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PGL2(q) cannot be determined by its cs
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Abstract. For a finite group G, let Z(G) denote the center of G and cs∗(G) be the set of non-trivial conjugacy
class sizes of G. In this paper, we show that if G is a finite group such that for some odd prime power q ≥ 4,
cs∗(G) = cs∗(PGL2(q)), then either G � PGL2(q) × Z(G) or G contains a normal subgroup N and a non-trivial
element t ∈ G such that N � PSL2(q)×Z(G), t2

∈ N and G = N.〈t〉. This shows that the almost simple groups
cannot be determined by their set of conjugacy class sizes (up to an abelian direct factor).

1. Introduction

Throughout this paper, G is a finite group, Z(G) is the center of G and for a ∈ G, clG(a) is the conjugacy
class in G containing a and CG(a) denotes the centralizer of the element a in G. We denote by cs∗(G), the set
of non-trivial conjugacy class sizes of G. Studying the interplay between the structure of a group and the
set of its conjugacy class sizes is one of the interesting concepts in group theory. For instance, J. Thompson
in 1988 conjectured that:
Thompson’s conjecture. Let S be a simple group. If G is a finite centerless group with cs∗(G) = cs∗(S), then
G � S.

In a series of papers, it has been proved that Thompson’s conjecture is true for many families of finite
simple groups (see [1]-[6], [9], [11], [13], [16]).

G is named an almost simple group when there exists a simple group S such that S E G . Aut(S).
In [14] and [17], it has been shown that Thompson’s conjecture is true for some almost simple groups.
Inspired by Thompson’s conjecture, A. Camina and R. Camina come up with the following problem

[10]:
Problem. If S is a simple group and G is a finite group with cs∗(G) = cs∗(S), then is it true that G � S×Z(G)?

In 2015, it has been investigated that the above problem is true when S � PSL2(q) [8]. Then, in [7], it
has been proven that the answer of the above problem is true for many families of finite simple groups.
Naturally, one can ask what happens for G in the above problem when S is an almost simple group. So, in
this paper, we prove that:
Main theorem. Let q > 4 be an odd prime power. If G is a finite group with cs∗(G) = cs∗(PGL2(q)), then
either G � PGL2(q) × Z(G) or G contains a normal subgroup N and a non-trivial element t ∈ G such that
N � PSL2(q) × Z(G), t2

∈ N and G = N.〈t〉.
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In this paper, all groups are finite. For simplicity of notation, throughout this paper let q > 4 be a power
of an odd prime p, GF(q) be a field with q elements and G be a group with cs∗(G) = cs∗(PGL2(q)). Throughout
this paper, we use the following notation: For a natural number n, let π(n) be the set of prime divisors of n,
Cn denote a cyclic group of order n and for a group H, let π(H) = π(|H|). Also, H.G denotes an extension of
H by G. For a prime r and natural numbers a and b, |a|r is the r-part of a, i.e., |a|r = rt when rt

| a and rt+1 - a
and, gcd(a, b) and lcm(a, b) are the greatest common divisor of a and b and the lowest common multiple of
a and b, respectively. For the set π of some primes, x is named a π-element (π′-element) of a group H if
π(o(x)) ⊆ π (π(o(x)) ⊆ π(H) − π).

2. Definitions and preliminary results

Lemma 2.1. [12, Proposition 4] Let H be a group. If there exists p ∈ π(H) such that p does not divide any conjugacy
class sizes of H, then the p-Sylow subgroup of H is central in H.

Definition 2.2. For a group H, the prime graph GK(H) of H is a simple graph whose vertices are the prime divisors
of the order of H and two distinct prime numbers p and q are joined by an edge if G contains an element of order pq.
Denote by t(H) the number of connected components of the graph GK(H) and denote by πi = πi(H), i = 1, ..., t(H),
the i-th connected component of GK(H). For a group H of an even order, let 2 ∈ π1. If GK(H) is disconnected, then
|H| can be expressed as a product of co-prime positive integers mi(H), i = 1, 2, . . . , t(H), where π(mi(H)) = πi(H),
and if there is no ambiguity write mi for showing mi(H). These mis are called the order components of H and the set
of order components of H will be denoted by OC(H). The list of all simple groups with disconnected prime graph and
the sets of their order components have been obtained in [15] and [18].

