Filomat 34:5 (2020), 1713-1719
https://doi.org/10.2298/FIL2005713 A

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

%, Yy A
2
&) 5

2 &

gy as’

5
TIprpor®

PGL,(q) cannot be determined by its cs

Neda Ahanjideh?

?Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran.

Abstract. For a finite group G, let Z(G) denote the center of G and ¢s*(G) be the set of non-trivial conjugacy
class sizes of G. In this paper, we show that if G is a finite group such that for some odd prime power q > 4,
cs*(G) = cs"(PGLy(g)), then either G = PGL,(q) X Z(G) or G contains a normal subgroup N and a non-trivial
element t € G such that N = PSLy(q) X Z(G), t* € N and G = N.(t). This shows that the almost simple groups
cannot be determined by their set of conjugacy class sizes (up to an abelian direct factor).

1. Introduction

Throughout this paper, G is a finite group, Z(G) is the center of G and for a € G, cls(a) is the conjugacy
class in G containing a and C¢(a) denotes the centralizer of the element 4 in G. We denote by ¢s*(G), the set
of non-trivial conjugacy class sizes of G. Studying the interplay between the structure of a group and the
set of its conjugacy class sizes is one of the interesting concepts in group theory. For instance, ]. Thompson
in 1988 conjectured that:

Thompson'’s conjecture. Let S be a simple group. If G is a finite centerless group with cs*(G) = ¢s*(S), then
G=S.

In a series of papers, it has been proved that Thompson’s conjecture is true for many families of finite
simple groups (see [1]-[6], [9], [11], [13], [16]).

G is named an almost simple group when there exists a simple group S such that S 4 G < Aut(S).

In [14] and [17], it has been shown that Thompson’s conjecture is true for some almost simple groups.

Inspired by Thompson’s conjecture, A. Camina and R. Camina come up with the following problem
[10]:

Problem. If S is a simple group and G is a finite group with cs*(G) = ¢s*(S), then is it true that G = S X Z(G)?

In 2015, it has been investigated that the above problem is true when S = PSL,(q) [8]. Then, in [7], it
has been proven that the answer of the above problem is true for many families of finite simple groups.
Naturally, one can ask what happens for G in the above problem when S is an almost simple group. So, in
this paper, we prove that:

Main theorem. Let g > 4 be an odd prime power. If G is a finite group with cs*(G) = ¢s*(PGL»(g)), then
either G = PGLy(q) X Z(G) or G contains a normal subgroup N and a non-trivial element t € G such that
N = PSLy(q) X Z(G), t*> € N and G = N.(t).
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In this paper, all groups are finite. For simplicity of notation, throughout this paper let 4 > 4 be a power
of an odd prime p, GF(g) be a field with g elements and G be a group with ¢s*(G) = ¢s*(PGLy(g)). Throughout
this paper, we use the following notation: For a natural number 7, let 7t(1) be the set of prime divisors of 7,
C, denote a cyclic group of order n and for a group H, let n(H) = n(|H|). Also, H.G denotes an extension of
H by G. For a prime r and natural numbers a and b, |al, is the r-part of 4, i.e., a|, = ¥ when ' | a and #'*! f a
and, gcd(a, b) and lem(a, b) are the greatest common divisor of a and b and the lowest common multiple of
a and b, respectively. For the set 7= of some primes, x is named a m-element (7’-element) of a group H if
1t(o(x)) C 7 (1t(o(x)) € (H) — m).

2. Definitions and preliminary results

Lemma 2.1. [12, Proposition 4] Let H be a group. If there exists p € m(H) such that p does not divide any conjugacy
class sizes of H, then the p-Sylow subgroup of H is central in H.

