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Hyperbolization of the Limit Sets of Some Geometric Constructions

Zhanqi Zhang?, Yingqing Xiao®

?College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, P.R. China

Abstract. Inspired by the construction of Sierpinski carpets, we introduce a new class of fractal sets. For
a such fractal set K, we construct a Gromov hyperbolic space X (which is also a strongly hyperbolic space)
and show that K is isometric to the Gromov hyperbolic boundary of X. Moreover, under some conditions,
we show that Con(K) and X are roughly isometric, where Con(K) is the hyperbolic cone of K.

1. The first section

During the past several years, the hyperbolic construction of all kinds of fractal sets has been considered
by many authors. For examples, in [6, 7, 9] the authors proved that for an iterated function system {S j}?i 1
of similitudes, there is a natural graph structure in the representing symbolic space to make it a hyperbolic
graph in the sense of Gromov, and the Gromov hyperbolic boundary at infinity is Holder equivalent to

the self-similar set generated by {S j}?’: ;- Under this framework they studied the Lipschitz equivalence of

self-similar sets and the topological properties of the attractors. In [8], the author obtained that the Julia sets
of postcritically finite rational maps arise as Gromov hyperbolic boundaries at infinity. In [4], the author
established connections between a metric space X and the large-scale geometry of the hyperspace H(X) of
its nondegenerate closed bounded subsets, and studied mappings on X in terms of the induced mappings
on H(X). In [5], Z. Ibragimov and J. Simanyi considered the hyperbolization of the ternary Cantor set. They
introduced a construction of the ternary Cantor set within the context of Gromov hyperbolic geometry and
proved that the ternary Cantor set is isometric to the hyperbolic boundary of some Gromov hyperbolic
space. Their results have been generalized to the uniform Cantor sets case in [10]. From the construction of
Cantor sets or uniform Cantor sets, we know that the gaps, which were removed from the origin interval are
still similar to the origin interval. Many fractal sets have the same properties. For examples, the Sierpiriski
gasket and Sierpiniski carpet. Let us recall the construction of Sierpiniski carpet. The construction of the
Sierpiriski carpet begins with a square A. The square is cut into 9 congruent subsquares in a 3-by-3 grid,
and the central subsquare is removed. The same procedure is then applied recursively to the remaining 8
subsquares, ad infinitum. From the construction, we can see that the removed central subsquare in each
step are still similar to the origin square A. Based on this intuition, in this paper, we introduction a new
class of fractal sets (see Definition 2.1) and consider its hyperbolic construction.
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The paper is organized as follows. In section 2, we define a fractal set K and give some background
knowledge about Gromov hyperbolic space; in section 3, we construct a Gromov hyperbolic space X and
under some conditions, show that Con(K) and X are roughly isometric, where Con(K) is the hyperbolic cone
of K; in section 4, we prove the fractal set K is isometric to the Gromov hyperbolic boundary of X.

2. Basic Concepts

In order to introduce the set K we talk about in this paper, we first present some notations and definitions.
Let
To=1{0}, Ty={aix--ix: ij EN,jZ 1,2,...,k},

T ={itisis--:ij €N, je N}, T=| JTk
k=0

Let us fix twomapsn :I' - IN and m : I' = IN. After that, let

N =10}, Ar=lirip---ix€l:1<i1<n(@),1<i<n(iy),..., 1 <ip <n(qiz- - ik1)},
Awo = irisis -+ s irip i € A, ke N}, A= JAx.
k=0

For k € N we let Si = {iliz cee ik Tl ik*l €A1, 1< ik < m(i1i2 cee ik*l)} and S = U;:;l Sk.

For o = ijip - - ix € ', we denote its length by |al, i.e. |a| = k. For a = i1izi3... € ', and k € IN, let (o), be
the initial k characters of a, i.e. (a); = i1iz - - i.

(R%, p) is d-dimensional Euclidean space with the usual metric. ¥ x, y € R?, we denote p(x, y) by |xy| for
convenience. Y A C R?, we denote diam(A) by |A|. For A, B C RY, if there exists a similitude T such that
A = TB, then we write A ~ B (recall that a map T : R? —» R is a similitude if and only if there exists r > 0
such that Vx,y € RY, |xy| = r[T(x)T(y)]). The interior of a set A C R? is written A°, and the closure of A is

written A. For x, y € R, we denote max{x, y} by x V y and min{x, y} by x A .