Lemma 2.3. [14] If H is a group with OC(H) = OC(PGL2(q)), then H � PGL2(q).

Lemmas 2.4, 2.5 and 2.6 are easy to prove for a group H:

Lemma 2.4. For x ∈ H − Z(H), let C/Z(H) = CH/Z(H)(xZ(H)). Then CH(x) E C.

Lemma 2.5. For every x ∈ H and natural number n,

(i) CH(x) ≤ CH(xn) and |clH(xn)| | |clH(x)|;

(ii) if |clH(x)| is maximal in cs∗(H) by divisibility and π = π(o(x)), then for every π′-element y ∈ CH(x), CH(xy) =
CH(x). In particular, if |clH(x)| is maximal and minimal in cs∗(H) by divisibility and π = π(o(x)), then for every
π′-element y ∈ CH(x) − Z(H), CH(y) = CH(x).

Lemma 2.6. Let K be a normal subgroup of H and H = H/K. Let x be the image of the element x of H in H. Then,

(i) |clK(x)| divides |clH(x)|;

(ii) |clH(x)| divides |clH(x)|;

(iii) for every abelian group A, cs∗(H × A) = cs∗(H).

Lemma 2.7. For a group H, lcm{α : α ∈ cs∗(H)} | [H : Z(H)].

Proof. Since for every x ∈ H, Z(H) ≤ CH(x), we get that |clH(x)| | [H : Z(H)]. Thus, lcm{α : α ∈ cs∗(H)} | [H :
Z(H)], as wanted.

Lemma 2.8. Let π be a set of primes, x be a non-central π-element of the group H and C/Z(H) = CH/Z(H)(xZ(H)).
Then, for a π′-element y ∈ H, y ∈ C if and only if y ∈ CH(x).

Proof. Obviously, CH(x) ≤ C. Now let y ∈ C be a π′-element. Then, yZ(H) ∈ C/Z(H), so there exists z ∈ Z(H)
such that y−1xy = xz. This shows that o(x) = o(xz) = lcm(o(x), o(z)), hence o(z) | o(x). On the other hand,
xyx−1 = yz. Thus, o(y) = o(yz) = lcm(o(y), o(z)), so o(z) | o(y). This forces o(z) | gcd(o(x), o(y)) = 1. Therefore,
z = 1. Consequently, y−1xy = x. This shows that y ∈ CH(x), as desired.
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Lemma 2.9. For a group H, let t, s ∈ π(H) and S ∈ Syls(H). If for every t-element y ∈ H−Z(H), |clH(y)|s > 1 and if x
is a t-element of H such that |clH(x)| is maximal and minimal in cs∗(H) by divisibility, then either |H/Z(H)|s = |clH(x)|s
or CH(S) ≤ Z(H).

Proof. Let CH(S) � Z(H). Thus, by assumption and Lemma 2.5(i), there exists a t′-element z ∈ CH(S)−Z(H).
Now we claim that | H

Z(H) |s = |clH(x)|s. If not, then CH(x) contains a non-central s-element w. Hence, by
Lemma 2.5(ii), CH(x) = CH(w). Obviously, z ∈ CH(S) ≤ CH(w) = CH(x). Consequently, Lemma 2.5(ii) forces
CH(x) = CH(z). Therefore, |clH(x)|s = |clH(z)|s = 1, which is a contradiction. So, |H/Z(H)|s = |clH(x)|s, as
claimed.

Lemma 2.10. For a group H and t ∈ π(H), let {|clH(x)| : x ∈ H−Z(H), o(x) is a power of t} = {α} and |cs∗(H)| > 1.
If α is maximal and minimal in cs∗(H) by divisibility, then |H/Z(H)|t =Max{|β|t : β ∈ cs∗(H)}.

Proof. Working towards a contradiction, let |H/Z(H)|t , Max{|β|t : β ∈ cs∗(H)}. Thus for every γ ∈ cs∗(H)−{α},
|γ|t < |H/Z(H)|t. Let γ = |clH(y)|, for some y ∈ H −Z(H). Then, by our assumption and Lemma 2.5(i), we can
assume that y is a t′-element. Also, |clH(y)|t < |H/Z(H)|t. Hence, CH(y) contains a non-central t-element z.
Since |clH(z)| = α, Lemma 2.5(ii) shows that |clH(y)| = |clH(z)| = α, which is a contradiction. This completes
the proof.

