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Abstract. The present paper introduces the class of weighted generalized composition operators of higher
order defined on the weighted Hardy spaces. The study of bounded operators belonging to this class is
undertaken and an attempt is made to describe their structural and spectral properties.

1. Introduction

Let {βn}
∞

n=0 be a sequence of positive real numbers with β0 = 1. The weighted sequence space H2(β)
(also known as the weighted Hardy space) is the collection of all formal power series { f : f (z) =∑
∞

n=0 fnzn such that
∑
∞

n=0 | fn|2β2
n < ∞}. H2(β) forms a Hilbert space with norm ‖.‖β induced by the inner

product defined as 〈 f , 1〉 =
∑
∞

n=0 fn1nβ
2
n,where f (z) =

∑
∞

n=0 fnzn and 1(z) =
∑
∞

n=0 1nzn belong to H2(β). Hence
‖ f ‖β is given as

‖ f ‖2β =

∞∑
n=0

| fn|2β2
n.

The set {en(z) = zn/βn}n≥0 forms an orthonormal basis for the space H2(β). These spaces were introduced by
Kelley [9] in the year 1966 and have ever since occurred frequently in literature. Some well known special
cases of these spaces are the Hardy space for βn = 1 for each n ≥ 0, the Bergman space for βn = (1/(n + 1))1/2,
the Dirichlet space for βn = (n + 1)1/2 and the Fischer space for βn = n!1/2. The tendency of the weighted
Hardy spaces to yield various known classes of function spaces for specific choices of the weight sequences
makes the study over these spaces quite productive. A nice survey regarding the historical growth and
applications of these spaces is provided in [13].
The multiplication operators and the composition operators form two important classes of operators which
have been studied extensively over various function spaces ever since their inception. We refer to book
by Cowen and MacCluer [3] for basic theory of multiplication and composition operators. The study of
these operators has been lifted from the Lebesgue spaces to other function spaces, for instance to Lorentz
space, Orlicz space, Lorentz-Zygmund space, to name a few, over the years (see [1, 4, 10] and the references
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therein). Their theory touches various branches of mathematics and physics such as entropy theory, ergodic
theory and classical mechanics. The tendency of these operators to induce new classes of operators and
their wide appearance have motivated mathematicians to come up with various generalizations of these
operators. In the recent times, the generalized multiplication operators on weighted Hardy spaces have
been introduced in [12] and further extended to kth-order generalized multiplication operators in [5], where
k ≥ 1 is an integer. In a parallel manner, the study of generalized composition operators of higher order
on weighted Hardy spaces H2(β) has been undertaken (see [4] and the references therein). Weighted
composition operators on Hardy spaces are studied in [2] and [7]. Depending upon the nature of the fixed
points of one of the inducing functions, spectra of the weighted composition operators on Hardy spaces
are investigated by Gunatillake in [7]. In [6], the isometries between various Hardy spaces are obtained in
terms of weighted composition operators.
Proceeding ahead in this direction, we introduce and describe the class of weighted generalized composition
operators of higher order on weighted Hardy spaces. For specific choices of the inducing symbols, these
operators coincide with the generalized multiplication and the generalized composition operators of higher
orders. We discuss their boundedness, compactness, Fredholm behaviour and Hilbert-Schmidt behaviour
amongst other structural properties. An attempt is also made to describe their spectral structure, specifically
the point spectrum. Various examples have been provided to illustrate the results obtained during the course
of study.
Before we proceed ahead, it is imperative that we set up the necessary terminology required for the
subsequent study. We recall from [4] that for a natural number k and an element f of H2(β) with expression
f (z) =

∑
∞

n=0 fnzn, f (k) is defined as

f (k)(z) =

∞∑
n=k

αn fnzn−k,

where αn = n!/(n − k)!, n ≥ k and is called the kth-derivative of f . If φ ∈ H2(β) is such that the mapping

f 7→ φ. f (k)

for each f ∈ H2(β) is continuous on H2(β), then this mapping is denoted by Mφ,k and is called as kth-order
generalized multiplication operator on H2(β) induced by φ (see [5]). Analogously, the continuous mapping
on H2(β) defined as

f 7→ f (k)
◦ φ

for each f ∈ H2(β), is denoted by Cφ,k and called a generalized composition operator of kth-order induced
by the symbol φ (see [4]).
The symbolsN andC denote respectively the set of all natural numbers and the set of all complex numbers.
Throughout the paper, k refers to a fixed natural number. The symbol Π0(T) denotes the point spectrum of
the operator T. The symbols Ker(T) and R(T) are respectively used to denote the kernel and range space of
an operator T. The set of all bounded linear operators on a Hilbert space H is denoted byB(H). The symbol
M⊥ denotes the orthogonal complement of the subspace M of H.

2. The spectral structure

In this section, we shall describe the set of all eigen values, namely the point spectrum, of generalized
composition and generalized multiplication operators of kth-order induced by some specific symbols. Recall
that a complex number λ is said to be an eigen value of an operator T defined on a Hilbert space H if there
exists a non zero element f ∈ H such that T f = λ f (see [11]).
We first describe the case for Cφ,k, the generalized composition operator of kth-order, induced by the symbol
φ(z) = az ∈ H2(β), where 0 , a ∈ C. It is evident from the structure of Cφ,k that 0 always belongs to Π0(Cφ,k),
so it is interesting to find the non-zero eigen values of Cφ,k. Observe that if a non-zero complex number
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λ ∈ Π0(Cφ,k), then there exists 0 , f (z) =
∑
∞

n=0 fnzn
∈ H2(β) satisfying Cφ,k f = λ f . This provides that for

each i ∈N and for each 0 ≤ j ≤ k − 1,

fik+ j =
λi

a
i
2 (2 j+(i−1)k)

j! f j

(ik + j)!
.