Definition 2.1. Suppose V is a nonempty bounded open set on R with (V)D =V.Letn:T > Nandm:T - N
be two maps. According to above introductions, we obtain A and S decided by n and m. We declare that the compact
set K fulfill the structure (V, A, S) if

(1) For any a € A, there exist two classes of open sets, {Vai}?:(‘f) and {Waj}?;(f‘ ) such that

n(a) m(a)

Vaz(gvm)u(gwa,).

Besides Vi = Vo, Waj =V, for all i, j, and they are disjoint pairwise (Vy =V for convention);
(2) limjyo0 Vol = 0, that is, ¥ € > 0, there exists k € IN such that |V,| < € for any |a| > kand a € A;
(3) K is the compact set satisfying K = (2o Uzen, Va-

From the construction, we know, every open subset W, i removed from V,, is still similar to V,,, thus similar
to the origin open set V. In the rest of the paper, when we claim that K fulfills the structure (V, A, S), we
always suppose that V is a open bounded set on R? with (V)O =Vand V # 0. A and S are decided by some
maps n, m following the rules we described above.

Example 2.2. (Moran set) Let us fix a sequence of positive integers {nihi>1. Let {ckjh<k1<j<n, be a sequence of
positive numbers satisfying Z';ilck,j < 1. Set Dy = maxi<j<p, Cx,; and assume lim_, o [1.,D,=0. Letn:T - N
be the map such that n(a) = nig41 for a« € T, and m : T — IN some map satisfying m(a) < nyj1 +1fora € I'. Fixan
open interval V.= Vo C R. For any a € Ay_q, we can find open intervals V,j with 1 < j < ny belonging to V,,, and
m(a)

they are disjoint pairwise. Besides |V uj|/|Va| = ¢k j. Then {Wa]'}].:1 consists of component intervals of Va\ in 1 X_/aj.
There is a compact set K fulfill the structure (V, A, S) and K is indeed a Moran set. See Fig. 1.
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Figure 1: Construction of the open interval V, with 74,1 = 3 and m(a) = 1

Example 2.3. (Sierpiriski carpet) Let n : I' — IN be the map such that n(a) = 8 fora € I, and m : I — IN the
map satisfying m(e) = 1 for a € T. Fix an open square V. C R%. For all a € Ay_1, let V,, be an open square and it
could be divided into 9 squares with the same volume. Let W,y denote the central open square and Va1, Vaa, ..., Vas
denote the others. There is a unique set K fulfill the structure (V, A, S) and K is the Sierpiriski carpet. See Fig. 2.

V.
Val Va 2 Vaj
Vm? Wal Va4
Va 7 Vaz6 Va5

Figure 2: Left: the first two stages of the construction of Sierpiriski carpet; Right: construction of V,

Example 2.4. (Sierpiriski gasket) Let n : I — IN be the map such that n(o) = 3 fora € I, and m : T - IN
the map satisfying m(a) = 1 for a € T. Fix an open equilateral triangle V. C R?. For all a € A1, let V, be an
open equilateral triangle and it could be divided into 4 equilateral triangles with the same volume. Let Wy, denote
the central open equilateral triangle and V1, Vo, Vg denote the others. There is a unique set K fulfill the structure
(V, A, S) and K is the Sierpiriski gasket. See Fig. 3.

Figure 3: Left: the first two stages of the construction of Sierpiniski gasket; Right: construction of V,

Now we turn to a brief discussion of Gromov hyperbolic spaces. A metric space (X, d) is called Gromov
o-hyperbolic (or 6-hyperbolic) if there exists 0 > 0 such that for all x, y,z, w € X,

d(x,y) +d(z,w) < (d(x,z) + d(y,w)) Vv (d(x, w) + d(y, z)) + 20.
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For x,y,z € X, the Gromov product of x and y with respect to z is defined by

1
(dly): = 5(d(x,2) +d(y,2) - d(x, ).
Alternatively, the space (X, d) is 6-hyperbolic if

(xly)o = (xl2)0 A (zly)o — 0

forall x,y,z,v € X.