Lemma 2.11. For a group H, π(H/Z(H)) = ∪α∈cs∗(H)π(α).

Proof. By Lemma 2.7, ∪α∈cs∗(H)π(α) ⊆ π(H/Z(H)). Now if there exists t ∈ π(H/Z(H)) − ∪α∈cs∗(H)π(α), then
for every α ∈ cs∗(H), t - α. Therefore, Lemma 2.1 forces the t-Sylow subgroup T of H to be an abelian
direct factor of H. Thus, T ≤ Z(H) and hence, t - |H/Z(H)|, which is a contradiction. This shows that
π(H/Z(H)) = ∪α∈cs∗(H)π(α).

Lemma 2.12. For a group H, if there exists α ∈ cs∗(H) and p, q ∈ π(H/Z(H)) (p , q) such that |α|p < |H/Z(H)|p and
|α|q < |H/Z(H)|q, then there exists a path between p and q in GK(H/Z(H)).

Proof. Let x ∈ H−Z(H) with α = |clH(x)|. By Lemma 2.5(i), we can assume that x is of the prime power order.
Since |α|p < |H/Z(H)|p and |α|q < |H/Z(H)|q, we get that p, q | |CH(x)/Z(H)|. Thus, CH(x) contains a non-central
p-element x1 and a non-central q-element x2. If p | o(x), then since x2 ∈ CH(x), we get that xx2Z(H) ∈ H/Z(H)
is of order pq, so the proof is complete. The same reasoning completes the proof when q | o(x). Now let
o(x) be a power of a prime r, where r < {p, q}. The same reasoning as above shows that H/Z(H) contains
elements of order pr and rq, so p − r − q is a path in GK(H/Z(H)), as wanted.

3. Main results

Theorem 3.1. OC(G/Z(G)) = OC(PGL2(q)).

Proof. We are going to prove this theorem in the following steps:
Step 1. |PGL2(q)| | [G : Z(G)].
Proof. From Lemma 2.7, lcm{α : α ∈ cs∗(G)} | [G : Z(G)]. On the other hand,

cs∗(G) = cs∗(PGL2(q)) = {q2
− 1, q(q ± 1), q(q ± 1)/2}. (1)

Therefore, |PGL2(q)| | [G : Z(G)].

Step 2. For every p-element x ∈ G − Z(G), |clG(x)| = q2
− 1 and |clḠ(x̄)| = q2

− 1, where Ḡ = G/Z(G) and x̄ is
the image of x in Ḡ.
Proof. We first show that for every p-element x ∈ G−Z(G), |clG(x)| = q2

−1. Working towards a contradiction,
assume that G contains a non-central p-element x such that |clG(x)| , q2

− 1. Thus, by (1)

|clG(x)|p = |PGL2(q)|p. (2)
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Also, q2
− 1 ∈ cs∗(G), so there exists a non-central element y ∈ G such that |clG(y)| = q2

− 1. Hence, we can
assume that there exists a p-Sylow subgroup P of G such that x ∈ P and P ≤ CG(y). Since q2

−1 is maximal in
cs∗(G) by divisibility, Lemma 2.5 leads us to assume that y is of the prime power order. If y is a p′-element,
then since x ∈ CG(y), we get from maximality and minimality of q2

− 1 in cs∗(G), and Lemma 2.5(ii) that
|clG(x)| = q2

− 1, which is a contradiction. This forces y to be a p-element and for every p′-element z ∈ G,
|clG(z)| , q2

− 1. Thus,

y ∈ Z(P) − Z(G). (3)

Also, x ∈ CG(x) − Z(G). Thus, p | |CG(x)/Z(G)| and hence, (2) forces |G/Z(G)|p > |PGL2(q)|p. Now let z be a
p′-element of G−Z(G). Then, the above statements show that p | |CG(z)/Z(G)|, so CG(z) contains a non-central
p-element w. We can assume that w ∈ P and P∩CG(wz) ∈ Sylp(CG(wz)). Moreover, Lemma 2.5(ii) shows that
|clG(zw)|, |clG(w)| , q2

