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Abstract. The purpose of the paper is to investigate the problems of unique range sets in the most general
setting. Accordingly, we have studied sufficient conditions for a general polynomial to generate a unique
range set which put all the variants of unique range sets into one structure. Most importantly, as an
application of the main result we have been able to accommodate not only examples of critically injective
polynomials but also examples of non-critically injective polynomials generating unique range sets which
are for the first time being exemplified in the literature. Furthermore, some of these examples show that
characterization of unique range sets generated by non-critically injective polynomials does not always
demand gap polynomials which also complements the recent results by An and Banerjee-Lahiri in this
direction. Moreover, one of the lemmas proved in this paper improves and generalizes some results due to
Frank-Reinders and Lahiri respectively.

1. Introduction, Definitions and Results

The problems on unique range sets and its allied notions like uniqueness polynomials, strong uniqueness
polynomials have caused an increasing research interest during the last years in the literature of Value
Distribution Theory. The journey was specifically started in 1977 after the introduction of Set Sharing by F.
Gross [9] as the generalization of Nevanlinna’s Value Sharing notion for the uniqueness of meromorphic
functions.

For a non-constant meromorphic function f and a set S ⊂ C ∪ {∞}, we define E f (S) =
⋃

a∈S{(z, p) ∈
C ×N : f (z) = a with multiplicity p} and E f (S) =

⋃
a∈S{(z, 1) ∈ C ×N : f (z) = a}. If for any two non-constant

meromorphic functions f and 1, E f (S) = E1(S) implies f ≡ 1, then we say that S is a unique range set for
meromorphic functions or URSM in short. If E f (S) = E1(S) implies f ≡ 1, then we say that S is a unique
range set for meromorphic functions ignoring multiplicities or URSM-IM in short. Similar notions for entire
functions are termed as URSE and URSE-IM respectively.

In 1982 Gross-Yang [10] considered the infinite set S = {z : ez + z = 0} and proved the existence of a
URSE. Later many results concerning URSM or URSE have been obtained by many researchers [5, 6, 14, 16,
...] throughout the last few decades and the research mainly got attention towards finding finite unique
range sets. In 1995, Li-Yang [14] unveiled that the base of these finite unique range sets are some suitable
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polynomials. That is, finite unique range sets are nothing but the set of zeros of some suitable polynomials.
These suitable polynomials are called as the polynomials of unique range sets or generating polynomials.
So, natural queries arose “Which are these generating polynomials? In which class do they belong ? or How
do we recognize them?” etc. These questions made the notion of unique range sets more interesting as well
as challenging and hence the notion of unique range sets headed towards its characterization in terms of its
generating polynomials. In 2000, H. Fujimoto [7] made the first attempt in this direction which led the ideas
of uniqueness polynomials, strong uniqueness polynomials and on the basis of these fundamental notions,
he opted a special class of polynomials whose zero sets are unique range sets under certain conditions. This
special class of polynomials are termed as critically injective polynomials. On this occasion, let us shortly
recall these definitions.

Definition 1.1. [2, 7] A polynomial P(z) in C is a uniqueness polynomial for meromorphic (entire) functions if for
any two non-constant meromorphic (entire) functions f and 1, P( f ) ≡ P(1) implies f ≡ 1. In short, we call it
UPM(UPE).

Definition 1.2. [2, 7] A polynomial P(z) in C is a strong uniqueness polynomial for meromorphic (entire) functions
if for any two non-constant meromorphic (entire) functions f , 1 and an arbitrary nonzero constant c, P( f ) ≡ cP(1)
implies c = 1 and f ≡ 1. In this case, we say P(z) is an SUPM(SUPE) in brief.

Since we are talking about finite unique range sets, so the definitions of URSM, SUPM and UPM clearly
imply that every polynomial generating URSM is a SUPM and every SUPM is a UPM. Natural curiosity to
know about the converse is of course justified but it is not always true. For example, P(z) = z; is a UPM but
not a SUPM because for non-constant meromorphic functions 1 and f , where f = 21; we have (21) = 2.(1);
i.e., P(21) = 2P(1), which clearly implies P( f ) ≡ cP(1) but c , 1 and f . 1. Furthermore, P(z) = z5 + az2 + b,
where a, b ∈ C be such that P(z) has only simple zeros; is a SUPM [7, see Example 4.10, pp. 1192] but its zero
set is not a URSM as the lowest cardinality of a URSM is at least 6 {see [14]}. So, under which condition
a UPM(UPE) or a SUPM(SUPE) generates a URSM(URSE) has become the prime concern in the study of
unique range sets.

Now we invoke the definition of critically injective polynomial.

Definition 1.3. [7] Let P(z) be a polynomial such that P′ (z) has mutually k distinct zeros given by d1, d2, . . . , dk
with multiplicities q1, q2, . . . , qk respectively. Then P(z) is called a critically injective polynomial or CIP in short, if
P(di) , P(d j) for i , j, where i, j ∈ {1, 2, · · ·, k}.

Any polynomial which is not CIP is called the non-critically injective polynomial or NCIP in short.
Hence any polynomial is either CIP or NCIP. Now we state the result of Fujimoto [7].

Theorem 1.4. [7] Let P(z) = (z − α1)(z − α2) . . . (z − αn) be a CIP of degree n in C having only simple zeros. Let
P′(z) has k distinct zeros with k ≥ 3, or k = 2 and P′(z) has no simple zero. Further suppose that P(z) is an SUPM
(SUPE). If S is the set of zeros of P(z), then S is a URSM (URSE) whenever n > 2k+6 (n > 2k+2) while a URSM-IM
(URSE-IM) whenever n > 2k + 12 (n > 2k + 5).

After Theorem 1.4, all the existing results of unique range sets were found to be the special cases of
this result. But note that, Fujimoto’s characterization of unique range sets was completely based on CIP’s.
Since any polynomial is either a CIP or a NCIP, so we can say that Fujimoto’s work [7] is no doubt a great
achievement in characterizing the unique range sets but it is only a half characterization achieved in terms
of its generating polynomials. Hence, natural question arises “What about the other half?” i.e., NCIP’s.
Under this circumstance, researchers are left with two options for the characterization of unique range sets
in terms of its generating polynomials. That is, they need an answer to anyone of the following questions.

Question 1.5. Do NCIP’s generate unique range sets? If yes, then what are the criterions to be satisfied by those
polynomials to generate unique range sets ?

Question 1.6. Can we have sufficient conditions for a general polynomial to generate a unique range set ?
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If the answer of Question 1.5 is obtained, then we would have an answer to the counterpart of Theorem
1.4 and that will significantly contribute to the characterization of unique range sets.