Definition 2.2. For a group H, the prime graph GK(H) of H is a simple graph whose vertices are the prime divisors
of the order of H and two distinct prime numbers p and q are joined by an edge if G contains an element of order pq.
Denote by t(H) the number of connected components of the graph GK(H) and denote by m; = mi(H), i = 1, ..., t(H),
the i-th connected component of GK(H). For a group H of an even order, let 2 € 1. If GK(H) is disconnected, then
|H| can be expressed as a product of co-prime positive integers my(H), i = 1,2,...,H(H), where n(m;(H)) = m;(H),
and if there is no ambiguity write m; for showing m;(H). These ms are called the order components of H and the set
of order components of H will be denoted by OC(H). The list of all simple groups with disconnected prime graph and
the sets of their order components have been obtained in [15] and [18].

Lemma 2.3. [14] If H is a group with OC(H) = OC(PGLy(q)), then H = PGLy(q).
Lemmas 2.4, 2.5 and 2.6 are easy to prove for a group H:
Lemma 2.4. For x € H — Z(H), let C/Z(H) = Cr/zn)(xZ(H)). Then Cu(x) 2 C.
Lemma 2.5. For every x € H and natural number n,

(i) Cu(x) < Cu(x") and |cla(x")| | lelu (x)l;

(ii) if lclu(x)| is maximal in cs*(H) by divisibility and 1 = 1(o(x)), then for every m’-element y € Cy(x), Cu(xy) =
Cr(x). In particular, if |cly(x)| is maximal and minimal in cs*(H) by divisibility and 7 = 1t(o(x)), then for every
1'-element y € Cp(x) — Z(H), Cu(y) = Cu(x).

Lemma 2.6. Let K be a normal subgroup of H and H = H/K. Let X be the image of the element x of H in H. Then,
(1) lelx(x)| divides |cly(x)|;
(ii) lclz(x)| divides |cly(x)|;
(iii) for every abelian group A, cs*(H X A) = cs*(H).
Lemma 2.7. Fora group H, lem{a : @ € cs*(H)} | [H : Z(H)].

Proof. Since for every x € H, Z(H) < C(x), we get that [c/y(x)| | [H : Z(H)]. Thus, lem{a : a € cs*(H)} | [H :
Z(H)], as wanted. O

Lemma 2.8. Let 7t be a set of primes, x be a non-central m-element of the group H and C/Z(H) = Cryzmy(xZ(H)).
Then, for a ’-element y € H, y € C if and only if y € Cp(x).

Proof. Obviously, Cr(x) < C. Now let y € C be a ’-element. Then, yZ(H) € C/Z(H), so there exists z € Z(H)
such that y~'xy = xz. This shows that o(x) = o(xz) = lem(o(x), 0(z)), hence 0(z) | o(x). On the other hand,
xyx~! = yz. Thus, o(y) = o(yz) = lem(o(y), 0(z)), so 0(z) | o(y). This forces o(z) | ged(o(x), o(y)) = 1. Therefore,
z = 1. Consequently, y'xy = x. This shows that y € Cy(x), as desired. [
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Lemma 2.9. Foragroup H, lett,s € m(H)and S € Syl (H). If for every t-element y € H—Z(H), |cly(y)ls > 1and if x
is a t-element of H such that |cly (x)| is maximal and minimal in cs*(H) by divisibility, then either |H/Z(H)|s = |cla(x)ls
or Cy(S) < Z(H).

Proof. Let Cy(S) £ Z(H). Thus, by assumption and Lemma 2.5(i), there exists a t'-element z € Cy(S) — Z(H).
Now we claim that I%IS = |clg(x)ls. If not, then Cy(x) contains a non-central s-element w. Hence, by
Lemma 2.5(ii), Cx(x) = Cu(w). Obviously, z € Cy(S) < Cr(w) = Cn(x). Consequently, Lemma 2.5(ii) forces
Ch(x) = Cy(z). Therefore, |cly(x)|s = |cly(z)ls = 1, which is a contradiction. So, |[H/Z(H)|s = |cly(x)ls, as
claimed. O

Lemma 2.10. Fora group Hand t € n(H), let {|clu(x)| : x € H—-Z(H), o(x) is a power of t} = {a} and |cs*(H)| > 1.
If a is maximal and minimal in cs*(H) by divisibility, then |H/Z(H)|; = Max{|Bl; : p € cs*(H)}.