Since f ∈ H2(β), therefore ‖ f ‖2β =
∑
∞

n=0 | fn|2β2
n < ∞. Hence the above computation and the rearrangement

phenomenon provides that
k−1∑
j=0

( ∞∑
i=1

|λ|2i

|a|i(2 j+(i−1)k)

β2
ik+ j

(ik + j)!2

)
j!2| f j|

2 < ∞.

Since each of the k-components in the left hand side of the above inequality comprises of a series of positive

terms, the above inequality holds true if either each of the series
∑
∞

i=1
|λ|2i

|a|i(2 j+(i−1)k)

β2
ik+ j

(ik+ j)!2 converges, if f j , 0 for
each 0 ≤ j ≤ k − 1 or the Fourier coefficient f j, 0 ≤ j ≤ k − 1, vanishes whenever the corresponding series
diverges. With these observations, we can now state the following.

Proposition 2.1. Let β be such that φ(z) = az, where 0 , a ∈ C, induces the bounded operator Cφ,k on H2(β) and λ
be a non-zero complex number. Then we have the following:

1. If
∑
∞

i=1
|λ|2i

|a|i(2 j+(i−1)k)

β2
ik+ j

(ik+ j)!2 < ∞ for each 0 ≤ j ≤ k − 1, then λ ∈ Π0(Cφ,k).

2. If each of the series
∑
∞

i=1
|λ|2i

|a|i(2 j+(i−1)k)

β2
ik+ j

(ik+ j)!2 diverges for 0 ≤ j ≤ k − 1, then λ cannot be an eigen value of Cφ,k.

In fact, the condition (1) in the above proposition can be relaxed and stated as: If
∑
∞

i=1
|λ|2i

|a|i(2 j+(i−1)k)

β2
ik+ j

(ik+ j)!2 < ∞ for

some 0 ≤ j ≤ k − 1, then λ ∈ Π0(Cφ,k). This is because if 0 , λ ∈ C is such that the series
∑
∞

i=1
|λ|2i

|a|i(2 j0+(i−1)k)

β2
ik+ j0

(ik+ j0)!2

converges, where 0 ≤ j0 ≤ k − 1, then λ is an eigen value and a corresponding eigen vector 0 , f (z) =∑
∞

n=0 fnzn
∈ H2(β) of Cφ,k is given by

fn =


0 if n , ik + j0 for any i ≥ 0
α if n = j0

αλi

a
i
2 (2 j0+(i−1)k)

j0!
(ik+ j0)! if n = ik + j0 for some i ∈N,

where α is a non-zero complex number.
For specific choices of the weight sequence β, we are able to determine completely the point spectrum of
Cφ,k for some symbols φ ∈ H2(β). However, we must ensure in such cases that Cφ,k ∈ B(H2(β)). For this
purpose, we shall utilize the boundedness criterion for Cφ,k discussed in [4].

Proposition 2.2. The point spectrum of the operator Cφ,k, induced by φ(z) = z, on the space H2(β) with β defined as
βn = n! for each n ≥ 0, is the open unit disk in the complex plane.

Proof. Since {φn : n ≥ 0} is an orthogonal family in H2(β) and αn+k
βn+k
‖φn
‖β = αn+k

βn+k
βn = 1 for each n ≥ 0, we have

that Cφ,k ∈ B(H2(β)) (Theorem 2.7, [4]). Utilizing Proposition 2.1(1), we obtain that each λ ∈ C, with |λ| < 1,
is an eigen value. Further, if |λ| ≥ 1, then Proposition 2.1(2) provides that λ < Π0(Cφ,k). Compiling this
information yields the desired result.

We recall that for βn = 1 for each n ≥ 0, the sequence space H2(β) coincides with the classical Hardy space H2

of the unit circle. Straightforward computations provide us that the symbol φ(z) = z/2 induces a bounded
operator Cφ,k on this space (Theorem 2.7, [4]). In this setting, for 0 , λ ∈ C, each series

∞∑
i=1

|λ|2i

|a|i(2 j+(i−1)k)

β2
ik+ j

(ik + j)!2
=

∞∑
i=1

|λ|2i 2i(2 j+(i−1)k)

(ik + j)!2

diverges for each 0 ≤ j ≤ k − 1 and therefore, Proposition 2.1(2) leads us into the next result.
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Proposition 2.3. On the Hardy space H2, Π0(Cφ,k) = {0}, where φ(z) = z/2.

We shall now discuss the point spectrum of the kth-order generalized multiplication operator Mφ,k when it
is induced by the symbol φ(z) = azp, where 0 , a ∈ C and p ≥ 0 is an integer.