If the answer of Question 1.6 is achieved, then that will automatically accommodate Theorem 1.4 and the
answer of Question 1.5 in it.

Pertinent to this, we mention that recently An [1] and Banerjee-Lahiri [4] have separately made some
efforts for the characterization of unique range sets towards Question 1.6. Following is the result of An [1].

Theorem 1.7. [1] Let P(z) = anzn + amzm + am−1zm−1 + . . . + a0, 1 ≤ m < n, am , 0 be a polynomial in C of degree
n with only simple zeros and S be its zero set. Further suppose that P′ (z) has k distinct zeros and I = {i : ai , 0},
λ = min{i : i ∈ I}, J = {i − λ : i ∈ I}. If n ≥ max{m + 4, 2k + 7}, then the following statements are equivalent:

(i) S is a URSM;

(ii) P(z) is a SUPM;

(iii) S is not preserved by any non-trivial affine transformation of C.

(iv) The greatest common divisors of the indices respectively in I and J are both 1.

Now we recall the result of Banerjee-Lahiri [4]. For that, we need to recall the notion of weighted sharing
[12], [13] which has led the notion of unique range sets to a further refinement.

Definition 1.8. [12, 13] Let r be a nonnegative integer or infinity. For a ∈ C we denote by Er(a; f ) the set of
all a-points of f, where an a-point of multiplicity m is counted m times if m ≤ r and r + 1 times if m > r. If
Er(a; f ) = Er(a; 1), we say that f , 1 share the value a with weight r.

We write f , 1 share (a, r) to mean that f , 1 share the value a with weight r. Clearly if f , 1 share (a, r), then f ,
1 share (a, p) for any integer p, 0 ≤ p < r. Also we note that f , 1 share a value a IM or CM if and only if f , 1
share (a, 0) or (a,∞) respectively.

Definition 1.9. [12] For S ⊂ C we define E f (S, r) = ∪a∈SEr(a; f ), where r is a non-negative integer or infinity.
Clearly E f (S) = E f (S,∞) and E f (S) = E f (S, 0).

Definition 1.10. [4] A set S ⊂ C is called a unique range set for meromorphic (entire) functions with weight r if
for any two non-constant meromorphic (entire) functions f and 1, E f (S, r) = E1(S, r) implies f ≡ 1. We write S is
URSMr(URSEr) in short.

From the Definition 1.10, it is clear that every URSMr(URSEr) is a URSM(URSE) but the converse may
not be true. Following is the result of Banerjee-Lahiri [4].

Theorem 1.11. [4] Let P(z) = anzn +
∑m

j=2 a jz j + a0 be a polynomial of degree n, where n −m ≥ 3 and apam , 0 for
some positive integer p with 2 ≤ p ≤ m and gcd(p, 3) = 1. Suppose further that S = {α1, α2, . . . , αn} be the set of all
distinct zeros of P(z). Let k be the number of distinct zeros of the derivative P′ (z). If n ≥ 2k + 7 (n ≥ 2k + 3), then the
following are equivalent:

(i) P(z) is a SUPM (SUPE);

(ii) S is a URSM2 (URSE2);

(iii) S is a URSM (URSE);

(iv) P(z) is a UPM (UPE).

The position of UPM and SUPM should have been reversed in Theorem 1.11 as it can be easily verified
from the explanation made between Definition 1.2 and Definition 1.3. However, the main observation comes
out of Theorem 1.7 and Theorem 1.11 is that the authors always used some specific polynomials which have
a gap after the first term (n-th degree term) i.e., gap polynomials, for the characterization of unique range
sets and they tried to bring all the variants of unique range sets under a single umbrella through their
characterization. It was really a novel attempt but we have instances of non-gap polynomials generating
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unique range sets [5, 6]. Also, the gap between the first two terms of the polynomials used in these theorems
is at least 2 but we know that Yi’s polynomial [16] generates URSM where the gap may be 1. Furthermore,
there may be some other CIP’s and most surprisingly some NCIP’s having no gap or 1 gap between the
first two terms and if those polynomials generate unique range sets, then obviously that sets can not be
characterized by any of these theorems. So, the characterizations given by Theorem 1.7 and Theorem 1.11
provides partial answer to Question 1.6.

Another important observation from An [1] and Banerjee-Lahiri’s [4] papers is that none of the authors
provided any example of NCIP generating unique range set in their papers. As a result, it still remains
uncertain whether the answer of Question 1.5 is affirmative or negative, even after two decades of the
publication of Theorem 1.4. So, again we find that the characterizations provided by An [1] and Banerjee-
Lahiri [4] are inadequate with respect to Question 1.6.

In view of all the above discussions, a characterization of unique range sets in the most general setting
with at least one example of NCIP generating unique range set have become indispensable. That is, we still
need a proper answer of Question 1.6. In this paper, we try to provide the best possible answer of Question
1.6 which is the prime objective of the paper. In fact, in our main result we consider a general polynomial
irrespective of CIP or NCIP, gap or non-gap polynomial and provide some sufficient conditions for the
same to generate a unique range set. As an application of the main result, besides providing examples of
unique range sets generated by CIP’s, we also provide examples of unique range sets generated by NCIP’s
which are for the first time being exemplified in the literature. Some of these examples further show that
there exists NCIP generating unique range set having no gap or 1 gap between the first two terms of the
polynomial. That is, our result also provides an answer to the counterpart of Theorem 1.7 and Theorem 1.11.
In a word, we obtain a general characterization of unique range sets unifying all its variants into our result.

Before going to our main result, we make a short discussion on the structure of a general polynomial as
this will play an important role throughout the rest of this paper.

Let P1(z) =
∑n

i=0 aizi, where an , 0 and ai ∈ C for i ∈ {0, 1, . . . ,n} be such that P1(z) has only simple
zeros. Now consider P(z) =

∑n
i=0

ai
an

zi, where ai’s are same as in P1(z). Clearly P1(z) and P(z) have exactly
same zeros. Hence, if the set of zeros of P(z) forms unique range set, so is the set of zeros of P1(z) and vice
versa. So without loss of generality for a general polynomial of degree n having only simple zeros we may
consider P(z) instead of P1(z). Now we claim that P(z) can be written in the form

P(z) =

k∏
i=1

(z − αi)mi + c;

with k = s + t, where s(≥ 1) denotes the number of mi’s such that mi ≥ 2 and t(≥ 0) denotes the number of

mi’s such that mi = 1 and
k∑

i=1
mi = n. The constants c, αi ∈ C.

