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Abstract. In this paper a new algorithm considered on a real Hilbert space for finding a common point in the
solution set of a class of pseudomonotone equilibrium problem and the set of fixed points of nonexpansive
mappings. We produce this algorithm by mappings Tk that are approximations of non-expansive mapping
T. The strong convergence theorem of the proposed algorithms is investigated. Our results generalize some
recent results in the literature.

1. Introduction

Let H be a real Hilbert space with inner product h 〈., .〉 and its reduced norm ‖.‖. Let C be a nonempty
closed convex subset of H. We recall that a mapping T : C→ C is said to be a nonexpansive on C iff

‖Tx − Ty‖ ≤ ‖x − y‖ ∀x, y ∈ C.

We denote by F(T) the set of all fixed points of T, i.e.

F(T) = {x ∈ X : Tx = x}.

It is well known that if F(T) , ∅, F(T) is closed and convex. Let f be a bifunction from C × C to R such that
f (x, x) = 0 for all x ∈ C. An equilibrium problem EP( f ,C) in the sense of Blum and Oettli [3], is stated as
follows:

Find x∗ ∈ C such that f (x∗, x) ≥ 0 f or all x ∈ C.

We denote the set of solutions EP( f ,C), by Sol(C, f ). This problem is also often called the Ky Fan inequality
due to his contribution to this field. It is well known (see e.g. [3], [4], [5], [6]) that some important problems
such as convex programs, variational inequalities, the Kakutani fixed point, minimax problems and Nash
equilibrium models can be formulated as an equilibrium problem of the form EP( f ,C).
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Example 1.1. Let ϕ : C→ R be given. The point x∗ is a solution of optimization problem

Find x∗ ∈ C such that ϕ(x∗) ≤ ϕ(x) f or all x ∈ C.

if and only if it solves the equilibrium problem relative to EP( f ,C) where f (x, y) = ϕ(y) − ϕ(x).

Example 1.2. Let T : C → C be given. The point x∗ is a fixed point of T if and only if it solves the equilibrium
problem relative to EP( f ,C) where f (x, y) = 〈x − Tx, y − x〉.

Many algorithms have been developed for solving problem EP( f ,C) combining diagonal subgradients
with projections, see for instance ([1], [2], [7], [8], [10], [12]) and references therein. The problem P(C, f ,T)
of finding a common point in the solution set of problem EP(C, f ) and the set F(T) of a nonexpansive
mapping T recently becomes an attractive subject, and various methods have been developed for solving
this problem. Most of the existing algorithms for this problem are based on the proximal point method
applying to equilibrium problem EP(C, f ) combining with a Mann’s iteration to the problem of finding
a fixed point of T. In 2006, Takahashi and Takahashi [11] proposed an iterative scheme under the name
viscosity approximation methods for finding an element of the solutions set S of problem P(C, f ,T) of non-
expansive mapping T in a real Hilbert space H. In 2014, Anh and Muu in [2] studied a new algorithm for
solving P(C, f ,T) of nonexpansive mapping T in a real Hilbert space H which defined as follows:

Pick any x0 ∈ C

wk ∈ ∂εk f (xk, .)(xk),

γk = max{λk, ‖wk‖} and αk =
βk

γk

yk = PC(xk − αkwk) and let xk+1 = δkxk + (1 − δk)T(yk)

(1)

where the sequences {λk}, {βk}, {εk}, {δk} of nonnegative numbers satisfy the following conditions
0 < λk < λ, 0 < a < δk < b < 1, δk →

1
2 ,

βk > 0,
∑
∞

k=0 βk = ∞,
∑
∞

k=0 β
2
k < ∞,∑

∞

k=0 βkεk < ∞.

The aim of this paper is to present a new algorithm for solving P(C, f ,T), by technical of Reich in [13],
[14]. Anh and Muu in [2], produced an algorithm by non-expansive mapping T but we produces it by
mappings Tk that are approximation of non-expansive mapping T. Our results complement some known
recent results in the literature.

2. Preliminaries

Let C be a nonempty closed convex subset of a Hilbert space H. The bifunction f : C × C → R is
pseudomonotone on a set A ⊆ C with respect to x if and only if for every y ∈ A,

f (x, y) ≥ 0 implies f (y, x) ≤ 0.

We say that f is pseudomonotone on A if it is pseudomonotone on A with respect to every x ∈ A. We
write xn ⇀ x to indicate that the sequence {xn} converges weakly to x as n→ ∞, and xn → x means that xn
converges strongly to x. In a real Hilbert space H for every x, y ∈ H and λ ∈ R we have

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2.
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Since C is closed and convex, for any x ∈ H there exists a unique point in C, denoted by PC(x) satisfying

‖x − PC(x)‖ ≤ ‖x − y‖,∀y ∈ C.