Proposition 2.4. Let φ(z) = azp, where 0 , a ∈ C and p ≥ 0 is an integer, induces the bounded operator Mφ,k on
H2(β). Then

1. If p = k, then Π0(Mφ,k) = {0} ∪ {an(n − 1) · · · (n − k + 1) : n ≥ k}.
2. If p > k, then Π0(Mφ,k) = {0}.

Proof. Since k ≥ 1, Mφ,k(e0) = 0 = 0e0 and thus 0 ∈ Π0(Mφ,k). Let 0 , λ ∈ Π0(Mφ,k). Then there exists
0 , f ∈ H2(β), say f (z) =

∑
∞

n=0 fnzn, satisfying

∞∑
n=0

aαn+k fn+kzn+p =

∞∑
n=0

λ fnzn.

This provides that fn = 0 for n = 0, 1, · · · , p − 1 and for each n ≥ 0,

aαn+k fn+k = λ fn+p.

Now consider the following cases:
(1) If p = k, we obtain that fn+k is non-zero for exactly one value of n. This is because f , being an eigen vector,
is a non-zero element of H2(β). Also, since fn = 0 for 0 ≤ n ≤ k−1, fn , 0 for atleast one n ≥ k. However, if fn
is non-zero for more than one value of n ≥ k, say for n0 and n1 (n0 , n1), then αn0 = αn1 , which is not feasible.
Therefore, λ = aαn+k for exactly one n ≥ 0. This yields that Π0(Mφ,k) ⊆ {0} ∪ {an(n − 1) · · · (n − k + 1) : n ≥ k}.
Also, the structure of Mφ,k provides that for each n ≥ k, Mφ,k(zn) = (aαn)zn, so that for each n ≥ k,
aαn = an(n − 1) · · · (n − k + 1) is an eigen value of Mφ,k. Thus {0} ∪ {an(n − 1) · · · (n − k + 1) : n ≥ k} ⊆ Π0(Mφ,k)
and we attain the desired.
(2) If p > k, we obtain that fn = 0 for each n ≥ 0 and thus Π0(Mφ,k) = {0}.

We shall now describe the case for Mφ,k which is induced by φ(z) = azp with p < k.

Proposition 2.5. Let φ(z) = azp, where 0 ≤ p < k and 0 , a ∈ C, induces the bounded kth-order generalized multi-
plication operator Mφ,k on H2(β) and let m = k− p. For λ ∈ C and each 0 ≤ l ≤ m− 1, consider the series

∑
∞

i=0 Al,λ,i,

where Al,λ,i = |λa |
2i+2

(
l!

(l+k)!
(l+m)!

(l+k+m)! · · ·
(l+mi)!

(l+k+mi)!

)2
β2

p+l+m(i+1). Then {λ ∈ C :
∑
∞

i=0 Al,λ,i converges for some 0 ≤ l ≤
m − 1} ⊆ Π0(Mφ,k).

Proof. Each of the series
∑
∞

i=0 Al,λ,i, 0 ≤ l ≤ m − 1 is convergent for λ = 0 and the structure of Mφ,k provides
that 0 is an eigen value of this operator. So the set inclusion is evident. Let us assume 0 , λ ∈ C be such
that the series

∑
∞

i=0 Al0,λ,i is convergent for some 0 ≤ l0 ≤ m − 1. Now it is a matter of routine computations
to obtain that f (z) =

∑
∞

n=0 fnzn, where the Fourier coefficients of f are given as

fn =


0 if n , p + l0 + mi for any i ≥ 0
α if n = p + l0
α
(
λ
a )i l0!

(l0+k)!
(l0+m)!

(l0+k+m)! · · ·
(l0+m(i−1))!

(l0+k+m(i−1))! if n = p + l0 + mi for some i ∈N,
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where 0 , α ∈ C, satisfies that Mφ,k f = λ f . Further, utilizing the hypothesis, we compute and obtain that

‖ f ‖2β = | fp+l0 |
2β2

p+l0
+

∞∑
i=1

| fp+l0+mi|
2β2

p+l0+mi

= |α|2β2
p+l0

+ |α|2
∞∑

i=0

|
λ
a
|
2i+2

( l0!
(l0 + k)!

(l0 + m)!
(l0 + k + m)!

· · ·
(l0 + mi))!

(l0 + k + mi)!

)2

β2
p+l0+m(i+l)

= |α|2β2
p+l0

+ |α|2
∞∑

i=0

Al0,λ,i

< ∞.

We are, therefore, assured of the existence of 0 , f ∈ H2(β) satisfying Mφ,k f = λ f . That is, f is an eigen
vector corresponding to the eigen value λ of Mφ,k. This completes the proof.

We shall now focus our attention towards the Hilbert-Schmidt behaviour of the kth-order generalized
composition and multiplication operators on H2(β). Recall that an operator T on a separable Hilbert space
H is said to be Hilbert-Schmidt if

∑
‖Tem‖ < ∞ for some orthonormal basis {em} of H (see [3]).

Utilizing that the set {en(z) = zn/βn : n ≥ 0} forms an orthonormal basis of H2(β), we compute and obtain
that

∞∑
n=0

‖Cφ,ken(z)‖2β =

∞∑
n=k

‖
αn

βn
φn−k
‖

2
β

and
∞∑

n=0

‖Mφ,ken(z)‖2β =

∞∑
n=k

‖
αn

βn
zn−kφ‖2β.

With these observations, we arrive at our next result.