Since P(z) has only simple zeros, so let us write

P(z) =

n∏
i=1

(z − γi)

and

P
′

(z) = n
q∏

i=1

(z − σi)ri ,

where γi for i ∈ {1, . . . ,n} and σi for i ∈ {1, . . . , q} are the distinct zeros of P(z) and P′ (z) respectively. Suppose
that P(z) is a NCIP. Then there exist at least two zeros of P′ (z) say σu, σv for u, v ∈ {1, 2, . . . , q} such that
P(σu) = P(σv). For the sake of convenience, we assume that σu, σv are the only zeros of P′ (z) to satisfy
P(σu) = P(σv). Later we shall show that considering more zeros of P′ (z), we shall have the same result as
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claimed. Suppose P(σu) = P(σv) = c. Then

P(z) =

n∏
i=1

(z − γi) − P(σu) + c

=⇒ P(z) = Q(z) + c,

where Q(z) =
n∏

i=1
(z − γi) − P(σu). Now clearly P′ (z) = Q′

(z). Observe that Q(σu) = 0 = Q(σv) and at the same

time P′ (σu) = Q′

(σu) = P′ (σv) = Q′

(σv) = 0. Therefore

Q(z) = (z − σu)ru+1(z − σv)rv+1Rn−ru−rv−2(z),

where Rn−ru−rv−2(z) is a polynomial of degree (n − ru − rv − 2) having only simple zeros. If in this case, we
would have more than two zeros of P′ (z) satisfying P(σu) = P(σv), then also the above procedure would
lead us to our claim. Hence it is clear that for every NCIP our claim is correct and s ≥ 2.

Let P(z) be a CIP. Since in this case P(σu) , P(σv) for all u, v ∈ {1, 2, . . . , q}, so only one σu can repeat at a
time in the formation of Q(z). Then by the same arguments as above we can get

P(z) = (z − σu)ru+1Rn−ru−1(z) + c,

where Rn−ru−1(z) is a polynomial of degree (n − ru − 1) having only simple zeros. It is clear that in this case
s = 1.
Since any polynomial is either CIP or NCIP, so our claim is established.

Henceforth, for any polynomial of degree n having only simple zeros we proceed with the following
polynomial:

P(z) =

k∏
i=1

(z − αi)mi + c; (1.1)

with k = s + t, where s(≥ 1) denotes the number of mi’s such that mi ≥ 2 and t(≥ 0) denotes the number of

mi’s such that mi = 1 and
k∑

i=1
mi = n. The constants c, αi ∈ C. Set

λ j = −

k∏
i=1

(β jm − αi)mi (1.2)

for β jm being the distinct zeros of P′ (z) with m = 1, 2, . . . , d j, where d j ∈ N. The reason behind denoting
different zeros of P′ (z) by β jm is obvious because if P(z) is a NCIP, then it must have at least one λ j such that
there exist ‘d j’ number of different β jm ’s producing it, where d j ≥ 2 and if P(z) is a CIP, then of course d j = 1
for each λ j. Clearly the value of d j depends upon the value of λ j; i.e., for different λ j’s we would have
different d j’s. Note that in a NCIP there may be some β jm with d j = 1. By p jm (≥ 1), we denote the multiplicity
of (z − β jm ) in P′ (z) such that λ j is non-zero and l being the number of those distinct non-zero λ j’s. Observe
that λ j = c − P(β jm ) , c, otherwise P(z) would have multiple zeros. Let us now place an example to clarify
the above discussion.

Example 1.12. Let P1(z) = z2(z2
− 2) + c, where c , 0, 1. Now P′1(z) = 4z(z + 1)(z − 1). Clearly only z = ±1 gives

non-zero λ j and each of these zeros of P′1(z) produces same λ j(= −1); i.e., λ1. So, here l = 1 and hence we have only
one d j which is d1. The value of d1 is 2. Corresponding p jm ’s are P11 , P12 with P11 = 1, P12 = 1.

Remark 1.13. Note that in Example 1.12, s = 1 but P1(z) is a NCIP. So this example shows that s = 1 does not
always imply the polynomial to be a CIP rather the converse is true; i.e., we can always write a CIP in such a format
where s = 1. Similarly for any NCIP we can have a structure of the polynomial such that s ≥ 2. As for example, we
can write P1(z) = (z + 1)2(z − 1)2 + c − 1 = (z + 1)2(z − 1)2 + c1, where c1 , 0,−1; i.e., s ≥ 2. Another point we
should keep in mind that in this new structure the value of non-zero λ j, d j, P jm etc would be changed.
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Remark 1.14. Further note that we would always get at least one λ j , 0 except when there exists one combination
of s and t in P(z) such that s = 1 and t = 0. It is clarified in [7, pp. 1183, l. 4-8] that P(z) with s = 1 and t = 0 can
never generate a unique range set.

Now we state the main result of the paper.

Theorem 1.15. Let P(z) be defined by (1.1) satisfying the following conditions:
(i) k ≥ 4 or
(ii) k = 3 and gcd(mi,n) = 1 for at least one of the mi’s such that mi ≥ 2 or

(iii) k = 3 and gcd(m1,n) , 1, where m1 ≥ 2, m2 = m3 = 1 and n =
3∑

i=1
mi ≥ 5 or

(iv) k = 2 and gcd(mi,n) = 1 for at least one of the mi’s such that n =
2∑

i=1
mi ≥ 5 or

(v) k = 2 and gcd(mi,n) , 1 for each mi such that n ≥ 2(b1 + b2) + 1, where b1 = gcd(m1,n) and b2 = gcd(m2,n).

Let S = {z : P(z) = 0}. Then for n ≥ max{2(b1 + b2) + 1, 4s + 2t + 2
l∑

j=1
d j − 2

l∑
j=1

d j∑
m=1

p jm + 5, 2s + 2t + 3}, the following

are equivalent:
(i) P(z) is a UPM;
(ii) S is a URSM2;
(iii) P(z) is a SUPM.

Corollary 1.16. Let P(z) be defined by (1.1) with k ≥ 2 and S = {z : P(z) = 0}. Then for

n ≥ max{4s + 2t + 2
l∑

j=1
d j − 2

l∑
j=1

d j∑
m=1

p jm + 1, 2s + 2t + 1}, the following are equivalent:

(i) P(z) is a UPE;
(ii) S is a URSE2;
(iii) P(z) is a SUPE.

For standard notations of Nevanlinna Theory used in the paper we refer our readers to follow [3, 11].
We now prove some lemmas which will be needed on the way of proving the main theorem.

2. Lemma

For the sake of convenience, from now on, by f and 1 we shall mean two non-constant meromorphic
functions defined on C unless otherwise stated. Let us denote by H the following function.

H =

(
f ′′

f ′
−

2 f ′

f − 1

)
−

(
1
′′

1
′
−

21
′

1 − 1

)
. (2.1)

Lemma 2.1. [17] Let f , 1 share (1, 0) and H . 0. Then

N1)
E (r, 1; f ) = N1)

E (r, 1; 1) ≤ N(r,H) + S(r, f ) + S(r, 1).

