class is called

harmonic starlike functions of order a (see for example [2, 3, 8, 16]).

Remark 1.6. When q — 17 and g(z) = 0 in D, then the class S;‘H (a) reduces to the traditional class S*(«). This
q
class is called starlike functions of order a which was studied by Robertson in 1936 [18].



O. P. Ahuja, A. Cetinkaya / Filomat 34:5 (2020), 1431-1441 1434

Remark 1.7. Suppose g(z) = 0 in ID. Then
() 32,3(a) C S;z(a) C S;l(a)for a €[0,1),[20].
(ii) Sy (@) = Si(@), [19].
(ii1) Nocger S;1(@) = Nosger S, (@) = S(@), [20].
(i0) Moyt S5, (@) = Nocger S5(@) € S*(@), 201,
In this paper, we make an attempt to investigate some applications of g—calculus in the theory of har-

monic univalent functions. In particular, we obtain convolution characterization and sufficient coefficient
condition for the class S;{ (a). We also determine coefficient characterization, coefficient bounds, extreme
q

points, convex combinations, distortion and covering theorems for a subclass of Sy, (a) of functions with
q
negative coefficients.

2. Analytic Criteria

We first obtain necessary and sufficient convolution conditions for g—harmonic starlike functions of
order a.

Theorem 2.1. Let f = h+ g with h and g of the form (4) and suppose that f belongs to Hy. Then f € S}, (a) if and
q
only if
(2-2a)z+(20+C-1)g2 __ (20+2a)z - (2a+C—1)g2"
—g(z)* = =
To0-@m 9" aaa-p
where|C|=1,C#-1,a€[0,1),g€(0,1)and 0 < |z] < 1.

h(z) =

#0, (7)

Proof. Since at z = 0 we have

D) ~Dog@ _ (8)
h(z) + g(z)

it follows that the required condition (6) is equivalent to

zDgh(z)-zDyg(2) —ua
h(z)+9(z) c-1
# ) 9
1-«a C+1 ©)

It is straight forward to verify that

4 4

f(z)*l—Z:f(Z) and f(z)*(l—z)(l—qz)

=zD, f(2). (10)
Using (10) and algebraic manipulations, (9) is equivalent to

0 # (C + 1)[zDyh(z) - 2Dyg(2) - ah(z) - ag(@)] - (C - V[ + 9(2) - ah(z) - ag(?)]

3 . (C+1)z _a(C+1)z_(C—1)Z a(C—1)z

= hiz) ((1—2)(1—qz) 1-z 1-z - 1-z )
— (C+1)z al+1)z C-Dz aC-1)z
_g(z)*((l—z)(l—qz)+ 1-z * 1-z  1-z )

(2 - Za)z + (2(1 +C - 1)qz2 _ (ZZ + 2a)z - (20z +C- 1)q22
1-2)(1-g2) )_gz*( 1-2)(1-q2) )

This proves the required convolution condition given by (7). O

:h(z)*(
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Remark 2.2. When q — 17 and a = 0, the condition (7) reduces to the corresponding results obtained in [4].

Theorem 2.1 helps us to establish the following sufficient condition.

Theorem 2.3. Let f = h + g with h and g of the form (4). Suppose

= ([n]; —a [n], +a
Zl( 1—a |an| + 1-a |bn|)S2, (11)

n=

wherea; = 1,9 € (0,1) and o € [0,1). Then

@) feH,
(b) f univalent in ID, and
(c) fe S;{q(a), where f belongs to H,.

Proof.  (a) In view of Definition 1.3, we only need to establish |D;h(z)| > |D;g(z)|. This condition follows
from the following statements

0o

D) = 1= ) [nllallzl"

n=2

>1—Z["]q_a|an|
n=2 -
= [n], +a
> ) —lbl

> Y [nlylballz™ > IDyg(@).

This also proves that f in H, is locally univalent and sense-preserving in ID.

(b) In order to prove that f is univalent, we will show that f(z1) # f(z2) when z; # z,. Suppose z1,z, € D
so that z; # z,. Since D is simply connected and convex, we have z(t) = (1 — t)z; + tzo € ID, where
0 <t < 1. Then we can write

1
fe2) — fz1) = fo (22 — 20Dy + 2 ~ 2D ot

Dividing the above equation by z; — z; # 0 and taking the real parts, we obtain

A GV f [Dh (=) + B )D (Z(t))]dt
Zy —

=7

1
. fo ReDta(t) - |Dqg<z<t>>|]dqt

> fo 1 :Rquh(z(t)) - i[n]qlbnl]dqt

n=1

> fo - Z[nmm—z ol |dyt

n=2

ZfO‘ll Z[n]q |n|_z[]q |b|]dt

The last inequality is non-negative by the condition (11). This proves that f(z1) # f(z2). This leads to
the univalence of f.
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(c) For f = h + g belonging to H;, |C| = 1, C # —1 and using (10), we have