To each Gromov hyperbolic space X, we associate a boundary at infinity dX (also called the Gromov
boundary). Let us fix abase point v € X. A sequence {a;} in X is said to converge at infinity if lim; ; ,(aila;), =
co. Two such sequences {4;} and {b;} are equivalent if lim;_,(ai|b;)» = co. The boundary at infinity is defined
to be the equivalence classes of sequences converging at infinity. Obviously, the boundary at infinity is
independent of the base point. A metric d on dX is called a visual metric if there existv € X,C > lande >0
such that for all x, y € dX,

% Peo(r,y) <d(x,y) < Cpeo(x, y), where  pey(x,y) = e,
Here (x]y), is the Gromov product on dX defined by

(xly)o = inf{liminf (a;|b;), : {a;} € x, {b;} € y).
Definition 2.5. We say that a metric space is strongly hyperbolic with parameter € > 0 if

exp(—e(xly)o) < exp(—e(xlz)o) + exp(—e(zly)o)
forall x,y,z,0 € X; equivalently, the four-point condition
€ € €
exp (E(lxyl +[zt]) < exp (§(|xz| + [yt) + exp (§(|xt| + lzy))
holds for all x,y,z,t € X.

A strongly hyperbolic space is a Gromov hyperbolic space with better properties. For example, the
strongly hyperbolic space is boundary continuous and its Gromov hyperbolic boundary is a Ptolemy space
under the visual metric (refer to [1, 3, 11]).

Recall the hyperbolic cone construction [2]. Let (X, d) be a bounded metric space, and let Con(X) =
X % (0, diam(X)]. The metric pc on Con(X) is defined by

dix,y) +rVv s)
—\/% .

The space (Con(X), pc) is 6-hyperbolic with well properties (k-visual and k-roughly geodesic for some k > 0).
In the end of this section, we recall the definition of k-rough isometry:

pc((x,7),(y,s)) = 2log (

Definition 2.6. Let (X, d1) and (Y, dy) be arbitrary metric spaces. Suppose that f : X — Y is a map such that f(X)
is k-cobounded in Y for some k > 0, that is dist(y, f(X)) < k forall y € Y. We say that f is a k-rough isometry if

ld2(f (a), f(b)) — di(a, b)| < k

foralla,b € X. In this case, we also say that X and Y are k-roughly isometric.
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3. Hyperbolization

In the rest of this paper, we fix a compact set K that fulfills the structure (V, A,S). A and S are decided
by some mapsn,m: I' - IN. Foralla € Aand § € S, V, and Wy are given. SET X = {Wp}ges. We are in
the place to find a metric for X under which X is hyperbolic. In the final section, we establish an isometry
between K and dX.

According to the assumptions in Definition 2.1, we have V, ~ V foralla € Aand Wy ~ V forall g € S.
Let {Ta}aen, {Ra}pes be two classes of similitudes such that T,V = V, and RgV = Wp. Fix a point x in V such
that B(x, |V|/M) = {y : |xy| < [V|/M} € V, where M > 1 is some positive number. Set x3 = Rg(x) for all g € S.

Fora,f €S, wedefineamapu: X X X - Rby

u(W, W)—M+ZM|JC xg|
arVVB) — 2 arf
and set
u(Wa, Wﬁ)
h(Wa, Wp) = 2log
[WallWel

In order to prove that (X, /) is a Gromov hyperbolic space, we derive some properties of {Wg}ses first.

Lemma 3.1. (1) Foranya € A,¥Y1 <i<n(a)and¥1 < j<m(a), wehave Voi C Vyand Wyj C Vy;

@ Va,peS, ifa#p, then W, () Wy = 0. Furthermore we have |x,xg| > w

Proof. (1) For any a € A, T,V = V,, so (ToV) = Ta(V)' = TV, that is (V,) = V. By Definition 2.1,
V,i €V, then (V_m)o Cc (V_a)o, thatis V,; C V,. Analogously, we obtain W,; C V,.

(2) Suppose thata, f € Sand o # p. Write a = @i(& € Ay-1) and B = Bj (B € Ajgj-1)- If & =B, the conclusion
isobvious. If @ # ﬁ, without loss of generality we assume |d] > |‘[§|. If (&)Iﬁl = ‘l§, we write & as ﬁiliz ...1;. Since
VEil N Wﬁj =@and W, C Vﬁ‘iy we have the desired result. If (&)IBI * ﬁ, we write & = i1iy...1sf1j2. .. j, and

p=riiir...ihly ... j, with j; # 1. Since Vi, iy () Viyiy..ig, = 0, the conclusion is obvious now.

For a, p € S with a # B, we obtain W, () Wg = 0. One can verify that B(x,, [Wal/M) () B(xg, [Wgl/M) = 0.
[Wal+ Wil
—r

Hence |x,xp| >
Theorem 3.2. (X, h) is a metric space.