− 1, so (1) forces |CG(w)|p = |CG(wz)|p = |CG(z)|p. Since CG(wz) ≤ CG(w),CG(z), we get
from (3) that y ∈ P ∩ CG(w) = P ∩ CG(wz) ≤ CG(z). Thus, Lemma 2.5(ii) shows that |clG(z)| = |clG(y)| = q2

− 1,
which is a contradiction. This shows that for every p-element x ∈ G − Z(G), |clG(x)| = q2

− 1.
Let x ∈ G − Z(G) be a p-element and C/Z(G) = CḠ(x̄). Thus, by the above statements, |clG(x)| = q2

− 1
and hence if y ∈ C − CG(x), then Lemmas 2.4 and 2.8 show that o(yCG(x)) is a power of p. So, Lemma 2.4
guarantees that p | |C/CG(x)|. However, C ≤ G and hence, |C/CG(x)| | [G : CG(x)] = |clG(x)|. This forces
p | |clG(x)|, which is a contradiction. Therefore, C = CG(x) and hence, |clḠ(x̄)| = |clG(x)| = q2

− 1, as desired.
Step 3. |G/Z(G)| = |PGL2(q)|.
Proof. From Step 1, |PGL2(q)| | [G : Z(G)]. Let s ∈ π(G/Z(G)). Since by Lemma 2.11, π(G/Z(G)) = π(PGL2(q)),
we have s ∈ π(PGL2(q)). Let S1 ∈ Syls(G) and S ∈ Syls(PGL2(q)). Since Z(S) , 1 and Z(PGL2(q)) = {1}, we get
that there exists α ∈ cs∗(PGL2(q)) = cs∗(G) such that |α|s = 1. This forces CG(S1) � Z(G). Thus, if s , p, then
Step 2 and Lemma 2.9 show that |G/Z(G)|s = |β|s, for some β ∈ cs∗(G). So |G/Z(G)|s ≤ |PGL2(q)|s. Also, Lemma
2.10 guarantees that |G/Z(G)|p ≤ |PGL2(q)|p and hence, |G/Z(G)| | |PGL2(q)|. Therefore, |G/Z(G)| = |PGL2(q)|.
Step 4. OC(G/Z(G)) = OC(PGL2(q)).
Proof. If there exists t ∈ π(G/Z(G)) − {p} such that t and p are adjacent in GK(G/Z(G)), then there exist a
non-central p-element x and a non-cental t-element y such that xy = yx. So, y ∈ CG(x) − Z(G) and hence
t | |CG(x)/Z(G)|. On the other hand, Steps 2 and 3 show that |clG(x)| = q2

− 1 and |G/Z(G)| = |PGL2(q)|. Thus,
t ∈ π(q2

−1) and |G/Z(G)|t = |clG(x)|t|CG(x)/Z(G)|t > |q2
−1|t = |PGL2(q)|t, which is a contradiction. This forces

{p} to be an odd connected component of GK(G/Z(G)). Also, for every t, s ∈ π(PGL2(q)) which are adjacent
in GK(PGL2(q)), Step 3 and Lemma 2.12 show that there exists a path between t and s in GK(G/Z(G)). Now
since π1(PGL2(q)) = π(q2

− 1) is a connected component in GK(PGL2(q)), |G/Z(G)| = |PGL2(q)| and {p} is an
odd connected component of GK(G/Z(G)), we get that π(q2

− 1) is a component of GK(G/Z(G)). Hence,
OC(G/Z(G)) = OC(PGL2(q)).

Corollary 3.2. G/Z(G) � PGL2(q).

Proof. Since by Theorem 3.1, OC(G/Z(G)) = OC(PGL2(q)), Lemma 2.3 shows that G/Z(G) � PGL2(q).

Lemma 3.3. For every subgroup Z1 of Z(G), cs∗(G/Z1) = cs∗(PGL2(q)).