Proof. Working towards a contradiction, let |H/Z(H)|; # Max{|l; : p € cs*(H)}. Thus for every y € cs*(H)—{a},
[vle < |[H/Z(H)l;. Lety = |clg(y)l, for some y € H — Z(H). Then, by our assumption and Lemma 2.5(i), we can
assume that y is a t’-element. Also, |c/y(y)l; < |[H/Z(H)|;. Hence, Cy(y) contains a non-central f-element z.
Since |cly(z)| = @, Lemma 2.5(ii) shows that |cIy(y)| = IcIg(z)| = a, which is a contradiction. This completes
the proof. [

Lemma 2.11. For a group H, n(H/Z(H)) = Ugecs @y T().

Proof. By Lemma 2.7, Uyecsrmymt(a) € m(H/Z(H)). Now if there exists t € n(H/Z(H)) — Upecsr(mym(ct), then
for every a € ¢s*(H), t ¥ a. Therefore, Lemma 2.1 forces the t-Sylow subgroup T of H to be an abelian
direct factor of H. Thus, T < Z(H) and hence, t t |H/Z(H)|, which is a contradiction. This shows that
n(H/Z(H)) = Uaecs*(H)n(a)- U

Lemma 2.12. For a group H, if there exists a € cs*(H) and p,q € n(H/Z(H)) (p # q) such that |a|, < |H/Z(H)|, and
lal; < |[H/Z(H)I;, then there exists a path between p and q in GK(H/Z(H)).

Proof. Letx € H—Z(H) with a = |cly(x)|. By Lemma 2.5(i), we can assume that x is of the prime power order.
Since |al, < |[H/Z(H)|, and |a|; < |[H/Z(H)|;, we get that p, q | |Cr(x)/Z(H)|. Thus, Cy(x) contains a non-central
p-element x; and a non-central g-element x,. If p | o(x), then since x; € Cy(x), we get that xx,Z(H) € H/Z(H)
is of order pgq, so the proof is complete. The same reasoning completes the proof when g | o(x). Now let
o(x) be a power of a prime r, where r ¢ {p,q}. The same reasoning as above shows that H/Z(H) contains
elements of order pr and rq, so p — v — g is a path in GK(H/Z(H)), as wanted. O

3. Main results
Theorem 3.1. OC(G/Z(G)) = OC(PGLy(9)).

Proof. We are going to prove this theorem in the following steps:
Step 1. [PGLyx(g)I | [G : Z(G)].
Proof. From Lemma 2.7, lcm{a : a € ¢s*(G)} | [G : Z(G)]. On the other hand,

¢s°(G) = ¢s"(PGLa(@)) = {7 — 1,q(7 £ 1),4(q + 1)/2). (1)

Therefore, [PGL2(q9)| | [G : Z(G)].

Step 2. For every p-element x € G — Z(G), |clg(x)| = 4*> — 1 and |cl(%)| = ¢*> — 1, where G = G/Z(G) and % is
the image of x in G.

Proof. We first show that for every p-element x € G—Z(G), |clg(x)| = g* — 1. Working towards a contradiction,
assume that G contains a non-central p-element x such that |clg(x)| # g*> — 1. Thus, by (1)

lclc(0)lp = [PGLa(q)lp- ()
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Also, g? — 1 € ¢s*(G), so there exists a non-central element y € G such that |c/(y)| = g> — 1. Hence, we can
assume that there exists a p-Sylow subgroup P of G such that x € P and P < Cg(y). Since 4% — 1 is maximal in
cs*(G) by divisibility, Lemma 2.5 leads us to assume that y is of the prime power order. If y is a p’-element,
then since x € Cg(y), we get from maximality and minimality of 4> — 1 in ¢s*(G), and Lemma 2.5(ii) that
lclg(x)] = ¢* — 1, which is a contradiction. This forces y to be a p-element and for every p’-element z € G,
lclg(2)| # ¢* — 1. Thus,

y € Z(P) - Z(G). 3)