Lemma 2.2. Let f , 1 share (1, 0) and H . 0. Further suppose that a j ∈ C − {1} for j = {1, 2 . . . , q}. Then

N(r,H) ≤ N(r,∞; f |≥ 2) +

q∑
j=1

N(r, a j; f |≥ 2)

+N(r,∞; 1 |≥ 2) +

q∑
j=1

N(r, a j; 1 |≥ 2)

+N∗(r, 1; f , 1) + N0(r, 0; f
′

) + N0(r, 0; 1
′

),
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where N0(r, 0; f ′ ) denotes the reduced counting function of those zeros of f ′ which are not zeros of ( f − 1)
q∏

j=1
( f − a j)

and N0(r, 0; 1
′

) is defined similarly.

Proof. From the construction of H, it is obvious that possible poles of H occur at (i) multiple poles of f and
1; (ii) multiple a j-points of f and 1; (iii) 1-points of f and 1 having different multiplicities; (iv) zeros of f ′

which are not zeros of ( f − 1)
q∏

j=1
( f − a j); (v) zeros of 1

′

which are not zeros of (1− 1)
q∏

j=1
(1− a j). Since all poles

of H are simple, so the lemma is obvious.

Lemma 2.3. [3] Let f , 1 share (1,m), where 0 ≤ m < ∞. Then

N(r, 1; f ) + N(r, 1; 1) −N1)
E (r, 1; f ) +

(
m −

1
2

)
N∗(r, 1; f , 1) ≤

1
2

[N(r, 1; f ) + N(r, 1; 1)].

Lemma 2.4. Let f , 1 share (1, 2). Suppose that a j ∈ C−{1} for j = {1, 2, . . . , q}. Then one of the following cases holds:

(i) (
q −

1
2

)
[T(r, f ) + T(r, 1)] ≤ N2(r,∞; f ) + N2(r,∞; 1)

+

q∑
j=1

N2(r, a j; f ) +

q∑
j=1

N2(r, a j; 1) + S(r, f ) + S(r, 1);

(ii)
1

f − 1
=

A
1 − 1

+ B, where A(, 0), B ∈ C.

Proof. Suppose H . 0. By the second fundamental theorem we get

qT(r, f ) ≤ N(r,∞; f ) +

q∑
j=1

N(r, a j; f ) + N(r, 1; f ) −N0(r, 0; f
′

) + S(r, f ) (2.2)

and

qT(r, 1) ≤ N(r,∞; 1) +

q∑
j=1

N(r, a j; 1) + N(r, 1; 1) −N0(r, 0; 1
′

) + S(r, 1). (2.3)

From (2.2) and (2.3), we get

q[T(r, f ) + T(r, 1)] ≤ N(r,∞; f ) +

q∑
j=1

N(r, a j; f ) −N0(r, 0; f
′

) (2.4)

+N(r,∞; 1) +

q∑
j=1

N(r, a j; 1) −N0(r, 0; 1
′

)

+N(r, 1; f ) + N(r, 1; 1) + S(r, f ) + S(r, 1).

Now using Lemma 2.3, Lemma 2.1 and Lemma 2.2 for m = 2, we get

q[T(r, f ) + T(r, 1)] ≤ N2(r,∞; f ) +

q∑
j=1

N2(r, a j; f ) (2.5)

+N2(r,∞; 1) +

q∑
j=1

N2(r, a j; 1)

+
1
2

[N(r, 1; f ) + N(r, 1; 1)] + S(r, f ) + S(r, 1),
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which implies (i).

Now suppose H ≡ 0. Then on integration we get
1

f − 1
=

A
1 − 1

+ B, where A(, 0), B ∈ C.

Remark 2.5. Taking q = 1 and a1 = 0 in this lemma, we would directly get Theorem 1 of [13]. So this lemma is
clearly a generalization of Theorem 1 in [13].

Remark 2.6. Since N2(r,∞; f ) ≤ T(r, f ) and N2(r,∞; 1) ≤ T(r, 1), so part-i of this lemma can be written as(
q −

3
2

)
[T(r, f ) + T(r, 1)] ≤

q∑
j=1

N2(r, a j; f ) +

q∑
j=1

N2(r, a j; 1) + S(r, f ) + S(r, 1), (2.6)

for q ≥ 2. Now if we assume f1 =
1

f − 1
and 11 =

1
1 − 1

, then clearly f1 and 11 share (∞, 2). Also f − a j =

f1 + 1
f1
− a j = (1 − a j)

 f1 − 1
a j−1

f1

; i.e., a j-points of f are 1
a j−1 -points of f1. Since a j , 1, so 1

a j−1 = c j(say) ∈ C.

Therefore (2.6) implies(
q −

3
2

)
[T(r, f1) + T(r, 11)] ≤

q∑
j=1

N2(r, c j; f1) +

q∑
j=1

N2(r, c j; 11) + S(r, f1) + S(r, 11),

where q ≥ 2 and f1, 11 share (∞, 2). Further in part-ii it remains nothing to show that
1

f − 1
=

A
1 − 1

+ B, where

A(, 0),B ∈ C, implies f1 = A11 + B with A(, 0),B ∈ C. Hence this lemma is also a direct improvement of the
Lemma used in [6].

Lemma 2.7. [15] Let
1

f − 1
=

A
1 − 1

+ B, where A(, 0),B ∈ C. If

N(r, 0; f ) + N(r,∞; f ) + N(r, 0; 1) + N(r,∞; 1) < T(r),

where T(r) = max{T(r, f ),T(r, 1)}. Then either f1 = 1 or f ≡ 1.

Lemma 2.8. Let F =
k∏

i=1
( f − αi)mi and G =

k∏
i=1

(1 − αi)mi , where k ≥ 2,
k∑

i=1
mi = n and αi ∈ C for i = 1, 2, . . . , k. If

(i) k ≥ 4 or

(ii) k = 3 and gcd(mi,n) = 1 for at least one of the mi’s such that mi ≥ 2 or

(iii) k = 3 and gcd(m1,n) , 1, where m1 ≥ 2, m2 = m3 = 1 and n =
3∑

i=1
mi ≥ 5 or

(iv) k = 2 and gcd(mi,n) = 1 for at least one of the mi’s such that n =
2∑

i=1
mi ≥ 5 or

(v) k = 2 and gcd(mi,n) , 1 for each mi such that n ≥ 2(b1 + b2) + 1, where b1 = gcd(m1,n) and b2 = gcd(m2,n),
then FG , a, where a is any non-zero complex number.