Proposition 2.6. For Cφ,k and Mφ,k in B(H2(β)), induced by φ ∈ H2(β), we have the following:

1. Cφ,k is a Hilbert-Schmidt operator if and only if
∑
∞

n=0(αn+k
βn+k

)2
‖φn
‖

2
β < ∞.

2. Mφ,k is a Hilbert-Schmidt operator if and only if
∑
∞

n=0(αn+k
βn+k

)2
‖znφ‖2β < ∞.

Example 2.7. For specific choices of the inducing symbols and weight sequences, we obtain certain interesting
examples.

1. Consider φ(z) = z ∈ H2(β) with β defined as βn = n! for each n ≥ 0. Then Cφ,k ∈ B(H2(β)) and∑
∞

n=0 ‖Cφ,ken(z)‖2β =
∑
∞

n=0( βn

βn+k
)2( (n+k)!

n! )2 =
∑
∞

n=0 1, thus yielding that Cφ,k cannot be Hilbert-Schmidt.

2. Let φ(z) = z ∈ H2(β) with β defined as βn = (n!)3/2 for each n ≥ 0. Then Cφ,k ∈ B(H2(β)) and

∞∑
n=0

‖Cφ,ken(z)‖2β =

∞∑
n=0

n!
(n + k)!

=

∞∑
n=0

1
(n + k) · · · (n + 1)

.

Therefore, the first order generalized composition operator Cφ,1 cannot be Hilbert-Schmidt, while if k > 1, the
operator Cφ,k turns out to be Hilbert-Schmidt.

3. Consider the weighted sequence space H2(β) with weight sequence β defined as

βn =


1 if n=0
α if n = 1
(n − 1)3βn−1 if n ≥ 2,
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where α is a positive real number. Utilizing the boundedness criterion for generalized multiplication operators
(discussed in [5], which we shall also obtain in the next section as Corollary 3.7), we obtain that the operator
Mφ,2 induced by the symbol φ(z) = az, 0 , a ∈ C is bounded on H2(β). Also,

∞∑
n=0

‖Mφ,2en(z)‖2β =

∞∑
n=0

(n + 2)2(n + 1)2
|a|2

(n + 1)6 ,

which is a convergent series and hence this operator is a Hilbert-Schmidt 2nd-order generalized multiplication
operator on H2(β).

4. In a more general setting, we obtain that Mφ,k on H2(β) induced byφ(z) = azp, p , k, where the weight sequence
β is given as β0 = 1; β1, β2, · · · , βt are any positive real numbers, where t = max{p, k} − 1 and

βn+p

βn+k
=

1
(n + 1)k+1

, for each n ≥ 0,

is a Hilbert-Schmidt operator on this underlying sequence space H2(β).

3. Weighted generalized composition operators

In this section, we introduce and discuss the class of kth-order weighted generalized composition operators
defined on the weighted Hardy spaces H2(β). Let us begin by formally defining these operators.

Definition 3.1. Let k ≥ 1 be a fixed natural number and φ,ψ ∈ H2(β) be such that the mapping

f 7→ ψ.( f (k)
◦ φ)

for each f ∈ H2(β) is a well-defined, linear and bounded mapping on H2(β). Then, this mapping is called a weighted
generalized composition operator of kth-order on H2(β) and is denoted by Wψ,φ,k.

If the symbols ψ and φ, respectively, induce the multiplication operator Mψ and the kth-order generalized
composition operator Cφ,k on H2(β), then we may write Wψ,φ,k = MψCφ,k. However, it is worth pointing out
here that the operator Wψ,φ,k can be a bounded operator without Mψ and Cφ,k being bounded. For instance,
consider H2(β) with β defined as βn = 1 for each n ≥ 0 and let ψ(z) = 0 and φ(z) = z. In this setting, Mψ a
bounded operator, while the mapping f 7→ f (k)

◦ φ defines an unbounded operator on H2(β) (Theorem 2.7,
[4]), even though Wψ,φ,k ( f 7→ ψ.( f (k)

◦ φ)) is a bounded operator on H2(β).
Also, we observe that if the symbol ψ(z) = 1, then Wψ,φ,k coincides with Cφ,k, while if φ(z) = z, the operator
Wψ,φ,k is the same as the kth-order generalized multiplication operator Mψ,k on H2(β).
Clearly then, every kth-order generalized composition operator and kth-order generalized multiplication
operator are examples of Wψ,φ,k and we refer to [4, 5] for various illustrations of these operators. Let us
begin the study with a non-trivial example of a kth-order weighted generalized composition operator on
H2(β).

Example 3.2. Consider the space H2(β), where β is an increasing sequence of positive reals with β0 = 1. Let
ψ(z) = azm and φ(z) = bz, where a and b are non-zero complex numbers such that |b| < 1. We claim that for m ≤ k,
the mapping f 7→ ψ.( f (k)

◦ φ) on H2(β) defines a bounded operator Wψ,φ,k. For, we compute and obtain that for
f (z) =

∑
∞

n=0 fnzn
∈ H2(β),

‖ψ.( f (k)
◦ φ)‖2β ≤

∞∑
n=0

|a|2|b|2nα2
n+k| fn+k|

2β2
n+k

=

∞∑
n=0

A2
n| fn+k|

2β2
n+k

≤M2
‖ f ‖2β ,
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where the sequence {An}n≥0, given as An = αn+k|a||b|n for each n ≥ 0, converges to 0 and therefore An ≤ M for each
n ≥ 0, for some M > 0. This establishes the existence of a bounded weighted generalized composition operator Wψ,φ,k.