Also, x € Cg(x) — Z(G). Thus, p | |Cs(x)/Z(G)| and hence, (2) forces |G/Z(G)|, > |[PGL2(q)|,- Now let z be a
p’-element of G—Z(G). Then, the above statements show that p | |C;(z)/Z(G)|, so C¢(z) contains a non-central
p-element w. We can assume that w € P and PN Cg(wz) € Sylp(CG (wz)). Moreover, Lemma 2.5(ii) shows that
Iclg(zw)|, |clg(w)| # g — 1, so (1) forces ICc(w)l, = |ICc(wz)|, = |Cs(2)|y. Since Co(wz) < Co(w), Co(z), we get
from (3) that y € P N Cg(w) = P N Cg(wz) < Cg(z). Thus, Lemma 2.5(ii) shows that |clg(z)| = |clc(y)| = ¢* - 1,
which is a contradiction. This shows that for every p-element x € G — Z(G), |clg(x)| = ¢4* — 1.

Let x € G — Z(G) be a p-element and C/Z(G) = Cg(%). Thus, by the above statements, |clg(x)| = g> — 1
and hence if y € C — Cg(x), then Lemmas 2.4 and 2.8 show that o(yCg(x)) is a power of p. So, Lemma 2.4
guarantees that p | |C/Cg(x)|. However, C < G and hence, |C/Cs(x)| | [G : Cg(x)] = |clg(x)|. This forces
p | lelg(x)|, which is a contradiction. Therefore, C = Cg(x) and hence, |cl¢(%)| = |clg(x)| = ¢*> — 1, as desired.
Step 3. |G/Z(G)| = IPGL2(q)l-

Proof. From Step 1, [PGL2(q)| | [G : Z(G)]. Let s € n(G/Z(G)). Since by Lemma 2.11, n(G/Z(G)) = n(PGL2(q)),
we have s € m(PGL,(q)). Let S; € Syl (G) and S € Syl (PGL(q)). Since Z(S) # 1 and Z(PGL»(g)) = {1}, we get
that there exists a € cs*(PGL2(q)) = ¢s*(G) such that |a|s = 1. This forces Cg(S1) £ Z(G). Thus, if s # p, then
Step 2 and Lemma 2.9 show that|G/Z(G)|s = |Bls, for some € ¢s*(G). So |G/Z(G)ls < IPGL,(g)ls. Also, Lemma
2.10 guarantees that |G/Z(G)|, < |[PGL2(q)l, and hence, |G/Z(G)| | IPGL2(q)|. Therefore, |G/Z(G)| = [PGLa(q)|.
Step 4. OC(G/Z(G)) = OC(PGL2(q)).

Proof. If there exists t € n(G/Z(G)) — {p} such that t and p are adjacent in GK(G/Z(G)), then there exist a
non-central p-element x and a non-cental ¢t-element y such that xy = yx. So, y € Cg(x) — Z(G) and hence
t|1Cc(x)/Z(G)|. On the other hand, Steps 2 and 3 show that |c/g(x)| = g> — 1 and |G/Z(G)| = [IPGLy(g)|- Thus,
t € n(g?—1) and |G/Z(G)|; = Iclg(x)||Cc(x)/Z(G)l; > |g*> — 1|; = [PGLa(q)l;, which is a contradiction. This forces
{p} to be an odd connected component of GK(G/Z(G)). Also, for every t,s € m(PGLy(q)) which are adjacent
in GK(PGL3(q)), Step 3 and Lemma 2.12 show that there exists a path between ¢ and s in GK(G/Z(G)). Now
since 711 (PGL2(g)) = m(q? — 1) is a connected component in GK(PGL(9)), |G/Z(G)| = |PGLy(g)| and {p} is an
odd connected component of GK(G/Z(G)), we get that 1i(q> — 1) is a component of GK(G/Z(G)). Hence,
OC(G/Z(G)) = OC(PGLy(g)). O

Corollary 3.2. G/Z(G) = PGL,(g).
Proof. Since by Theorem 3.1, OC(G/Z(G)) = OC(PGL,(q)), Lemma 2.3 shows that G/Z(G) = PGLy(g). O
Lemma 3.3. For every subgroup Z1 of Z(G), cs*(G/Z1) = cs*(PGL2(q)).