PC is called the metric projection of H to C. It is well known that PC satisfies the following properties:

〈x − y,PC(x) − PC(y)〉 ≥ ‖PC(x) − PC(y)‖2,∀x, y ∈ H,
〈x − PC(x),PC(x) − y〉 ≥ 0,∀x ∈ H, y ∈ C,

‖x − y‖2 ≥ ‖x − PC(x)‖2 + ‖y − PC(x)‖2,∀x ∈ H, y ∈ C.

Every Hilbert space satisfies the Opial condition, i.e., if the sequence {xk} in a Hilbert space H converges
weakly to x ∈ H, Then

lim sup
k→∞

‖xk − x‖ < lim sup
k→∞

‖xk − y‖ f or all y ∈ H that y , x.

We denote by ∂ε f (x0) the set of ε-subdifferential of the convex function f : C→ R at x0 ∈ C, i.e.

∂ε f (x0) = {x ∈ C : f (y) − f (x0) ≥ 〈x, y − x0〉 − ε,∀y ∈ C}.

Also ∂ε f (x, .)(x) stands for ε-subdifferential of the convex function f (x, .) at x. Let us assume that the
bifunction f : C × C→ R and the nonexpansive mapping T : C→ C satisfy the following conditions:

A1. For each x, f (x, x) = 0 and f (x, .) is convex on C,

A2. ∂ε f (x, .)(x) is nonempty for each ε > 0 and x ∈ C and bounded on bounded subsets of C,

A3. f is pseudomonotone on C,

A4. f is paramonotonic i.e.

x ∈ Sol(C, f ), y ∈ C, f (x, y) = f (y, x) = 0 implies that y ∈ Sol(C, f )

A5. For each x ∈ C, f (., x) is weakly upper semicontinuous on C,

A6. The solution set S of Problem P(C, f ,T) is nonempty.
Suppose that the sequences {λk}, {βk}, {εk}, {δk} and {ηk} of nonnegative numbers satisfy the following
conditions

0 < λ < λk < λ, δk < b < 1, δk →
1
2 ,

β > 0,
∑
∞

k=0 βk = ∞,
∑
∞

k=0 β
2
k < ∞,∑

∞

k=0 βkεk < ∞,∑
∞

k=0 ηk < ∞.

(2)

and the mappings Tk : C → C such that for each integer k ≥ 0, ‖T(x) − Tk(x)‖ ≤ ηk for all x ∈ C. Now the
iteration scheme for finding a common point in the set of solutions of Problem P(C, f ,T) can be written as
follows:

Pick x0 ∈ C;

wk ∈ ∂εk f (xk, .)(xk);

γk = max{λk, ‖wk‖} and αk =
βk

γk
;

yk = PC(xk − αkwk) and let xk+1 = δkxk + (1 − δk)Tk(yk).

(3)

To investigate the convergence of this scheme, we appeal the following results which will be used in the
sequel.
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Lemma 2.1. Suppose that {αn} be a sequence of nonnegative real number such that
∑
∞

0 αn < ∞. Then the sequence∏n
i=1(1 + αi) is convergent.

Lemma 2.2. Suppose that {sn}, {αn} and {βn} are sequences of nonnegative real numbers such that

s2
n+1 ≤ s2

n + αnsn + βn,

where
∑
∞

0 αn < ∞ and
∑
∞

0 βn < ∞. Then the sequence {sn} is convergent.

Proof. We claim that {sn} is bounded. Otherwise, there is a subsequence of {sn} (which we shall denote by
{sn} again) such that for any n ∈N, sn > n2. Then we have

s2
n+1 ≤ s2

n + αnsn + βn ≤ (1 +
αn

n2 )s2
n + βn.

Hence,

s2
3 ≤ (1 +

α2

4
)s2

2 + β2 ≤ (1 +
α2

4
)(1 + α1)s2

1 + (1 +
α2

4
)β1 + β2

and

s2
4 ≤ (1 +

α3

9
)s2

3 + β3 ≤ (1 +
α3

9
)(1 +

α2

4
)(1 + α1)s2

1 + (1 +
α3

9
)(1 +

α2

4
)β1 + (1 +

α3

9
)β2 + β3.

Now by induction we see that for every n ≥ 1,

s2
n+1 ≤ s2

1

n∏
i=1

(1 +
αi

i2
) + βn +

n−1∑
k=1

(βk

n∏
i=k+1

(1 +
αi

i2
)).