Proof. If possible suppose that FG = a. Then

k∏
i=1

( f − αi)mi

k∏
i=1

(1 − αi)mi = a. (2.7)

It is clear from (2.7) that each αi-point of f is a pole of 1.
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(i) Suppose that z0 be a αi-point of f of multiplicity p and a pole of 1 of multiplicity q. Then mip = nq; i.e.,
mip ≥ n; i.e., 1

p ≤
mi
n . Since αi-point of f is chosen arbitrarily, so we would get similar inequality for every

αi-point of f . Now using
k∑

i=1
mi = n and the second fundamental theorem for these αi-points of f , we get

(k − 2)T(r, f ) ≤

k∑
i=1

N(r, αi; f ) + S(r, f )

≤

k∑
i=1

mi

n
T(r, f ) + S(r, f )

≤ T(r, f ) + S(r, f ),

which is a contradiction for k ≥ 4.

(ii) In this part we have k = 3. First of all let us suppose that there exist only one mi say m2 ≥ 2 such that
gcd(m2,n) = 1. Suppose z0 be any α2-point of f of multiplicity r and a pole of 1 of multiplicity u. Then
m2r = nu. Since gcd(m2,n) = 1, so n divides r; i.e., r = nv for some v ∈ N. Hence r ≥ n i.e., 1

r ≤
1
n . Now

proceeding as the above part we shall get

T(r, f ) ≤

3∑
i=1

N(r, αi; f ) + S(r, f )

≤
m1

n
T(r, f ) +

1
n

T(r, f ) +
m3

n
T(r, f ) + S(r, f )

≤
n −m2 + 1

n
T(r, f ) + S(r, f )

≤ (1 −
m2 − 1

n
)T(r, f ) + S(r, f ),

which is a contradiction as m2 ≥ 2. Now if we have more than one mi’s such that mi ≥ 2 and gcd(mi,n) = 1,
then proceeding in a similar fashion we arrive at a contradiction.

(iii) Let k = 3 and gcd(m1,n) , 1, where m1 ≥ 2, m2 = m3 = 1 and n ≥ 5. Clearly m1 = n − 2. Since
gcd(m1,n) , 1; i.e., gcd(n − 2,n) , 1, so gcd(n − 2,n) would be precisely 2. Hence we write n = 2n1 and
n − 2 = 2p1, where gcd(n1, p1) = 1. Now if z0 be any α1-point of f of multiplicity r and a pole of 1 of
multiplicity u, then (n−2)r = nu. This implies 2p1r = 2n1u; i.e., p1r = n1u. Since gcd(n1, p1) = 1, so n1 divides
r; i.e., r ≥ n1 or 1

r ≤
1
n1

= 2
n . Now proceeding similarly like the above part we would get

T(r, f ) ≤

3∑
i=1

N(r, αi; f ) + S(r, f )

≤
2
n

T(r, f ) +
1
n

T(r, f ) +
1
n

T(r, f ) + S(r, f )

≤
4
n

T(r, f ) + S(r, f ),

which is a contradiction for n ≥ 5.

(iv) Let k = 2 and gcd(m1,n) = 1. Since m1 + m2 = n, so gcd(m2,n) = 1. Now proceeding similarly as
above, we would get N(r, αi; f ) ≤ 1

n T(r, f ) and N(r, αi; 1) ≤ 1
n T(r, 1) for i = 1, 2. Note that (2.7) clearly implies

N(r,∞; f ) =
2∑

i=1
N(r, αi; 1). Also using the first fundamental theorem, we get

T(r, f ) = T(r, 1) + O(1) (2.8)
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from (2.7). So using the second fundamental theorem and (2.8), we get

T(r, f ) ≤

2∑
i=1

N(r, αi; f ) + N(r,∞; f ) + S(r, f )

≤
2
n

T(r, f ) +
2
n

T(r, 1) + S(r, f )

≤
4
n

T(r, f ) + S(r, f ),

which is a contradiction for n ≥ 5.

(v) Let k = 2 and gcd(mi,n) = bi , 1 for i = 1, 2. Now let us work with b1. Here we shall again apply similar
arguments as part (i) and get m1p = nq, where p is the multiplicity of an α1-point of f and q is the multiplicity
of the corresponding pole of 1. Since gcd(m1,n) = b1, so m1 = b1p1 and n = b1n1 for some p1,n1 ∈ N, where
gcd(p1,n1) = 1. Now m1p = nq implies b1p1p = b1n1q; i.e., p1p = n1q. Since gcd(p1,n1) = 1, so n1 divides p;

i.e., n1r = p for some r ∈N. Therefore
1
p
≤

1
n1

=
b1

n
. Proceeding in the same way we can show that for any

α2-point of f of multiplicity v, we have
1
v
≤

b2

n
. Similar inequalities hold for αi-points of 1 also. Now in

view of (2.8), using the second fundamental theorem, we get

T(r, f ) ≤

2∑
i=1

N(r, αi; f ) + N(r,∞; f ) + S(r, f )

≤
b1 + b2

n
T(r, f ) +

b1 + b2

n
T(r, 1) + S(r, f )

≤
2(b1 + b2)

n
T(r, f ) + S(r, f ),

which is a contradiction for n ≥ 2(b1 + b2) + 1.

Remark 2.9. Note that if f and 1 are non-constant entire functions, then conclusion of the above lemma is always
true for k ≥ 2. In that case, we do not need any restriction over mi’s and n.

3. Proof of the Theorem

Proof. Since every URSMr is a URSM, every polynomial generating URSM is a SUPM and every SUPM is a
UPM, so automatically (ii) =⇒ (iii) and (iii) =⇒ (i). Therefore to prove the theorem it is enough to show
that (i) =⇒ (ii).
Let P(z) be a UPM and E f (S, 2) = E1(S, 2). We need to show that E f (S, 2) = E1(S, 2) implies f ≡ 1. Now
suppose that

F =
P( f ) − c
−c

=

k∏
i=1

( f − αi)mi

−c
, (3.1)

G =
P(1) − c
−c

=

k∏
i=1

(1 − αi)mi

−c
. (3.2)

Then T(r,F) = nT(r, f ) and T(r,G) = nT(r, 1) and hence S(r,F) + S(r,G) = S(r, f ) + S(r, 1). Clearly F and G
share (1, 2). Therefore in view of Lemma 2.4, one of the following cases holds.
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Case-1. Let(
q −

1
2

)
[T(r,F) + T(r,G)] ≤ N2(r,∞; F) + N2(r,∞; G) (3.3)

+

q∑
j=1

N2(r, a j; F) +

q∑
j=1

N2(r, a j; G)

+S(r,F) + S(r,G).

Now consider λ j as defined by (1.2). The existence of non-zero λ j for P(z) is ensured from Remark 1.14.