(2 - 2a)z + (2a +C— 1)qu _ (ZZ + 20z)z - (Za +C - 1)q22
1-2(1-q2) ) ~9@) ( 1-2)1-q2) )
= |(2 - 2a)z2Dyh(z) + (20 + C = 1)(zDyh(z) - h(2))

ma*(

+(2C +2a)2Dyg(z) - (2 + T 1)(zDyg(2) - ﬁ)‘

=|(2-2a)z + i ((c +Dnl, —2a - (C - 1))anz"

n=2

+ i ((Z +1)[nl, +2a + @€ - 1))bnz”

n=

(C+ 1)[n]q -(C-1)

(2-20)lf1 i a2
=2
= | (C+ Dn -
5 |
- (2 2]l - Z €+ ”’“Ziii_ €=y
n=2
= (C+1)n] +2a+(C
LT
o [y - - [y +a
:2(1—a)|z|[1— ] 1q_a |an|—n=1 T Ibnl].

This last expression is non-negative because of the condition (11). In view of Theorem 2.1, it follows
that f € S, (a).
q

The g—harmonic starlike mappings

= 1-—a > 1-a
Z) =z + —x, 72"+ —y,Z", 12
f@) ;mq—a ;[n]q+ay (12)
where Y |x,|+ Y [yl = 1, show that the coefficient bound given by (11) is sharp. O
n=2 n=1

Remark 2.4. If g(z) = 0 in D, then we obtain the corresponding result for g—starlike functions of order o obtained
in [20].

Remark 2.5. When g — 17, (11) reduces to the corresponding sufficient coefficient condition for harmonic starlike
functions of order o obtained in [16]. Moreover, when ¢ — 17, @ = 0 and g(z) = 0 in ID, Theorem 2.3 reduces to the
corresponding results for analytic starlike functions discovered by Goodman [11].

Suppose TH, is a subclass of H, which consists of functions f = h + g, where h and g are of the
following form.

h(z) =z - Z la,lz" and g(z) = - Z |b,,|z". (13)
n=2 n=2
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Theorem 2.6. A function f € T H, if and only if

Y [ny(lal + b)) <1, (14)
n=2

where q € (0,1).

Proof. We first note that for « =0, a1 = 1 and b; = 0, (11) reduces to (14). It therefore follows from Theorem
2.3 that f € 7°H,. In order to prove “only if” part, suppose f € TH, and ¥, ", [n]; (|2, +|b,l) = 1+€, (€ > 0).
Then there exists an integer N such that

N
3 [nlylal + b > 1 +e.
n=2

Suppose z is real in the open interval (ﬁ)ﬁ < z < 1. Then for any function f = h + g, where h and g are
given by (13), we have

Dyf(z) =1= ) [nly(lanl + 1b)z""
n=2
N

<1 )" [nly(lanl + b,)z""
n=2

N
<1=2%1Y [yl + b))
n=2
<1-(1+eN 1<

Since D,;f(0) = f’(0) > 0O, there exists a real number zq in (0, 1) for which D, f(zo) = 0. Hence f ¢ Toﬂq.
Since this contradicts our assumption, the proof is completed. [

In order to establish that (11) is also a necessary condition for SfH (a), we need to define a class ‘TS;‘H ().
q q

The class 7S, (a) is a subclass of S}, (a) which consists of functions f = h + g, where h and g of the form
q q

h(z) =z — Z .2 and g(z) = Z Ibalz", 11| < 1. (15)
n=2 n=1

In the following result, it is shown that the condition (11) is also necessary for functions f = h + g, where
h and g are of the form (15).

Theorem 2.7. Let f = h + g be given by (15), where f belongs to Hy. Then f € TS, () if and only if
q

= ([n]y—a [n]; +a
Y (Tl + bl <2 (16)

n=1
whereay = 1,9 € (0,1) and a € [0, 1).

Proof. Since TS, (a) C Sy, (a), we only need to prove the “only if” part of this theorem. To this end, for
q q
functions f = h + g of the form (15), we notice that the condition (6) is equivalent to

(1-a)z— ¥ (In], - @),z — 3 ((n], + a)b,z"
Re{ =2 =1 } > 0. (17)

(o] [ee)
z—Y a,z"+ Y b,Z"
n=2 n=1
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The above required condition (17) must hold for all values of z € ID, |z| = r < 1. By choosing the values of z
on the positive real axis where 0 < z = r < 1, we must have

(1-a) = X (inly ~ "™ = X ([l + )by

= = = 0. (18)
1-Y a1+ Y brvt

n=2 n=1

If the condition (16) does not hold, then the numerator in (18) is negative for r sufficiently close to 1. Thus
there exists a point zg = rg in (0, 1) for which the quotient in (18) is negative. This contradicts the required
condition for f € 7S, (@) and so the proof is completed. [

q

In order to explore relationship between 7~07.{q and TS;{ (o), we need the following.
q
TOS;IH (@:={f:feT H, and fe€ TSy, (@)).

Setting a = 0 and b; = 0 in Theorem 2.7, we obtain the following nice result.