Then by lemma 2.1, we obtain

s2
n+1 ≤ s2

1

∞∏
i=1

(1 +
αi

i2
) +

∞∑
k=1

(βk

∞∏
i=k+1

(1 +
αi

i2
)) < ∞,

which is a contradiction. Hence our claim is proved. Since {sn} is bounded, there is a number M such that
for every n ∈N, sn < M. So

s2
n+1 ≤ s2

n + αnsn + βn ≤ s2
n + Mαn + βn.

Now for any n,m ≥ 1, we have

s2
n+m+1 ≤ s2

n+m + Mαn+m + βn+m ≤ ... ≤ s2
n +

n+m∑
i=n

Mαi + βi

and then lim supm s2
m ≤ s2

n +
∑
∞

i=n Mαi + βi which implies that

lim sup
m

s2
m ≤ lim inf

n
s2

n.

Lemma 2.3. Suppose that f apply in A3,A4,A5, x∗ ∈ Sol(C, f ), {xki } be a subsequence of {xk} in H such that xki ⇀ x
and

lim sup
k→∞

f (xk, x∗) = lim
i→∞

f (xki , x
∗) = 0.

Then x ∈ Sol(C, f )
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Proof. Since f (., x∗) is weakly upper semicontinuous, we have

f (x, x∗) ≥ lim sup
i→∞

f (xki , x
∗) = lim

i→∞
f (xki , x

∗) = lim sup
k→∞

f (xk, x∗) = 0.

On the other hand, f is pseudomonotone. So f (x, x∗) ≤ 0 and then f (x, x∗) = 0. Now we obtain x∈Sol( f , c).

Lemma 2.4. [9] Let H be a real Hilbert space, {δk} be a sequence of real numbers such that 0 < a ≤ δk ≤ b < 1 for all
k = 0, 1, ..., and let {vk}, {wk} be sequences of H such that

lim sup
k→∞

‖vk‖ ≤ c, lim sup
k→∞

‖wk‖ ≤ c,

and

lim
k→∞
‖δk + (1 − δk)wk‖ = c.Then, limk→∞ ‖vk − wk‖ = 0

3. Main results

Now we are ready to prove the convergence of algorithm 3.

Theorem 3.1. Suppose that Assumptions A1 − A6 are satisfied, the parameters δ, λ, and the sequences {λk}, {βk},
{εk}, {δk} satisfy restrictions 2. Then the sequences {xk}, {yk} and {PC(xk)} generated by 3 strongly converge to the
same point x and x = limk→∞ PC(xk).

The theorem is proved through several claims.
Claim 1 For every x∗ ∈ C there is a real number c such that limk→∞ ‖xk − x∗‖ = c.

Proof. It follows from xk+1 = δkxk + (1 − δk)Tk(yk) and x∗ ∈ F(T) that

‖xk+1 − x∗‖2 = ‖δkxk + (1 − δk)Tk(yk) − x∗‖2

= ‖δk(xk − x∗) + (1 − δk)(Tk(yk) − T(x∗))‖2

≤ δk‖xk − x∗‖2 + (1 − δk)‖Tk(yk) − T(x∗)‖2

≤ δk‖xk − x∗‖2 + (1 − δk)‖Tk(yk) − T(yk) + T(yk) − T(x∗)‖2

≤ δk‖xk − x∗‖2 + (1 − δk)(ηk + ‖yk − x∗‖)2

= δk‖xk − x∗‖2 + (1 − δk)(η2
k + ‖yk − x∗‖2 + 2ηk‖yk − x∗‖)

= δk‖xk − x∗‖2 + (1 − δk)(η2
k + ‖xk − x∗‖2 − ‖yk − xk‖

2 + 2〈xk − yk, x∗ − yk〉 + 2ηk‖yk − x∗‖)

≤ ‖xk − x∗‖2 + (1 − δk)(η2
k + 2〈xk − yk, x∗ − yk〉 + 2ηk‖yk − x∗‖).

(4)

Since yk = PC(xk − αkwk) and x∗ ∈ C,

〈xk − yk, x∗ − yk〉 ≤ αk〈wk, x∗ − yk〉.

Also since xk ∈ C, we have

〈xk − αkwk − yk, yk − xk〉 ≥ 0.