Example 3.3. Working along parallel lines, one can establish that on the sequence space H2(β) with decreasing weight
sequence β, the operator Wψ,φ,k induced by ψ(z) = azm with m > k and φ(z) = bz, where 0 , a, b ∈ C with |b| < 1, is
a bounded operator on H2(β).

Example 3.4. There also exist bounded operators Wψ,φ,k on H2(β), where the weight sequence β is neither an increasing
nor a decreasing sequence. For instance, consider the weighted Hardy space H2(β) with the weight sequence β defined
as

βn =

1 if n = 0, 1
n(n−1)

2n−2 βn−1 if n ≥ 2.

Then with straightforward computations, we obtain that the symbols ψ(z) = z and φ(z) = z/2 induce a bounded
2nd-order weighted composition operator on sequence space H2(β).

Since the existence of bounded operators Wψ,φ,k on H2(β) is ensured, it is natural to look for and determine
the symbols in H2(β) which induce the bounded mapping f 7→ ψ.( f (k)

◦φ) for each f ∈ H2(β). The following
theorem provides a necessary and sufficient condition for the boundedness of this mapping. It is worth
recalling here that the product of two formal power series f and 1 in H2(β) is defined as ( f .1)(z) =

∑
∞

n=0 hnzn,
where hn =

∑n
k=0 fn−k1n, f (z) =

∑
∞

n=0 fnzn and 1(z) =
∑
∞

n=0 1nzn. If there is no confusion, we use the symbol
f1 to denote the product f .1 of two formal power series f and 1 in H2(β).

Theorem 3.5. Let ψ and φ be two formal power series in H2(β) such that {ψφn : n ≥ 0} is an orthogonal family in
H2(β). Then the mapping f 7→ ψ.( f (k)

◦φ) on H2(β) defines a bounded operator if and only if there exists M > 0 such
that αn+k‖ψφn

‖β ≤Mβn+k for each n ≥ 0.

Proof. If the mapping is bounded, we are assured of the existence of M > 0 such that ‖Wψ,φ,k f ‖β ≤M‖ f ‖β for
each f ∈ H2(β). In particular, for f (z) = zn, where n ≥ k, the above inequality yields the necessary condition.
For sufficiency, consider any f (z) =

∑
∞

n=0 fnzn
∈ H2(β). Since the family {ψφn : n ≥ 0} is orthogonal in H2(β),

we get that

‖ψ.( f (k)
◦ φ)‖2β = ‖

∞∑
n=k

αn fnψφn−k
‖

2
β =

∞∑
n=k

α2
n| fn|

2
‖ψφn−k

‖
2
β

≤M2
∞∑

n=k

| fn|2β2
n ≤M2

‖ f ‖2β,

thereby providing that the induced operator Wψ,φ,k is bounded on H2(β).

As immediate consequences of this theorem, we obtain boundedness criterion for the kth-order generalized
composition operators (by substituting ψ(z) = 1) and the kth-order generalized multiplication operators (by
substituting φ(z) = z) on H2(β), which have also independently been obtained in [4, 5].

Corollary 3.6. [4] Let {φn : n ≥ 0} be an orthogonal family in H2(β). Then the kth-order generalized composition
operator Cφ,k on H2(β) is bounded if and only if there exists some M > 0 such that αn+k‖φn

‖β ≤Mβn+k for each n ≥ 0.

Corollary 3.7. [5] The kth-order generalized multiplication operator Mφ,k on H2(β), induced by the symbol φ(z) =
azm, where 0 , a ∈ C and m ≥ 0 is an integer, is bounded if and only if there exists some M > 0 such that
|a|βn+mαn+k ≤Mβn+k for each n ≥ 0.

In our pursuit to describe the structural properties of Wψ,φ,k, we begin with the study of compactness of
these operators.
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Theorem 3.8. Let ψ,φ ∈ H2(β) be such that Wψ,φ,k ∈ B(H2(β)) and {ψφn : n ≥ 0} is an orthogonal family in H2(β).
Then a necessary and sufficient condition for Wψ,φ,k to be compact is that αn

βn
‖ψφn−k

‖β → 0 as n→∞.

Proof. For the necessary part, assume that Wψ,φ,k is a compact operator on H2(β). Since the sequence
{en} converges weakly to zero and a compact operator maps a weakly convergent sequence to a strongly
convergent sequence, we obtain for each n ≥ k,

‖Wψ,φ,ken‖
2
β = ‖

αn

βn
ψ.φn−k

‖
2
β = (

αn

βn
)2
〈ψφn−k, ψφn−k

〉

= (
αn

βn
)2
‖ψφn−k

‖
2
β → 0

as n→∞. Hence, αn
βn
‖ψφn−k

‖β → 0 as n→∞.
For the sufficient part, we define a sequence {Wm}m≥0 of compact operators on H2(β) defined as

Wm f (z) =

m∑
n=0

fn(Wψ,φ,mzn),

where f (z) =
∑
∞

n=0 fnzn
∈ H2(β). Our hypothesis provides us for every ε > 0, a n0 ∈ N (n0 ≥ k) such that

αn
βn
‖ψφn−k

‖β < ε for all n ≥ n0. Then for each m ≥ n0,

‖Wψ,φ,k f −Wm f ‖2β =

∞∑
n=m+1

α2
n| fn|

2
‖ψφn−k

‖
2
β < ε

2
‖ f ‖2β.