Proof. Let Z1 be a subgroup of Z(G). Put G̃ = G/Z1 and Ĝ = (G/Z1)/(Z(G)/Z1). For every x ∈ G, let x̃
and x̂ be the images of x in G̃ and Ĝ, respectively. By Corollary 3.2, Ĝ � G/Z(G) � PGL2(q). By (1),
there exist x1, x2, x3 ∈ G such that |clĜ(x̂1)| = q2

− 1, |clĜ(x̂2)| = q(q − 1) and |clĜ(x̂3)| = q(q + 1). Also
for every 1 ≤ i ≤ 3, Lemma 2.6 implies that |clĜ(x̂i)| | |clG̃(x̃i)| and |clG̃(x̃i)| | |clG(xi)|. However, q2

− 1
and q(q ± 1) are maximal in cs∗(Ĝ) = cs∗(PGL2(q)) = cs∗(G) by divisibility. Thus, for every 1 ≤ i ≤ 3,
|clĜ(x̂i)| = |clG̃(x̃i)| = |clG(xi)| ∈ {q2

− 1, q(q ± 1)}. Therefore, q2
− 1, q(q ± 1) ∈ cs∗(Ĝ).

On the other hand, for ε ∈ {±1}, there exists yε ∈ G such that |clG(yε)| = q(q+ε1)/2. Since |clĜ(ŷε)| | |clG̃(ỹε)|,
|clG̃(ỹε)| | |clG(yε)| and q(q + ε1)/2 is minimal in cs∗(PGL2(q)) = cs∗(G), we get that |clĜ(ŷε)| = |clG̃(ỹε)| =
|clG(yε)| = q(q + ε1)/2. Therefore, q(q ± 1)/2 ∈ cs∗(Ĝ) and hence, cs∗(G) ⊆ cs∗(G̃). Now if y ∈ G such
that |clG̃(ỹ)| ∈ cs∗(G̃) − cs∗(G), then since |clĜ(ŷ)| | |clG̃(ỹ)|, |clG̃(ỹ)| | |clG(y)| and |clĜ(ŷ)|, |clG(y)| ∈ cs∗(Ĝ) =
cs∗(PGL2(q)) = cs∗(G), we get, by considering the maximal elements of cs∗(G), that |clĜ(ŷ)| ∈ {q(q ± 1)/2}.
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Therefore, |clG(y)| ∈ {q(q ± 1), q(q ± 1)/2}. Hence, |clG̃(ỹ)| ∈ {q(q ± 1), q(q ± 1)/2} ⊆ cs∗(G), a contradiction. This
implies that cs∗(G̃) = cs∗(G).

Lemma 3.4. If M is a normal subgroup of G with M/Z(M) � PGL2(q), then cs∗(M) = cs∗(PGL2(q)).

Proof. Put M̄ = M/Z(M) and for x ∈ M, let x̄ be the image of x in M̄. Then, since |clM̄(x̄)| | |clM(x)| and
|clM(x)| | |clG(x)|, arguing by analogy as the proof of Lemma 3.3 completes the proof.

Lemma 3.5. For a group H, if x ∈ H and Z(H) ≤ 〈x〉, then CH̄(x̄) ≤ NH(〈x〉)/Z(H), where H̄ = H/Z(H) and x̄ is the
image of x in H̄.

Proof. Let ȳ = yZ(H) ∈ CH̄(x̄). Then, there exists z ∈ Z(H) such that y−1xy = xz ∈ 〈x〉. Thus, y ∈ NH(〈x〉).
Therefore, yZ(H) ∈ NH(〈x〉)/Z(H), as wanted.

Lemma 3.6. Let Z = Z(GL2(q)) and let x̄ be the image of x ∈ GL2(q) in PGL2(q). If q ≡ ε (mod 4) and |clPGL2(q)(x̄)| |
q(q + ε), then either |clPGL2(q)(x̄)| = q(q + ε) or x̄ ∈ SL2(q)Z/Z and |clPGL2(q)(x̄)| = q(q + ε)/2.