Hence

‖xk − yk‖
2
≤ αk〈wk, xk − yk〉 ≤ αk‖wk‖‖xk − yk‖

=
βk

γk
‖wk‖‖xk − yk‖ ≤

βk

‖wk‖
‖wk‖‖xk − yk‖ = βk‖xk − yk‖,
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which implies that ‖xk − yk‖ ≤ βk. Combining this inequality with 4 yields

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + (1 − δk)(η2
k + 2〈xk − yk, x∗ − yk〉 + 2ηk‖yk − x∗‖)

≤ ‖xk − x∗‖2 + (1 − δk)(η2
k + 2αk〈wk, x∗ − yk − xk + xk〉 + 2ηk‖yk − x∗‖)

≤ ‖xk − x∗‖2 + (1 − δk)(η2
k + 2αk〈wk, x∗ − xk〉 + 2αk‖wk‖‖xk − yk‖ + 2ηk‖yk − x∗‖)

≤ ‖xk − x∗‖2 + (1 − δk)(η2
k + 2αk〈wk, x∗ − xk〉 + 2β2

k + 2ηk‖yk − x∗‖)

≤ ‖xk − x∗‖2 + (1 − δk)(η2
k + 2αk〈wk, x∗ − xk〉 + 2β2

k + 2ηk(‖yk − xk‖ + ‖xk − x∗‖))

≤ ‖xk − x∗‖2 + (1 − δk)(η2
k + 2αk〈wk, x∗ − xk〉 + 2β2

k + 2ηk(βk + ‖xk − x∗‖))

≤ ‖xk − x∗‖2 + 2ηk(1 − δk)‖xk − x∗‖ + (1 − δk)(η2
k + 2αk〈wk, x∗ − xk〉 + 2β2

k + 2ηkβk).

(5)

Since wk ∈ ∂εk f (xk, .)(xk), x∗ ∈ C and f (x, x) = 0 for all x ∈ C, we have

〈wk, x∗ − xk〉 ≤ f (xk, x∗) − f (xk, xk) + εk = f (xk, x∗) + εk. (6)

Combining 5 and 6, we obtain that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2ηk(1 − δk)‖xk − x∗‖ + (1 − δk)(η2
k + 2αk( f (xk, x∗) + εk) + 2β2

k + 2ηkβk). (7)

On the other hand, since x∗ ∈ S, f (x∗, xk) ≥ 0 and then by pseudomonotonicity of f , we have f (xk, x∗) ≤ 0.
Then

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2ηk(1 − δk)‖xk − x∗‖ + (1 − δk)(η2
k + 2αkεk + 2β2

k + 2ηkβk). (8)

Now applying Lemma 2.1 to 8, by Assumption 2, we obtain the existence of limn→∞ ‖xk+1−x∗‖.

Claim 2 lim supk→∞ f (xk, x∗) = 0.

Proof. By 7, for every k, one has

− 2αk(1 − δk) f (xk, x∗)

≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 2ηk(1 − δk)‖xk − x∗‖ + (1 − δk)(η2
k + 2αkεk + 2β2

k + 2ηkβk).

Since ‖xk − x∗‖ is convergent, there is an M such that ‖xk − x∗‖ < M. So

−2αk(1 − δk) f (xk, x∗) ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 2ηkM + (η2
k + 2αkεk + 2β2

k + 2ηkβk).

Summing up the above inequalities for every k, we obtain that

0 ≤ −2
∞∑

k=0

αk(1 − δk) f (xk, x∗)

≤ ‖x0 − x∗‖2 +

∞∑
k=0

2ηk(1 − δk)M +

∞∑
k=0

(1 − δk)(η2
k + 2αkεk + 2β2

k + 2ηkβk) < ∞.

On the other hand, by A2 we have that {‖wk‖} is bounded. In fact, by claim 1, we get that ‖xk‖ is bounded.
Therefore, the assertion follows from A2. In consequence, using 2 we conclude that there exists L such that
αk ≥

βk

L . Therefore

0 ≤ −
∞∑

k=0

βk

L
f (xk, x∗) ≤ −2

∞∑
k=0

αk(1 − δk) f (xk, x∗) < ∞.

Now by
∑
∞

k=0 βk = ∞ and − f (xk, x∗) ≥ 0 we have lim supk→∞ f (xk, x∗) = 0.
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Claim 3 limk→∞ ‖T(xk) − xk‖ = 0.

Proof. By nonexpansiveness of T, we can write

‖Tk(yk) − x∗‖ ≤ ‖Tk(yk) − T(yk)‖ + ‖T(yk) − x∗‖ ≤ ηk + ‖yk − x∗‖
≤ ηk + ‖xk − x∗‖ + ‖yk − xk‖ ≤ ηk + βk + ‖xk − x∗‖,

which implies

lim sup
k→∞

‖Tk(yk) − x∗‖ ≤ lim
k→∞
‖xk − x∗‖ + βk + ηk = c.