Now put aq = 0 and a j =
λ j

c
for those λ j which are distinct and non-zero, where j = 1, 2, . . . , q − 1. Let us

suppose q = l + 1, where l ≥ 1. So (3.3) reduces to(
l +

1
2

)
[T(r,F) + T(r,G)] ≤ N2(r,∞; F) + N2(r,∞; G) (3.4)

+N2(r, 0; F) + N2(r, 0; G)

+

l∑
j=1

N2(r,
λ j

c
; F) +

l∑
j=1

N2(r,
λ j

c
; G)

+S(r,F) + S(r,G).

Now for p jm (≥ 1) being the multiplicity of (z − β jm ) in P′ (z), we get

F − a j = F +
λ j

−c
=

1
−c

d j∏
m=1

( f − β jm )(p jm +1)Q
n−

dj∑
m=1

(p jm +1)
( f ),

where Q
n−

dj∑
m=1

(p jm +1)
( f ) is a polynomial in f of degree n −

d j∑
m=1

(p jm + 1). Therefore

N2(r, a j; F) = 2
d j∑

m=1

N(r, β jm ; f ) + N2

(
r, 0; Q

n−
dj∑

m=1
(p jm +1)

( f )
)
≤

(
n + d j −

d j∑
m=1

p jm

)
T(r, f ).

Similarly, we would have

N2(r, a j; G) = 2
d j∑

m=1

N(r, β jm ; 1) + N2

(
r, 0; Q

n−
dj∑

m=1
(p jm +1)

(1)
)
≤

(
n + d j −

d j∑
m=1

p jm

)
T(r, 1).

From (1.1), we know that k = s + t, where s(≥ 1) denotes the number of mi’s such that mi ≥ 2 and t(≥ 0)
denotes the number of mi’s such that mi = 1. So from (3.1) and (3.2), we get

N2(r, 0; F) = 2
s∑

i=1

N(r, αi; f ) +

k∑
i=s+1

N2(r, αi; f ),

when t ≥ 1 and

N2(r, 0; F) = 2
s∑

i=1

N(r, αi; f ),

when t = 0 and
N2(r,∞; F) = 2N(r,∞; f ).
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Similarly,

N2(r, 0; G) = 2
s∑

i=1

N(r, αi; 1) +

k∑
i=s+1

N2(r, αi; 1),

when t ≥ 1 and

N2(r, 0; G) = 2
s∑

i=1

N(r, αi; 1),

when t = 0 and
N2(r,∞; G) = 2N(r,∞; 1).

So in view of (3.4) when t ≥ 1, we have

n
(

2l + 1
2

)
[T(r, f ) + T(r, 1)]

≤ 2N(r,∞; f ) + 2
s∑

i=1

N(r, αi; f ) +

k∑
i=s+1

N2(r, αi; f )

+2N(r,∞; 1) + 2
s∑

i=1

N(r, αi; 1) +

k∑
i=s+1

N2(r, αi; 1)

+

l∑
j=1

(
n + d j −

d j∑
m=1

p jm

)
T(r, f ) +

l∑
j=1

(
n + d j −

d j∑
m=1

p jm

)
T(r, 1) + S(r, f ) + S(r, 1)

≤

(
2 + 2s + t + ln +

l∑
j=1

d j −

l∑
j=1

d j∑
m=1

p jm

)[
T(r, f ) + T(r, 1)

]
+ S(r, f ) + S(r, 1),

which is a contradiction for n ≥ 4s + 2t + 2
l∑

j=1
d j − 2

l∑
j=1

d j∑
m=1

p jm + 5.

Similarly, when t = 0, we get contradiction for n ≥ 4s + 2
l∑

j=1
d j − 2

l∑
j=1

d j∑
m=1

p jm + 5.

Case-2. Let
1

F − 1
=

A
G − 1

+ B, where A(, 0), B ∈ C. Now

N(r, 0; F) + N(r,∞; F) + N(r, 0; G) + N(r,∞; G)
≤ (s + t + 1 + s + t + 1)T(r, f )

≤

(2s + 2t + 2
n

)
T(r,F)

<
(2s + 2t + 3

n

)
T(r,F)

≤ T(r,F),

as n ≥ 2s + 2t + 3. So in view of Lemma 2.7, we have either FG = 1 or F ≡ G.

Let FG = 1. Therefore we have

k∏
i=1

( f − αi)mi

k∏
i=1

(1 − αi)mi = c2. (3.5)

In view of Lemma 2.8, this case is impossible. So F ≡ G. This implies

P( f ) ≡ P(1). (3.6)
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Since P(z) is a UPM, so f ≡ 1.

4. Applications

In this section, we discuss some examples which would help us to understand the far reaching applica-
tions of our results. At first, we discuss examples of CIP’s in the direction of Theorem 1.15.

Example 4.1. First consider Yi’s polynomial [16].

PY(z) = zn + azn−r + b = zn−r(zr + a) + b, (4.1)

where n, r are two positive integers having no common factors, r ≥ 2 and a, b ∈ C∗ be such that PY(z) does not have
any multiple zeros. Now

P
′

Y(z) = zn−r−1 (nzr + (n − r)a) . (4.2)

According to Fujimoto’s result for UPM in [8], PY(z) is a UPM for n ≥ r + 3. Here k ≥ 3 and gcd(n,n− r) = 1 from
the (4.1). So for n − r ≥ 3, PY(z) satisfies condition (i) or (ii) of Theorem 1.15 and it is a UPM.

Now let us count the cardinality of the generated URSM2. From (4.1) and (4.2), by simple calculation one can
easily compute that ‘nzr + (n− r)a’ has r distinct zeros and each of them produces non-zero distinct λ j. So in this case
l = r, hence d j’s are d1, d2, . . . , dr and d1 = d2 = . . . = dr = 1. Corresponding p jm ’s are p11 , p21 , . . . , pr1 and each of
them is equal to 1. So,

2
l∑

j=1

d j = 2
r∑

j=1

1 = 2r and

2
l∑

j=1

d j∑
m=1

p jm = 2
r∑

j=1

(p j1 + . . . + p jdj
) = 2[(p11 + . . . + p1d1

) + (p21 + . . . + p2d2
) + . . . + (pr1 + . . . + prdr

)]

= 2[p11 + p21 + . . . + pr1 ] = 2r, as d1 = d2 = . . . = dr = 1 and p11 = p21 = . . . = pr1 = 1.
Also we get s = 1 and t = r, hence the zero set of PY(z) is a URSM2 for n ≥ max{4+2r+2r−2r+5, 2+2r+3} = 2r+9.

Example 4.2. Let us consider Frank-Reinder’s polynomial [6].