Proof. Let |clPGL2(q)(x̄)| | q(q + ε) and |clPGL2(q)(x̄)| , q(q + ε). Then, |clPGL2(q)(x̄)| = q(q + ε)/2 and hence,
|CPGL2(q)(x̄)| = 2(q − ε). Thus, x̄ is a semi-simple element in PGL2(q) and hence o(x̄) | (q − ε). So, one of the
following cases holds:
I. ε = +. Then, we can assume that for some µ ∈ GF(q) − {0}, x = diag(µ, 1). Since |CPGL2(q)(x̄)| = 2(q − ε), we
can check at once that wZ ∈ CPGL2(q)(x̄), where

w =
(

0 1
1 0

)
.

Thus, there exists 1 , z ∈ Z such that

x−1wx = wz (4)

and hence lcm(o(z), o(w)) = o(wz) = o(w) = 2. This forces o(z) = 2. Therefore, z = diag(−1,−1). So, (4)
guarantees that µ = µ−1 = −1. On the other hand, for a generator d of GF(q) − {0}, d(q−1)/2 = −1. However,
(q − 1)/2 is even. Hence, there exists d′ ∈ GF(q) − {0} such that d′2 = −1. Therefore, x = diag(d′2, 1) =
diag(d′, d′−1)diag(d′, d′) ∈ SL2(q)Z. This shows that x̄ ∈ SL2(q)Z/Z.
II. ε = −. Let α ∈ GF(q2) − {0} such that o(α) = o(x). Let σ be a Frobenius automorphism of GL2(GF(q)) such
that (GL2(GF(q)))σ = GL2(q), where GF(q) is an algebraic closure of GF(q). Then, there exists 1 ∈ GL2(GF(q))
such that 1−11σ = w, where

w =
(

0 1
1 0

)
.

Set t = diag(α, αq). We can check at once that w1, t1 ∈ GL2(q) and NGL2(q)(〈t1〉) = Cq2−1.〈w1〉 such that Z ≤ Cq2−1
and t1 ∈ Cq2−1. Without loss of generality, let t1 = x. Thus by Lemma 3.5, w1Z ∈ CPGL2(q)(x̄). However,
o(w1) = 2 and [x,w1] = z ∈ Z. So, o(zw1) = o(w1) = 2 and hence o(z) = 2. Therefore, z = diag(−1,−1). Since
w−1t1w1 = t1z, w−1tw = tz, consequently, αq = −α. This forces α2(q−1) = 1. Thus, o(x̄) = o(t1) = 2. Since
[PGL2(q) : SL2(q)Z/Z] = 2, we get from 4 | q + 1 that x̄ ∈ SL2(q)Z/Z, as wanted.

Lemma 3.7. If G = (PSL2(q)×Z(G)).〈t〉, where t ∈ G−(PSL2(q)×Z(G)) and t2
∈ PSL2(q)×Z(G), then cs∗(G/Z(G)) =

cs∗(G).

Proof. Since PSL2(q) E PSL2(q) × Z(G), for every σ ∈ Aut(PSL2(q) × Z(G)), σ(PSL2(q)) ∩ PSL2(q) E PSL2(q).
However, PSL2(q) is simple. Thus, σ(PSL2(q)) ∩ PSL2(q) = {1} or PSL2(q). In the first case, PSL2(q) ×
σ(PSL2(q)) ≤ PSL2(q) × Z(G), which is impossible. Consequently, σ(PSL2(q)) = PSL2(q). This shows that
PSL2(q) is a characteristic subgroup of PSL2(q)×Z(G). On the other hand, [G : PSL2(q)×Z(G)] = 2. Therefore,
PSL2(q) × Z(G) E G and hence PSL2(q) E G. Thus, for every x ∈ G and y ∈ PSL2(q), x−1yx ∈ PSL2(q). This
forces CG/Z(G)(yZ(G)) = CG(y)/Z(G). Consequently, |clG/Z(G)(yZ(G))| = |clG(y)|.
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Now let y ∈ G − (PSL2(q) × Z(G)). So, y = 1t for some 1 ∈ PSL2(q) × Z(G). Without loss of generality,
let 1 ∈ PSL2(q). Then, since PSL2(q) E G, we can see at once that there do not exist 1′ ∈ PSL2(q) × Z(G)
and z′ ∈ Z(G) − {1} such that y1′y−1 = 1′z′. Also, if there exists 1′ ∈ PSL2(q) and z′, z′′ ∈ Z(G) such that
(1′z′t)−1y(1′z′t) = yz′′, then t−11′−1y1′t = yz′′, so t−11′−11t1′ = 1z′′. However, 1′−11 ∈ PSL2(q)EG. Therefore,
t−11′−11t = 1′′ ∈ PSL2(q) and hence, 1′′1′ = 1z′′. This forces z′′ ∈ Z(G) ∩ PSL2(q) = {1}, so z′′ = 1. This
shows that CG/Z(G)(yZ(G)) = CG(y)/Z(G) and consequently, |clG/Z(G)(yZ(G))| = |clG(y)|. This guarantees that
cs∗(G/Z(G)) = cs∗(G), as wanted.