On the other hand

lim
k→∞
‖δk(xk − x∗) + (1 − δk)Tk(yk) − x∗‖ = lim

k→∞
‖xk+1 − x∗‖ = c.

Then, applying Lemma 2.4 with vk := xk − x∗ and wk := Tk(yk) − x∗ it results

lim
k→∞
‖Tk(yk) − xk‖ = 0. (9)

Since

‖T(xk) − xk‖ ≤ ‖Tk(xk) − T(xk)‖ + ‖Tk(xk) − xk‖ ≤ ηk + ‖Tk(yk) − Tk(xk)‖ + ‖Tk(yk) − xk‖

≤ 3ηk + ‖T(yk) − T(xk)‖ + ‖Tk(yk) − xk‖

≤ 3ηk + ‖yk − xk‖ + ‖Tk(yk) − xk‖

≤ 3ηk + βk + ‖Tk(yk) − xk‖,

we have

lim
k→∞
‖T(xk) − xk‖ = 0.

Claim 4 There is subsequence {xki } of {xk} such that xki → x and x ∈ C.

Proof. Since {xk} is bounded in Hilbert space H, there is a subsequence {xki } of {xk} and x ∈ C such that xki ⇀ x
and

lim sup
k→∞

f (xk, x∗) = lim
i→∞

f (xki , x
∗).

So by lemma 2.3, x ∈ Sol(C, f ). Now we show that x ∈ F(T). Suppose in contrary that T(x) , x. Then by
Opial condition we have

lim sup
i→∞

‖xki − x‖ < lim sup
i→∞

‖xki − T(x)‖

≤ lim sup
i→∞

‖xki − T(xki )‖ + lim sup
i→∞

‖T(xki ) − T(x)‖

≤ lim sup
i→∞

‖xki − x‖,

which is a contradiction. Hence T(x) = x.

Claim 5 limk→∞ xk = x.
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Proof. By definition of xk+1, we have

‖xk+1 − PC(xk+1)‖2 ≤ ‖xk+1 − PC(xk)‖2

= ‖δk(xk − PC(xk)) + (1 − δk)(Tk(yk) − PC(xk))‖2

≤ δk‖xk − PC(xk)‖2 + (1 − δk)‖Tk(yk) − PC(xk)‖2

≤ δk‖xk − PC(xk)‖2 + (1 − δk)(‖Tk(yk) − xk‖
2
− ‖xk − PC(xk)‖2)

≤ (2δk − 1)‖xk − PC(xk)‖2 + (1 − δk)‖Tk(yk) − xk)‖2.

Now by ‖xk − PC(xk)‖ ≤ ‖xk − x∗‖ and (9), we obtain

lim
k→∞
‖xk+1 − PC(xk+1)‖ = 0. (10)

Now we claim that {PC(xk)} is Cauchy. For simplicity, let Pk := PC(xk). By relation (8) with x∗ = Pk for m > k,
we have

‖xm − Pk‖
2
≤ ‖xm−1 − Pk‖

2 + MAm−1 + Bm−1

≤ ‖xm−2 − Pk‖
2 + M(Am−1 + Am−2) + Bm−1 + Bm−2

≤ ...

≤ ‖xk − Pk‖
2 + M

m−1∑
i=k

Ai +

m−1∑
i=k

Bi,

where Am := 2ηm(1−δm), Bm = (1−δm)(η2
m +2αmεm +2β2

m +2ηmβm) and M is a bound of ‖xk−x∗‖. By convexity
of C, we have 1

2 (Pm + Pk) ∈ C and then

‖Pm − Pk‖
2
≤ 2‖xm − Pm‖

2 + 2‖xm − Pk‖
2

≤ 2‖xm − Pm‖
2 + 2‖xk − Pk‖

2 + M
m−1∑
i=k

Ai +

m−1∑
i=k

Bi,

which, together with
∑m−1

i=k Ai < ∞,
∑m−1

i=k Bi < ∞ and (10), implies that {Pk} is a Cauchy sequence. Hence
there is P ∈ C such that Pk → P and then

P = lim
i→∞

Pki = lim
i→∞

P(xki ) = P(lim
i→∞

xki ) = P(x) = x ∈ C.

So Pk → x. Finally by

‖xk − x‖ ≤ ‖xk − Pk‖ + ‖Pk − x‖,

we can conclude that xk → x.

Remark 3.2. Let for map T in theorem 3.1, Ti(x) = T(x). Then we obtain the iteration processes in [2].
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