Being the uniform limit of a sequence of compact operators, Wψ,φ,k is compact and the proof is complete.

Next, we focus our attention towards the Hilbert-Schmidt behaviour of kth-order weighted generalized
composition operators. It is trivial to obtain the following for the operator Wψ,φ,k to be Hilbert-Schmidt.

Proposition 3.9. A necessary and sufficient condition for the bounded operator Wψ,φ,k on H2(β) to be Hilbert-Schmidt
is that

∑
∞

n=0(αn+k
βn+k

)2
‖ψφn

‖
2
β < ∞.

Example 3.10. Some illustrations of compact and Hilbert-Schmidt weighted generalized composition operators are
described here:

1. Consider the bounded operator Wψ,φ,k on H2(β), where βn = 2n for each n ≥ 0, ψ(z) = z and φ(z) = z/2. We
obtain that

αn

βn
‖ψφn−k

‖β =
(n + k)!

n!
βn−k+1

2n2n−k
=

(n + k)(n + k − 1) · · · (n + 1)
2n−1

which converges to 0 as n→∞. Thus Wψ,φ,k is a compact operator (utilizing Theorem 3.8).
2. Consider the weighted Hardy space H2(β) with the weight sequence βn = n!. Let ψ(z) = azp and φ(z) = bz

belong to H2(β), where p ≥ 0 is an integer and 0 , a, b ∈ C such that |b| < 1. In light of Theorem 3.5, we obtain
that the induced operator Wψ,φ,k is bounded on H2(β). Further,

∞∑
n=0

(
αn+k

βn+k
)2
‖ψφn

‖
2
β = |a|2

∞∑
n=0

|b|2n (n + p)!2

n!2
,

which is a convergent series, thereby providing that this operator is a Hilbert-Schmidt operator.
3. Let ψ(z) = azp (p ≥ 0) and φ(z) = z be two elements of H2(β), where the sequence β is defined as

βn =


1 if n=0
βp if n < k
(n − k + 1)k+1βn−k+p if n ≥ k
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and 0 , a ∈ C and k ∈ N is such that k ≥ p. Since αn+k
βn+k
‖ψφn

‖β = |a| (n+k)···(n+1)
(n+1)k+1 → 0 as n → ∞, Theorem 3.5

provides that the operator Wψ,φ,k is bounded on H2(β). Also, one can see that the series

∞∑
n=0

(
αn+k

βn+k
)2
‖ψφn

‖
2
β = |a|2

∞∑
n=0

( (n + k) · · · (n + 1)
(n + 1)k+1

)2

is convergent and hence the operator is Hilbert-Schmidt.

We now proceed ahead to describe the normality and isometric behaviour of the weighted generalized
composition operators. Now onwards, we assume the sequence β to be such that the symbols ψ(z) = azm

and φ(z) = bzp (m, p ≥ 0 are integers and 0 , a, b ∈ C) induce the bounded operator Wψ,φ,k on H2(β). In our
pursuance, firstly we compute the adjoint of this operator. We obtain that for each m0 ≥ 0 and for each

f (z) =
∞∑

n=0
fnzn
∈ H2(β),

〈W∗

ψ,φ,kzm0 , f (z)〉 = 〈zm0 ,
∞∑

n=0

αn+k fn+kabnznp+m
〉

=

β2
m0
αt+k f t+kab

t
if m0 = tp + m for some t ≥ 0

0 otherwise.

=

〈
β2

m0

β2
t+k
αt+kab

t
zt+k, f (z)〉 if m0 = tp + m for some t ≥ 0

0 otherwise.

Hence for ψ(z) = azm and φ(z) = bzp, the adjoint of Wψ,φ,k is given as

W∗

ψ,φ,kzn =

 β2
n

β2
t+k
αt+kab

t
zt+k if n = tp + m for some t ≥ 0

0 otherwise.
(1)

We shall now describe the isometric behaviour of Wψ,φ,k. The structure of this operator provides that
Wψ,φ,ken = 0 for each 0 ≤ n ≤ k − 1. This leads us to the following.

Proposition 3.11. A kth-order weighted generalized composition operator on H2(β) cannot be an isometry.

Recall that a bounded operator T is said to be a co-isometry if the adjoint T∗ of T is an isometry. We shall
now describe the co-isometric nature of the operator Wψ,φ,k, where ψ(z) = azm, φ(z) = bzp, m and p are
non-negative integers and 0 , a, b ∈ C.

Proposition 3.12. Let m, p ≥ 0 be integers and a, b be two non-zero complex numbers. The bounded operator Wψ,φ,k,
induced by the symbols ψ(z) = azm and φ(z) = bzp in H2(β) is a co-isometry on H2(β) if and only if m = 0, p = 1 and
βn|a||b|nαn+k = βn+k for each n ≥ 0.

Proof. We have the following cases which collectively prove the result:
(1) Let m = 0 = p. In this case, ‖W∗

ψ,φ,ken‖β = 0 , 1 = ‖en‖β for every n , 0 and therefore, the operator is not a
co-isometry.
(2) Let m = 0 and p = 1. In this case, we obtain that Wψ,φ,k is a co-isometry if and only if Wψ,φ,kW∗

ψ,φ,ken = en

for each n ≥ 0 if and only if βn

βn+k
|a||b|nαn+k = 1 for each n ≥ 0.