PFR(z) =
(n − 1)(n − 2)

2
zn
− n(n − 2)zn−1 +

n(n − 1)
2

zn−2
− c, c , 0, 1;

Suppose that

R(z) =
2

(n − 1)(n − 2)
PFR(z) = zn−2

(
z2
−

2n
n − 1

z +
n

n − 2

)
− c, c , 0, 1.

i.e.,

R(z) = zn−2
(
z2
−

2n
n − 1

z +
n

n − 2

)
− c, c , 0, 1. (4.3)

Now

R′(z) = nzn−3(z − 1)2. (4.4)

Again one can apply Fujimoto’s result for UPM in [8] and show that R(z) is a UPM for n ≥ 6. From (4.3) we see
that for n ≥ 6 we have k = 3, m1 = n − 2 ≥ 2, m2 = m3 = 1. Now if n is odd, then clearly gcd(n − 2,n) = 1; i.e.,
condition (ii) of Theorem 1.15 is satisfied and if n is even; i.e., gcd(n − 2,n) , 1, then condition (iii) of Theorem
1.15 is satisfied as m2 = m3 = 1 and n ≥ 6.
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From (4.3) and (4.4), we observe that only z = 1 produces nonzero λ j. So, in this case, we get l = 1; i.e., d j = d1
and d1 = 1. Corresponding p jm would be p11 and its value is equal to 2. So,

2
l∑

j=1

d j = 2(1) = 2 and

2
l∑

j=1

d j∑
m=1

p jm = 2
l∑

j=1

(p j1 + . . . + p jdj
) = 2p11 = 4.

Also we have s = 1 and t = 2, hence the zero set of R(z) is a URSM2 for n ≥ max{4 + 4 + 2 − 4 + 5, 2 + 4 + 3} = 11.
Since the zeros of R(z) and PFR(z) are same, so the zero set of PFR(z) is a URSM2 for n ≥ 11.

Now we construct a NCIP which generates URSM.

Example 4.3. Consider the polynomial R(z) = zn + 2zn−2 + zn−4 + c, where n(≥ 7) is odd and c ∈ C be such that R(z)
does not have any multiple zero. Clearly R(z) = zn−4(z + i)2(z− i)2 + c. Here s = 3, so R(z) is a NCIP. Now we prove
that R(z) is a UPM.

Let R( f ) ≡ R(1). So we have

f n + 2 f n−2 + f n−4 = 1n + 21n−2 + 1n−4. (4.5)

Now suppose that h =
f
1

and putting this value in (4.5), we get

1n(hn
− 1) + 21n−2(hn−2

− 1) + 1n−4(hn−4
− 1) = 0;

i.e.,

14(hn
− 1) + 212(hn−2

− 1) + (hn−4
− 1) = 0. (4.6)

Next let us consider the following subcases.
Subcase-1.1. Suppose that h is non-constant. Then from (4.6), we get(

12 +
hn−2
− 1

hn − 1

)2

=

(
hn−2
− 1

hn − 1

)2

−

(
hn−4
− 1

hn − 1

)
(4.7)

=
(hn−2

− 1)2
− (hn−4

− 1)(hn
− 1)

(hn − 1)2

=
(hn
− 2hn−2 + hn−4)

(hn − 1)2

=
hn−4(h2

− 1)2

(hn − 1)2 .

Since n is odd, then n = 2p + 1 for some positive integer p. Hence n − 4 = 2(p − 2) + 1. Now it is to be noted that
from (4.5), we get

f n−4( f 2 + 1)2 = 1n−4(12 + 1)2

=⇒
f n−4

1n−4 =

(
12 + 1
f 2 + 1

)2

=⇒ hn−4 =

(
12 + 1
f 2 + 1

)2
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=⇒ h2(p−2)+1 =

(
12 + 1
f 2 + 1

)2

=⇒ h =

(
12 + 1

h(p−2)( f 2 + 1)

)2

.

Since f , 1 and h are meromorphic functions, so is f 2 + 1, 12 + 1 and h(p−2) and so is
(
12 + 1

h(p−2)( f 2 + 1)

)
. Now let us

denote
(
12 + 1

h(p−2)( f 2 + 1)

)
= ϑ. Hence h = ϑ2 for a meromorphic function ϑ.

Now putting h = ϑ2 in (4.7), we get(
12 +

(ϑ2)n−2
− 1

(ϑ2)n − 1

)2

=
[ϑ(n−4)(ϑ4

− 1)]2

((ϑ2)n − 1)2 .

Then we have

12 = −
(ϑ2n−6 + ϑ2n−8 + . . . + ϑ2 + 1) ∓ ϑn−4(ϑ2 + 1)
ϑ2n−2 + ϑ2n−4 + ϑ2n−6 + . . . + ϑ6 + ϑ4 + ϑ2 + 1

;

i.e.,

12 = −
(ϑ2n−6 + ϑ2n−8 + . . . + ϑ2 + 1) + ϑn−4(ϑ2 + 1)
ϑ2n−2 + ϑ2n−4 + ϑ2n−6 + . . . + ϑ6 + ϑ4 + ϑ2 + 1

(4.8)

or,

12 = −
(ϑ2n−6 + ϑ2n−8 + . . . + ϑ2 + 1) − ϑn−4(ϑ2 + 1)
ϑ2n−2 + ϑ2n−4 + ϑ2n−6 + . . . + ϑ6 + ϑ4 + ϑ2 + 1

. (4.9)

From (4.8), we observe that the numerator and denominator in the right hand side may have common factors say
(ϑ − δi)’s for i = 1, 2, . . . , p iff

δn−4
i (δ2

i + 1) = δ2n−2
i + δ2n−4

i ;

i.e.,
δn−4

i (δ2
i + 1)(δn

i − 1) = 0.

Since n is odd, so δi = 0, i,−i are neither the zeros of

(z2n−6 + . . . + z2 + 1) + zn−4(z2 + 1)

nor the zeros of
z2n−2 + z2n−4 + z2n−6 + . . . + z6 + z4 + z2 + 1.

So the value of p is at most (2n − 2) − {(n − 4) + 2} = n; i.e., the numerator and the denominator may have at most n
factors in common. It is easy to show that the denominator has only simple factors, so we do not give the calculation
here. Hence the denominator has at least n−2 distinct non-common factors. Suppose (ϑ−γi)’s for i = {1, 2, . . . ,n−2}
are the distinct non-common factors of the denominator. Clearly each γi-point of ϑ is a pole of 1 of multiplicity at least
2. So using second fundamental theorem on these points, we get

(n − 4)T(r, ϑ) ≤

n−2∑
i=1

N(r, γi;ϑ) + S(r, ϑ)

≤
1
2

n−2∑
i=1

N(r, γi;ϑ) + S(r, ϑ)

≤
n − 2

2
T(r, ϑ) + S(r, ϑ),
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which is a contradiction for n ≥ 7.
We can similarly arrive at a contradiction for equation (4.9). So we deal the next subcase.
Subcase-1.2. Suppose that h is constant. Since 1 is non-constant, so from (4.6), we get hn = hn−2 = hn−4 = 1. Since
n is odd, so h = 1; i.e., f ≡ 1.