Proof. Let Z; be a subgroup of Z(G). Put G = G/Z; and G = (G/Z1)/(Z(G)/Z1). For every x € G, let ¥
and £ be the images of x in G and G, respectively. By Corollary 3.2, G = G/Z(G) = PGL,(q). By (1),
there exist x1,x,x3 € G such that |cls(21)] = ¢° — 1, Icla(22)| = q(q — 1) and [cls(%3)] = q(g + 1). Also
for every 1 < i < 3, Lemma 2.6 implies that |cla(%;)| | Icla(%)| and [clz(%;)| | lclg(x;)]. However, g -1
and g(g = 1) are maximal in cs'(G) = cs*(PGLy(q)) = ¢s*(G) by divisibility. Thus, for every 1 < i < 3,
lele (@] = Icla(%)] = Icl(x)] € {g% — 1,q(q + 1)}. Therefore, ¢* — 1,4(q £ 1) € cs*(G).

On the other hand, for ¢ € {1}, there exists y, € G such that clg(y.)| = g(g+¢1)/2. Since [cls(§e) | Icla(Fe)l,
lcla(Fe)l | Iclg(ye)l and g(g + €1)/2 is minimal in ¢s*(PGLy(q)) = cs*(G), we get that |clx(§:)| = lclz(Fe)l =
lclc(ye)l = q(g + €1)/2. Therefore, q(q + 1)/2 € ¢s*(G) and hence, ¢s*(G) C cs*(G). Now if y € G such
that |clz(§)| € ¢s*(G) — ¢s*(G), then since |cla(§)| | Iclc@)], lcle@)] | Icla(y)l and |cls(@)l, lclc(y)] € cs*(G) =
cs"(PGLy(q)) = cs*(G), we get, by considering the maximal elements of cs*(G), that |cls(9)| € {g(q £ 1)/2}.
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Therefore, [clc(y)| € {g(g £ 1),9(q £ 1)/2}. Hence, Icl=(i)| € {g(g £1),q(g £ 1)/2} € ¢s*(G), a contradiction. This
implies that cs*(G) = ¢s*(G). O

Lemma 3.4. If M is a normal subgroup of G with M/Z(M) = PGLy(q), then cs*(M) = cs*(PGL2(q)).

Proof. Put M = M/Z(M) and for x € M, let ¥ be the image of x in M. Then, since |cly ()| | |clpm(x)| and
lclpm(x)] | Iclg(x)l, arguing by analogy as the proof of Lemma 3.3 completes the proof. [J

Lemma 3.5. Fora group H, if x € H and Z(H) < (x), then Cy(x) < Ny({x))/Z(H), where H = H/Z(H) and % is the
image of x in H.

Proof. Let j = yZ(H) € Cg(%). Then, there exists z € Z(H) such that y~'xy = xz € (x). Thus, y € Ng({x)).
Therefore, yZ(H) € Nu({(x))/Z(H), as wanted. [

Lemma 3.6. Let Z = Z(GL(q)) and let X be the image of x € GLa(q) in PGLy(q). If g = € (mod 4) and |clpgr, ) (%)| |
q(q + €), then either |clpgr, ) (X)| = q(q + €) or X € SLy(q)Z/Z and |clpgr, (%) = 9(q + €)/2.