(3) Let m = 0 and p ≥ 2. Then ‖W∗

ψ,φ,ken‖β = 0 for all n , pt, where t ≥ 0 is an integer and hence the operator
is not co-isometric.
(4) Let m ≥ 1. Then Wψ,φ,k is not a co-isometry, for in this case ‖W∗

ψ,φ,ke0‖β = 0.
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We proceed ahead and describe the conditions under which the operators Wψ,φ,k and W∗

ψ,φ,k, induced by
specific symbols in H2(β), become partial isometries. Recall that an operator T is said to be a partial isometry
if it is an isometry on the orthogonal complement of Ker(T) (see [11]). An equivalent characterization for
an operator T to be a partial isometry is that TT∗T = T.
We obtain the following information for the operator Wψ,φ,k and its adjoint, induced by the symbols
ψ(z) = azm and φ(z) = bzp, where m, p ≥ 0 are integers and a, b are non-zero complex numbers.

Wψ,φ,kW∗

ψ,φ,kWψ,φ,ken =


β3

p(n−k)+m

β3
n
α3

n|a|2|b2
|
n−kabn−kep(n−k)+m if n ≥ k

0 otherwise
and

W∗

ψ,φ,kWψ,φ,kW∗

ψ,φ,ken =

 β4
n

β3
t+k
α3

t+k|a|
2
|b2
|
tab

t
et+k if n = tp + m for some t ≥ 0

0 otherwise.
These observations pave way for the next result.

Proposition 3.13. Suppose Wψ,φ,k ∈ B(H2(β)), where ψ(z) = azm and φ(z) = bzp, where m, p ≥ 0 are integers and
0 , a, b ∈ C. We have the following:

1. Wψ,φ,k is a partial isometry if and only if βn = βp(n−k)+mαn|a||b|n−k for each n ≥ k.
2. W∗

ψ,φ,k is a partial isometry if and only if βt+k = βtp+mαt+k|a||b|t for each t ≥ 0.

Example 3.14. We provide certain examples of co-isometric and partial isometric weighted generalized composition
operators here below:

1. On the weighted sequence space H2(β), with β defined as βn = n! for each n ≥ 0, the symbols ψ(z) = a and
φ(z) = bz ∈ H2(β), where a, b are unimodular complex numbers, induce a co-isometric Wψ,φ,k.

2. Consider the operator Wψ,φ,k as defined in Example 3.4. It is trivial to obtain that for each n ≥ 2,

βp(n−k)+mαn|a||b|n−k =
n(n − 1)

2(n−2)
βn−1 = βn,

thereby providing that this operator is a partial isometry.
3. Consider the weighted sequence space H2(β) where βn = 1 for all n < {3} ∪ {4m + 1 : m ≥ 1}, β3 = 12 and for

each n ≥ 1,

β4n+1 =
3n

2(n + 1)(n + 2)(n + 3)
βn+3.

Then the mapping f 7→ ψ.( f (3)
◦ φ) on H2(β) induced by the symbols ψ(z) = 2z and φ(z) = z4/3 is a bounded

mapping such that for each t ≥ 0, β4t+1αt+3|a||b|t = 2 (t+3)!
3t3! β4t+1 = βt+3. This yields that W∗

ψ,φ,3 is a partial
isometry.

We pursue ahead and discuss the normality of the operator Wψ,φ,k. We denote by ψn the nth-Fourier
coefficient of ψ(z) =

∑
∞

n=0 ψnzn
∈ H2(β). We obtain the following.

Proposition 3.15. A kth-order weighted generalized composition operator Wψ,φ,k induced by non-zero symbolsψ and
φ in H2(β), such that ψn , 0 for some 0 ≤ n < k, can not be hyponormal.

Proof. On the contrary, assume that the operator Wψ,φ,k is hyponormal. Let ψ(z) =
∑
∞

n=0 ψnzn
∈ H2(β) be
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such that ψ j , 0, where 0 ≤ j ≤ k − 1. The structure of this operator provides that ‖Wψ,φ,ke j‖
2
β = 0 and

‖W∗

ψ,φ,ke j‖
2
β =

∞∑
n=0

|〈e j,Wψ,φ,ken〉|
2

=
α2

k

β2
k

|〈e j, ψ〉|
2 +

∞∑
n=k+1

α2
n

β2
n
|〈e j, ψφ

n−k
〉|

2

= k!2|ψ j|
2
β2

j

β2
k

+

∞∑
n=k+1

α2
n

β2
n
|〈e j, ψφ

n−k
〉|

2.

Since the operator is hyponormal, ‖W∗

ψ,φ,ke j‖
2
β ≤ ‖Wψ,φ,ke j‖

2
β, thereby providing that ψ j = 0, which is a

contradiction. This completes the proof.

The above proposition also provides that Wψ,φ,k is not a self-adjoint operator, for every self-adjoint operator
is hyponormal.
Recall that an operator T is said to be Fredholm [8] if dimension of Ker(T) is finite, codimension of R(T)
is finite and R(T) is closed. Towards the end, we shall describe the Fredholm behaviour of the kth-order
weighted composition operator Wψ,φ,k. As a pre-requisite, we shall require the next result.