We also find that in this case k = 3 and gcd(n, 2) = 1. Hence, R(z) satisfies condition (ii) of Theorem 1.15 and it
is also a UPM for n ≥ 7. Now we count the cardinality of the generated URSM2.

Note that R′ (z) = zn−5
(
z2 + 1

) (
nz2 + (n − 4)

)
. Since n is odd, one can easily verify that for this polynomial we

have only two β jm namely ‘±
√

4−n
n ’ producing non-zero λ j and each of these λ j is distinct; i.e, here in the formula of

cardinality we would have l = 2 and d1 = 1 = d2. Clearly p jm ’s are P11 , P21 with P11 = 1 = P21 . So,

2
l∑

j=1

d j = 2
2∑

j=1

d j = 2(d1 + d2) = 4 and

2
l∑

j=1

d j∑
m=1

p jm = 2
2∑

j=1

(p j1 + . . . + p jdj
) = 2[(p11 + . . . + p1d1

) + (p21 + . . . + p2d2
)] = 2[p11 + p21 ] = 4.

Also we have s = 3 and t = 0, hence the zero set of R(z) is a URSM2 for n ≥ max{12 + 4 − 4 + 5, 6 + 0 + 3} = 17.

The above NCIP also generates URSE of cardinality 13. Since the gap between the first two terms of R(z) is
1, so we provide the following example to show that there also exists NCIP having no gap between the first
two terms which generates URSE of cardinality 9. This example is the direct application of Corollary 1.16.

Example 4.4. Let R1(z) = zn + 2zn−1 + zn−2 + c, where n(≥ 5) is odd and c ∈ C be such that R1(z) does not have any
multiple zero. Clearly R1(z) = zn−2(z + 1)2 + c. Here s = 2, so R1(z) is a NCIP. Now we prove that R1(z) is a UPE.

Let f and 1 be two non-constant entire functions such that R( f ) ≡ R(1). So we have

f n + 2 f n−1 + f n−2 = 1n + 21n−1 + 1n−2. (4.10)

Now suppose that h =
f
1

and putting this value in (4.10), we get

1n(hn
− 1) + 21n−1(hn−1

− 1) + 1n−2(hn−2
− 1) = 0;

i.e.,

12(hn
− 1) + 21(hn−1

− 1) + (hn−2
− 1) = 0. (4.11)

If h is non-constant, then proceeding similarly like Subcase-1.1 of Example 4.3, we get

1 = −
(ϑ2n−4 + . . . + ϑ2 + 1) + ϑn−2

ϑ2n−2 + ϑ2n−4 + . . . + ϑ2 + 1
(4.12)

or,

1 = −
(ϑ2n−4 + . . . + ϑ2 + 1) − ϑn−2

ϑ2n−2 + ϑ2n−4 + . . . + ϑ2 + 1
, (4.13)

where ϑ is a non-constant meromorphic function with ϑ2 =
f
1

. Also using the similar arguments we would get that

in (4.12), there are (n − 1) distinct non-common factors in the numerator with respect to the denominator. Suppose
these non-common factors are (ϑ− ζi) for i = 1, 2, . . . ,n− 1. Clearly each ζi-point of ϑ is a pole of 1. Since 1 does not
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have any pole, so ϑ omits n− 1 points which contradicts the fact that ϑ is non-constant as n ≥ 5. We would also have
contradiction for n ≥ 5 if we consider (4.13) instead of (4.12).

For h to be constant, we obviously get hn = hn−1 = hn−2 = 1 which implies h = 1 and hence f ≡ 1.

Also for R1(z) we have k = 2, hence R1(z) satisfies the conditions of Corollary 1.16. Now we count the cardinality
of the generated URSE2.

In this case, R′1(z) = zn−3 (z + 1) (nz + (n − 2)), so we have only z = 2−n
n producing non-zero λ j; i.e, here in the

formula of cardinality we would have l = 1 and d j = d1 = 1. So, we have only one p jm namely p11 with p11 = 1.
Hence,

2
l∑

j=1

d j = 2(d1) = 2 and

2
l∑

j=1

d j∑
m=1

p jm = 2
l∑

j=1

(p j1 + . . . + p jdj
) = 2[p11 ] = 2.

Also we have s = 2 and t = 0, hence the zero set of R(z) is a URSE2 for n ≥ max{8 + 2 − 2 + 1, 4 + 0 + 1} = 9.

Remark 4.5. Example 4.3-4.4 prove the existence of NCIP’s having gap between the first two terms less than 3,
which can generate unique range sets. In particular, Example 4.4 prove that non-gap polynomials can be NCIP’s and
at the same time they can generate unique range sets. So, authors choice of gap polynomials in [1, 4] for constructing
unique range sets without considering the injectivity hypothesis was good but it lacked putting all the variants of
unique range sets under a single umbrella.

5. Concluding Remark and Some Open Questions

In [8], Fujimoto provided a necessary sufficient condition for a CIP to be a uniqueness polynomial. In
[2], An-Wang-Wong provided a necessary sufficient condition for a general polynomial having gap between
the first two terms at least 3, to be a strong uniqueness polynomial. In the same paper, An-Wang-Wong also
provided a necessary sufficient condition for a CIP to be a uniqueness polynomial. But still no theory have
been obtained for a NCIP or a general polynomial which includes both CIP and NCIP, to be a uniqueness
polynomial. In Examples 4.1-4.4, we have seen that in case of CIP’s we are very much comfortable to verify
whether it is a uniqueness polynomial or not as we have the established theory of Fujimoto but in case of
NCIP’s we need to prove it separately whenever the gap between the first two terms of the polynomial is
less than 3. Since the characterization of a general polynomial to generate a unique range set has already
been made in this paper and a necessary sufficient condition has also been found between a uniqueness
polynomial and the corresponding unique range set, so if one can find the answer of anyone of the following
questions, then that will ease the effort of finding uniqueness polynomials which are non-critically injective
and at the same time that will at instant help us to exemplify any polynomial to generate a unique range
set.

Question 5.1. What is the necessary sufficient condition for a NCIP to be a uniqueness polynomial?

Question 5.2. What is the necessary sufficient condition for a general polynomial to be a uniqueness polynomial?
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