Proof. Let |clpcrL,q)(®)| | q(q + €) and |clpcr,q)(X)| # q(g + €). Then, |clpgL,)(X)| = q(g + €)/2 and hence,
ICpcrL,()(®)] = 2(q — €). Thus, ¥ is a semi-simple element in PGL,(q) and hence o(X) | (9 — €). So, one of the
following cases holds:

L. ¢ = +. Then, we can assume that for some u € GF(q) — {0}, x = diag(u, 1). Since |Cpgr,)(X)| = 2(g — €), we
can check at once that wZ € Cpgr,(5)(X), where

O =
~————

Thus, there exists 1 # z € Z such that

xlwx = wz 4)
and hence lem(o(z), o(w)) = o(wz) = o(w) = 2. This forces o(z) = 2. Therefore, z = diag(-1,-1). So, (4)
guarantees that 4 = u~! = —1. On the other hand, for a generator d of GF(q) — {0}, d9~Y/2 = —1. However,
(g — 1)/2 is even. Hence, there exists & € GF(q) — {0} such that > = —1. Therefore, x = diag(d’?,1) =
diag(d’,d’"')diag(d’,d’) € SL2(q)Z. This shows that ¥ € SLy(¢)Z/Z.
IL. ¢ = —. Let @ € GF(4°) — {0} such that o(a) = o(x). Let o be a Frobenius automorphism of GL,(GF(q)) such
that (GL(GF(9)))s = GL2(g), where GF(g) is an algebraic closure of GF(q). Then, there exists g € GLy(GF(g))
such that g7'¢” = w, where

(0 1
w=|1 o

Sett = diag(a, a). We can check at once that w?, #/ € GLy(g) and Ngr,(;)((#/)) = Cpo_1.(w?) such that Z < Cpo_;
and #/ € Cp_y. Without loss of generality, let # = x. Thus by Lemma 3.5, w/Z € Cpcr,(;)(%). However,
o(w?) =2 and [x,w9] = z € Z. So, o(zw?) = o(w?) = 2 and hence o(z) = 2. Therefore, z = diag(-1, —1). Since
wItwI = t9z, wtw = tz, consequently, a1 = —a. This forces a®@) = 1. Thus, o(%) = o(t) = 2. Since
[PGLy(q) : SLa(9)Z/Z] = 2, we get from 4 | g + 1 that X € SLy(9)Z/Z, as wanted. [

Lemma 3.7. IfG = (PSLy(q)XZ(G)).(t), wheret € G—(PSLy(q)XZ(G)) and t* € PSLy(q)XZ(G), then cs*(G/Z(G)) =
cs*(G).

Proof. Since PSLy(q) < PSL,(q) X Z(G), for every o € Aut(PSLy(q) X Z(G)), o(PSL»(q)) N PSLy(q) < PSLy(9).
However, PSL,(g) is simple. Thus, o(PSLx(g)) N PSLa(g) = {1} or PSLy(q). In the first case, PSLy(q) X
o(PSLy(q)) < PSLy(g9) X Z(G), which is impossible. Consequently, 6(PSL(7)) = PSLy(q). This shows that
PSL;(q) is a characteristic subgroup of PSL;(q) X Z(G). On the other hand, [G : PSL,(q) X Z(G)] = 2. Therefore,
PSLy(q) X Z(G) 2 G and hence PSLy(q) 4 G. Thus, for every x € G and y € PSLy(q), x 'yx € PSLy(q). This
forces Cg/z(6)(yZ(G)) = Cs(y)/Z(G). Consequently, |clgzc)(YZ(G))| = Iclc(y)l.
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Now let y € G — (PSLy(9) X Z(G)). So, y = gt for some g € PSLy(g) X Z(G). Without loss of generality,
let g € PSLy(g). Then, since PSL;(q) < G, we can see at once that there do not exist ' € PSLy(q) X Z(G)
and z’ € Z(G) — {1} such that yg’'y™' = g’z’. Also, if there exists g’ € PSLy(q) and 2,z € Z(G) such that
(g2 y(g'z't) = yz/, thent g’ lyg't = yz”,so t71g'Igtg’ = gz’. However, g''g € PSLy(q) 4 G. Therefore,
tlg""gt = g” € PSLy(g) and hence, g”’g’ = gz”. This forces z”’ € Z(G) N PSLy(q) = {1}, so z” = 1. This
shows that Cg/zc)(yZ(G)) = Cs(y)/Z(G) and consequently, |clg/zc)(yZ(G))| = Iclg(y)l. This guarantees that
cs*(G/Z(G)) = cs*(G), as wanted. O