Proof of the main theorem. Let G be the smallest counterexample. Then, it is obvious that Z(G) , 1.
We claim that |Z(G)| is prime. If not, Z(G) contains a non-trivial subgroup Z1 of the prime order. Thus,
by Lemma 3.3, cs∗(G/Z1) = cs∗(PGL2(q)). On the other hand, (G/Z1)/(Z(G)/Z1) � G/Z(G) � PGL2(q), by
Corollary 3.2. Consequently, Z(G/Z1) = Z(G)/Z1. Also, |G/Z1| < |G|. Hence, our assumption shows that one
of the following cases occurs:
Case 1. G/Z1 � PGL2(q)×Z(G)/Z1. Then, G contains a non-trivial normal subgroup M with M/Z1 � PGL2(q).
Thus, Z(M) = Z1 and Lemma 3.4 shows that cs∗(M) = cs∗(PGL2(q)). Hence, our assumption shows that M is
as follows:

(i) M � PGL2(q) × Z1. Thus, M contains a normal subgroup N such that N � PGL2(q) and M = N × Z1.
So, G = MZ(G) = NZ(G). However, N ∩ Z(G) = N ∩ (M ∩ Z(G)) = N ∩ Z1 = {1}. Therefore,
G = N × Z(G) � PGL2(q) × Z(G), a contradiction.

(ii) M � (PSL2(q) × Z1).C2. Then, M contains a characteristic subgroup N such that N � PSL2(q) and
M = (N ×Z1).C2. Since NchMEG, we have N EG. Thus, NZ(G)EG and N ∩Z(G) = N ∩ (M∩Z(G)) =
N∩Z1 = {1}. Consequently, N×Z(G)EG. Since [G : N×Z(G)] = 2, we get that G contains a 2-element
t such that t2

∈ N × Z(G) and G = (N × Z(G)).〈t〉 � (PSL2(q) × Z(G)).C2, a contradiction.

Case 2. G/Z1 � (PSL2(q)×(Z(G)/Z1)).C2. Then, G contains a normal subgroup M and a subgroup N such that
Z1 ≤ N, N/Z1 � PSL2(q) and M/Z1 = N/Z1×Z(G)/Z1. Since N/Z1 � PSL2(q), we have Z(N) = Z1. Also, |Z1| is
prime. Thus, N′∩Z1 = Z1 or {1}. If N′∩Z1 = {1}, then N′×Z1EN. However, N′ � N′Z1/Z1EN/Z1 � PSL2(q)
and PSL2(q) is simple, so N′ � PSL2(q). Hence, N � PSL2(q) × Z1. Since Z(PSL2(q)) = {1}, we have
M � PSL2(q) × Z(G). Also, [G : M] = 2. Therefore, G contains a 2-element t such that t2

∈ M and
G = M.〈t〉 � (PSL2(q) × Z(G)).C2, a contradiction. This forces N′ ∩ Z1 = Z1. Thus, Z1 ≤ N′. If |Z1| is odd,
then we have N � PSL2(q) × Z1 . Hence, the above argument leads us to get a contradiction. Now let
|Z1| = 2 and N be a Schur cover of PSL2(q). Therefore, N � SL2(q), Z1 = Z(N) and M � SL2(q)Z(G). On the
other hand, [G : M] = [G/Z1 : M/Z1] = 2. This shows that G contains a 2-element t such that t2

∈ M and
G � (SL2(q)Z(G)).〈t〉. It is known that

cs∗(SL2(q)) = {q(q ± 1), q2
− 1}. (5)

Let q ≡ ε (mod 4). Then, since q(q+ε)/2 ∈ cs∗(G), we get that G contains an element x with |clG(x)| = q(q+ε)/2.
Now we have two following possibilities:

• x ∈ N. Then, since N � SL2(q) and |clN(x)| | |clG(x)|, we get from (5) that |clN(x)| = 1, so x ∈ Z(N) = Z1 ≤

Z(G), a contradiction.