Lemma 3.16. Let ψ,φ ∈ H2(β) be such that Wψ,φ,k ∈ B(H2(β)) and {ψφn : n ≥ 0} is an orthogonal family in H2(β).
Then, Ker(Wψ,φ,k) is the linear span of the finite set {e0, e1, e2, ..., ek−1}.

Proof. The structure of Wψ,φ,k together with its linearity immediately provides that the set spanned by
{e0, e1, e2, ..., ek−1} is a subset of Ker(Wψ,φ,k). Conversely, for any f (z) =

∑
∞

n=0 fnzn
∈ Ker(Wψ,φ,k), the orthog-

onality of the family {ψφn : n ≥ 0} provides that 0 = ‖Wψ,φ,k f ‖2β =
∑
∞

n=k α
2
n| fn|2‖ψφn−k

‖
2
β, which yields that

fn = 0 for each n ≥ k. Hence the result.

The following proposition provides a necessary condition for Wψ,φ,k to be a Fredholm operator.

Proposition 3.17. Let Wψ,φ,k ∈ B(H2(β)) be a Fredholm operator induced by the symbols ψ and φ such that
{ψφn : n ≥ 0} is an orthogonal family in H2(β). Then there exists ε > 0 such that αn+k

βn+k
‖ψφn

‖β ≥ ε for each n ≥ 0.

Proof. Since Wψ,φ,k is Fredholm, R(Wψ,φ,k) is closed and hence Wψ,φ,k is bounded away from zero on
Ker(Wψ,φ,k)⊥. Thus there exists ε > 0 such that ‖Wψ,φ,ken‖β ≥ ε‖en‖β for each n ≥ k. That is, αn

βn
‖ψφn−k

‖β ≥ ε

for each n ≥ k. This completes the proof.

As a consequence to the above proposition, we obtain that ifψ andφ in H2(β) are such that Wψ,φ,k ∈ B(H2(β)),
{ψφn : n ≥ 0} is an orthogonal family in H2(β) and αn+k

βn+k
‖ψφn

‖β → 0 as n→∞, then Wψ,φ,k can not be Fredholm.
For instance, the operator Wψ,φ,k as defined in Example 3.2 or the one given in Example 3.10 (1) cannot be
Fredholm.
Under a stronger hypothesis, we obtain a necessary and sufficient condition for Wψ,φ,k on H2(β) to be a
Fredholm operator.

Theorem 3.18. Suppose ψ,φ ∈ H2(β) be such that Wψ,φ,k ∈ B(H2(β)) and {ψφn : n ≥ 0} is an orthogonal family in
H2(β) spanning H2(β). Then Wψ,φ,k is Fredholm if and only if Wψ,φ,k has closed range.

Proof. Firstly, we claim that for the orthogonal family {ψφn : n ≥ 0} spanning H2(β), Ker(W∗

ψ,φ,k) is finite
dimensional. Since the family {ψφn/‖ψφn

‖β : n ≥ 0} forms an orthonormal basis of H2(β), every f ∈
Ker(W∗

ψ,φ,k) can be expressed uniquely as
∑
∞

m=0 fmψφm, where fm ∈ C. Also, for each n ≥ k,

0 = 〈W∗

ψ,φ,k f , en〉 = 〈

∞∑
m=0

fmψφm,
αn

βn
ψφn−k

〉 = fn−k
αn

βn
.
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Thus fn−k = 0 for each n ≥ k so that f = 0 and therefore Ker(W∗

ψ,φ,k) = {0}. This information together
with Lemma 3.16 yields the sufficient part of the theorem. Necessary part follows from the definition of a
Fredholm operator.

Utilizing Proposition 3.17 and Theorem 3.18, we obtain the following equivalent conditions for Wψ,φ,k to be
Fredholm.

Theorem 3.19. Letψ,φ ∈ H2(β) be such that Wψ,φ,k ∈ B(H2(β)) and {ψφn : n ≥ 0} is an orthogonal family in H2(β)
spanning H2(β). The following are equivalent:

1. Wψ,φ,k is a Fredholm operator.
2. R(Wψ,φ,k) is closed.
3. There exists ε > 0 such that αn+k

βn+k
‖ψφn

‖β ≥ ε for each n ≥ 0.

Proof. It suffices to prove that condition (2) is implied by (3). In fact, we prove that if (3) holds, then
Wψ,φ,k is bounded away from zero on Ker(Wψ,φ,k)⊥ and thus R(Wψ,φ,k) is closed. In this pursuance, let
f ∈ (Ker(Wψ,φ,k))⊥. Then f (z) =

∑
∞

n=k fnzn and therefore

‖Wψ,φ,k f ‖2β =

∞∑
n=k

α2
n| fn|

2
‖ψφn

‖
2
β ≥ ε

2
‖ f ‖2β,

for some ε > 0. Hence the claim.

As an illustration, consider the operator Wψ,φ,k on H2(β) where βn = n! for each n ≥ 0, induced by the
symbols ψ(z) = a , 0 and φ(z) = z. Clearly, {ψφn : n ≥ 0} is an orthogonal family in H2(β) which spans H2(β)
and αn+k

βn+k
‖ψφn

‖β = |a|. Choose ε = |a| > 0. Then, Theorem 3.19 provides that Wψ,φ,k is a Fredholm operator on
H2(β).
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