Proof of the main theorem. Let G be the smallest counterexample. Then, it is obvious that Z(G) # 1.
We claim that |Z(G)| is prime. If not, Z(G) contains a non-trivial subgroup Z; of the prime order. Thus,
by Lemma 3.3, cs*(G/Z1) = ¢s*(PGL2(g)). On the other hand, (G/Z1)/(Z(G)/Z1) = G/Z(G) = PGL,(g), by
Corollary 3.2. Consequently, Z(G/Z;) = Z(G)/Z;. Also, |G/Z1| < |G|. Hence, our assumption shows that one
of the following cases occurs:

Casel. G/Z; = PGLy(q)XZ(G)/Z1. Then, G contains a non-trivial normal subgroup M with M/Z; = PGL;(q).
Thus, Z(M) = Z; and Lemma 3.4 shows that cs*(M) = ¢s*(PGLy(g)). Hence, our assumption shows that M is
as follows:

(i) M = PGLy(g9) X Z;. Thus, M contains a normal subgroup N such that N = PGL,(q) and M = N X Z;.
So, G = MZ(G) = NZ(G). However, NN Z(G) = NN (M N Z(G)) = NN Z; = {1}. Therefore,
G = N X Z(G) = PGLy(g9) X Z(G), a contradiction.

(if) M = (PSLx(gq) X Z1).C,. Then, M contains a characteristic subgroup N such that N = PSL,(q) and
M = (N X Z1).Cs. Since NchM < G, we have N < G. Thus, NZ(G)<Gand NN Z(G) = NN(M N Z(G)) =
NNZ; ={1}. Consequently, N X Z(G) < G. Since [G : N X Z(G)] = 2, we get that G contains a 2-element
t such that > € N x Z(G) and G = (N X Z(G)).{t) = (PSLy(q) X Z(G)).Ca, a contradiction.

Case 2. G/Z; = (PSLy(q)x(Z(G)/Z1)).C;. Then, G contains a normal subgroup M and a subgroup N such that
Z1 <N,N/Z; = PSLy(q) and M/Z; = N/Z1 X Z(G)/Z1. Since N/Z; = PSL,(g), we have Z(N) = Z;. Also, |Z;|is
prime. Thus, N'NZ; = Z; or {1}. f N'NZ; = {1}, then N’ XZ; IN. However, N’ = N'Z,/Z,1 AN/Z; = PSL,(q)
and PSL,(q) is simple, so N’ = PSL,(g). Hence, N = PSLy(q) X Z;. Since Z(PSLy(q)) = {1}, we have
M = PSLy(q) X Z(G). Also, [G : M] = 2. Therefore, G contains a 2-element ¢ such that € M and
G = M(t) = (PSLy(q) X Z(G)).Cy, a contradiction. This forces N’ N Zy = Z;. Thus, Z; < N’. If |Z4] is odd,
then we have N = PSL,(q) X Z; . Hence, the above argument leads us to get a contradiction. Now let
|Z1| = 2 and N be a Schur cover of PSLy(gq). Therefore, N = SLy(g), Z1 = Z(N) and M = SL,(9)Z(G). On the
other hand, [G : M] = [G/Z; : M/Z1] = 2. This shows that G contains a 2-element ¢ such that * € M and
G = (SLy(9)Z(G)).(t). It is known that

cs'(SLa(q)) = {q(q £ 1),4% - 1). (5)