• x ∈ G − NZ(G). Then, xZ(G) ∈ G/Z(G) � PGL2(q). Thus, Lemma 3.6 shows that |clG/Z(G)(xZ(G))| =
q(q + ε1). So, by Lemma 2.6, q(q + ε1) | |clG(x)|, which is impossible.

The above contradictions show that |Z(G)| is prime. Thus, we apply the same reasoning as one used
in Case 2 as follows: Since G/Z(G) � PGL2(q) and PGL2(q) contains a normal subgroup of index 2 which
is isomorphic to PSL2(q), we can assume that G contains a normal subgroup N containing Z(G) such that
N/Z(G) � PSL2(q). Since |Z(G)| is prime, we have N′ ∩ Z(G) = {1} or N′ ∩ Z(G) = Z(G). If N′ ∩ Z(G) = {1},
then N′×Z(G)EN. However, N′ � N′Z(G)/Z(G)EN/Z(G) � PSL2(q) and PSL2(q) is simple, so N′ � PSL2(q).
Consequently, N � PSL2(q) × Z(G). Moreover, [G : N] = 2 and hence, G contains a 2-element t such that
t2
∈M and G = N.〈t〉 � (PSL2(q) × Z(G)).C2, a contradiction. This forces N′ ∩ Z(G) = Z(G). Thus, Z(G) ≤ N′.
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So, |Z(G)| = 2 and N is a Schur cover of PSL2(q). Therefore, N � SL2(q) and Z(G) = Z(N). It follows that
[G : N] = [G/Z(G) : N/Z(G)] = 2. This shows that G contains a 2-element t ∈ G such that t2

∈ N and
G = SL2(q).〈t〉. It is known that

cs∗(SL2(q)) = {q(q ± 1), q2
− 1}. (6)

Let q ≡ ε (mod 4). Then, since q(q+ε)/2 ∈ cs∗(G), we get that G contains an element x with |clG(x)| = q(q+ε)/2.
Now we have two following possibilities:

• x ∈ N. Then, since N � SL2(q) and |clN(x)| | |clG(x)|, we get from (6) that |clN(x)| = 1. So x ∈ Z(N) = Z(G),
a contradiction.

• x ∈ G − NZ(G). Then, xZ(G) ∈ G/Z(G) � PGL2(q). Thus, Lemma 3.6 shows that |clG/Z(G)(xZ(G))| =
q(q + ε1). So, by Lemma 2.6, q(q + ε1) | |clG(x)|, which is impossible.

The above contradictions complete the proof as well.

Remark 3.8. Let A be an abelian group containing a proper subgroup, say A′, and a ∈ A−A′ such that 1 , a2
∈ A′

and A = A′.〈a〉. Also, let σ be a diagonal automorphism of PSL2(q). Set t = (σ, a) and H = (PSL2(q)×A′).〈t〉. Then,
since 1 , t2 = (σ2, a2) ∈ PSL2(q)×A′ and A′ = Z(H), Lemma 3.7 shows that cs∗(H) = cs∗(H/Z(H)) = cs∗(PGL2(q)).
Note that H � B × PGL2(q), for every abelian group B. Also, if H � PGL2(q) × Z(H), then it is obvious that
cs∗(H) = cs∗(PGL2(q)). Thus, if q > 5 is odd, then PGL2(q) cannot be determined uniquely by its conjugacy class
sizes under an abelian direct factor.

Remark 3.9. If G � (PSL2(q)×Z(G)).C2, then we can check easily that G � ((PSL(q)×Z(G)2).C2)×Z(G)2′ , where
Z(G)2 ∈ Syl2(Z(G)) and Z(G)2′ is a (π(Z(G)) − {2})-Hall subgroup of Z(G).
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