Corollary 2.8. 7°H, = 7°S;, (0).
q

3. Extreme Points, Convolution and Convex Combinations

In this section, we first determine the extreme points of the closed convex hulls of 7Sy, (a), denoted by

clco’TS% (a).

Theorem 3.1. Let f be given by (15). Then f € clcoT Sy, (oz) if and only if f(z) = (xnh (2) + Yngn(2)), where

n=1

hi(z) =z, hy(z) =z — [n] aZ (n>2),gu(2z) =
In particular, the extreme points of TS, (a) are {h } and {gn}.
q

Z',(n>1)and Z(xn+yn)—1wherexn>Oandyn>0

Proof. For a function f of the form f(z) = Y, (x,/1,(2) + ¥.94(2)), where Y. (x, + y,) = 1, we have
n=1 n=1

> 1-a _n
fz) = 2—2[ = xnz +Z[n]q—+aynz.
Then f € clco‘TS,*Hq(oz) because

Y ) S e e

n=2

Conversely, suppose f € clcoT Sy, (a) Then |a,| < and |b,| <

n] —a

[n]; -« [n]; +

Xn = 1-a |anl, (n >2) and Yn = 1—a byl, (n > 1).

By Theorem 2.7, Z X, + Z Yn < 1. Therefore we define x; =1 - Z Xu — 2, Yn = 0. Consequently, we obtain
n=2 n=2 n=1

flz)= Z (Xuhn(2) + Yngu(2)) as required. [
n=1
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Using definition of convolution, we show that the class 7S, (a) is closed under convolution.

Theorem 3.2. ForO<f<a<1,let fe TS;{ (6)and F € ‘7'8;{ (B). Then f+F € TSfH (a) C TS?HL,(ﬁ)'

Proof. Let f(z) =z - Z |a,)z" + Z |b,|z" be in TS* (a) and F(z) = z — Z |A,)z" + Z IB,.[z" be in ’TSfH B)-
=2 n=1 7
Due to definition of convolutlon we get

(f +F)2) = f(2) < F(2) —z+Z|an||A 2" +2|b B, "

n=2

We need to show that the coefficients of f = F satisfy the required condition given in Theorem 2.7. For
Fe TSfH (B), we note that |A,| <1 and |B,| < 1. Therefore, we have

4 ] o, llA, |+Z
i |an|+Z[1]‘7_a bl < 1.

In view of Theorem 2.7, it follows that f + F € TSfH (o) C TS;{ B). O

Mg

|bn||Bn|

:
N

We now prove that 7S], (a) is closed under convex combination of its members.
Theorem 3.3. The class T~ SfH (@) is closed under convex combination.
q

Proof. Forj=1,2,3,., let f; € TS’:H (@), where f; is given by
q

(o) o0
file)=z- Z a2 + Z by, 2.
n=2 n=1

Then, by Theorem 2.7 we have

Z([”l]q__a“ . + [’"’fq%ofw) <2 19)

n=1

For }' t; =1,0 < t; <1, the convex combination of f; may be written as

j=1
j=1 /

n=2 j=1 n=1 j=1

Using (19), we have

and so by Theorem 2.7, we have }. t;fj(z) € TS}, (a). O
=1 1
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4. Distortion Bounds and Covering Theorem

The coefficient bounds in Theorem 2.7 enables us to prove distortion bounds for functions in 7Sy, (@),
q
which yields covering result for this class.

Theorem 4.1. If f € TS, (a), then for |z| = r <1 we have
q

—a  1ta ) (20)

f@I < @+ lbiDr + ([zllq —a [2lj-a

and

FEN > (1= ol = (7, = Tyl e
q q

These inequalities are sharp.

Proof. Let 7S, (@). Taking the absolute value of f, we obtain
q
F@I< (A +1bir + ) (Jal + b
n=2

< U+ i)+ Y (aul + )72
n=2

=(1+|b1)r+ 1-a Z([Z]q_aalanH[z]q—_;wnl)rz

2, —al\1- -

<@+ b+ oo i([”]““mu[”]““w )2

- ! [2],1—0(11= 1—a " 1—a "
1-a l1+a ’

< (1+bul)r + [2]q_a(1— 1_a|b1|)r

_ 1-a l1+a 2

= (1 + bl + ([Z]q S _albll)r .

The proof of the inequality (21) is similar and is omitted. The bounds (20) and (21) are sharp for the functions

1- 1 _
1 + |b1|)22

) =z+ |b1|2+([2]q s

and
1-« 1+«

Rl,—a [2;-a

f@) = 1= bz

where |b1| < (1 -a)/(1+a). O

|b1|)z2,

The following covering result follows from the inequality (21) by letting r approaches to 1.
Corollary 4.2. If f € TS}, (a), then
q

[21, - 1+ (2a = [2], + 1)ib|
[2]q -—a

{w D] <

< fD).
Remark 4.3. For q — 17, the covering theorem in Corollary 4.2 yields the corresponding traditional result for
harmonic starlike functions of order « obtained in [16].

We conclude this paper by a remark that the corresponding definition of g—harmonic convex function
lead to several interesting results; see [5].
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