Letg = ¢ (mod 4). Then, since g(g+¢)/2 € cs*(G), we get that G contains an element x with |clg(x)| = g(g+¢)/2.
Now we have two following possibilities:

e x € N. Then, since N = SL,(q) and |cln(x)| | [clg(x)|, we get from (5) that [cIn(x)] =1,s0 x € Z(N) = Z1 <
Z(G), a contradiction.

e x € G- NZ(G). Then, xZ(G) € G/Z(G) = PGLy(q). Thus, Lemma 3.6 shows that |clg/7c)(xZ(G))| =
q(q + €1). So, by Lemma 2.6, 4(q + €1) | |clg(x)|, which is impossible.

The above contradictions show that |Z(G)| is prime. Thus, we apply the same reasoning as one used
in Case 2 as follows: Since G/Z(G) = PGL,(q) and PGL,(q) contains a normal subgroup of index 2 which
is isomorphic to PSL,(g), we can assume that G contains a normal subgroup N containing Z(G) such that
N/Z(G) = PSL,(g). Since |Z(G)| is prime, we have N’ N Z(G) = {1} or N' N Z(G) = Z(G). It N' N Z(G) = {1},
then N’ X Z(G) < N. However, N’ = N'Z(G)/Z(G) <N/Z(G) = PSL,(q) and PSL,(q) is simple, so N’ = PSL,(q).
Consequently, N = PSL,(q) X Z(G). Moreover, [G : N] = 2 and hence, G contains a 2-element  such that
2 € Mand G = N.(t) = (PSLy(q) X Z(G)).Cy, a contradiction. This forces N’ N Z(G) = Z(G). Thus, Z(G) < N".
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So, |Z(G)| = 2 and N is a Schur cover of PSL;(g). Therefore, N = SL;(g) and Z(G) = Z(N). It follows that
[G : N] = [G/Z(G) : N/Z(G)] = 2. This shows that G contains a 2-element t € G such that t* € N and
G = SLy(g).(t). It is known that

cs*(SLa(q)) = {q(q £ 1), 4* — 1}. (6)

Letq = ¢ (mod 4). Then, since q(g+¢)/2 € cs*(G), we get that G contains an element x with |clg(x)| = g(g+¢)/2.
Now we have two following possibilities:

e x € N. Then, since N = SL,(q) and |[cIn(x)| | clg(x)], we get from (6) that |c/x(x)| = 1. So x € Z(N) = Z(G),
a contradiction.

e x € G- NZ(G). Then, xZ(G) € G/Z(G) = PGLy(q). Thus, Lemma 3.6 shows that |clg/7c)(xZ(G))| =
q(q + €1). So, by Lemma 2.6, 4(q + €1) | |clg(x)|, which is impossible.

The above contradictions complete the proof as well.

Remark 3.8. Let A be an abelian group containing a proper subgroup, say A’, and a € A — A’ such that 1 # a> € A’
and A = A’ {a). Also, let o be a diagonal automorphism of PSLy(q). Set t = (0,a) and H = (PSLy(q) X A")t). Then,
since 1 # t*> = (0%,a) € PSLy(q) X A’ and A’ = Z(H), Lemma 3.7 shows that cs*(H) = ¢s*(H/Z(H)) = ¢s*(PGLy(9)).
Note that H # B X PGL(q), for every abelian group B. Also, if H = PGLy(q) X Z(H), then it is obvious that
cs*(H) = ¢s*(PGLy(q)). Thus, if ¢ > 5 is odd, then PGLy(q) cannot be determined uniquely by its conjugacy class
sizes under an abelian direct factor.

Remark 3.9. If G = (PSLy(q) X Z(G)).Cy, then we can check easily that G = (PSL(q) X Z(G)2).C2) X Z(G)y, where
Z(G)2 € Syl,(Z(G)) and Z(G)y is a (1(Z(G)) — {2})-Hall subgroup of Z(G).
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