Proof. It suffices to prove h satisfies the triangle inequality, that is for any «, 8,y € S, we have

u(W,, W u(W,, W) u(W,,, W,
h(wa,wﬁ):zlogM <2log Wa, Wy Ju(Wy ’*):h(wa,wy)m(wy,wﬁ).

VIWLIIWgl VIWal[Wg[[W, |

Without loss of generality, assume «, f and y are different pairwise. It suffices to show

Wy [u(Wa, W) < u(Wa, Wy )u(W,, Wp).

But
1
W, (Wa, Wp) = 2Mbaxgll Wy | + S IW, (1ol +1Wgl)

and
w(Wa, W, )u(W,, W) = }1(|wa| o+ Wy ) (I |+ [Wl) + 4MPeacy ey
+ Mo, |(IWy | + [Wpl) + Ml xgl(|Wal + W, |).
By Lemma 3.1, we obtain [x,x,| A |x,xg] > |[W,|/M. Besides |x,x,| V |x, x| > |xaxg|/2. Then 4M2|xaxy||x),x,g| >

2Mlx,xgl|W,|. According to Lemma 3.1, one can easily verify that Mlx,x,|(IW,| + [Wg]) > [W,[[W;| and
Mx) xg|(IWa| + W, ) = [W,|[W,|. In conclusion, the triangle inequality holds, thus & is a metricon X. [
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Theorem 3.3. (X, h) is a strongly hyperbolic space with parameter 1.
Proof. First of all, we prove that for any «, §,y, 1 € S, the following inequality
u(Wa, Wp)u(W,, Wy) < u(Wa, W, )u(Wg, Wy) + u(Wa, Wy)u(Wpg, W,) @)

holds.
According to the definition of u, we have

1
u(Wa, We)u(Wy, Wy) = 2 (IWal + IWl)(IW,1 + [Wy1) + 4M gl x|

+ Mixaxgl(|Wy ] + W) + Mix, x, (| Wal + [Wl),

1
(Wa, Wy )uu(Wp, W) = 2 (IWal + 15 )(IWpl + IWy1) + 4M oy [, |

+ Mixaxy (Wl + W) + Mixgy|(IWal + W, 1),

W(Wa, Wy)u(Wg, W,) = }1(|wa| + Wyl )(IWgl + W, ) + 4M2 ey lep, |
+ Mixoxy (Wl + Wy 1) + Mixgacy ([ Wal + [W,).
Since (IR?, p) is Euclidean space, p is ptolemaic. Thus
Ixaxplloy 2yl < lxay llxgxy| + [xaXyllxpxy . 2)
It is obvious that
(IWal + Wl J(IW, |+ Wyl) < (IWal + Wyl (Wl + [Wyl) + (IWal + Wyl )(IW5] + W ). 3)
Since p satisfies the triangle inequality, we also have
Mgl (W | + [Wyl) + My gl (IWal + [Wpl) < Mixax, |(IWgl + [Wyl) + Mixgx, |(IWal + W, )
+ Mixox (Wl + Wy 1) + Mixgacy ([ Wal + [W,).

Combining the equations (2), (3), (4), it is easy to see equation (1) is valid.
Secondly, note that

1
exp {5 (KW, Wy) + BOW,, W) = Wa, Wyu(Wo, W)/ I IWGIIW I,
We could obtain other equations analogously. Combining these equations and using equation (1), we have
1 1 1
exp {E(h(Wa, Wg) + h(W,, Wﬂ))} <exp {E(h(wa'/ W) + h(Wy, Wrz))} +exp {E(h(wm Wy) + h(Wg, WV))}

In conclusion, (X, h) is a strongly hyperbolic space with parameter 1. [

Next we present some connections between the hyperbolic cone Con(K) and the Gromov hyperbolic
space (X, h). First of all, we prove the following two lemmas, which are also important in the final section.

For each k € IN, let Dy be a nonempty finite subset of I'y. We say that the sequence {Dy};? | has the property
A, if for any a € Dy, we have (a); € D, forall 1 <s <k.
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Lemma 3.4. Suppose the sequence {Dy}” | has the property A. Then there is B € T's such that (B)x € Dy for all
keNN.

Proof. We claim that there exists i; € D; such that for any k € IN, we could find C € Dy with (C); = i;. If this
claim is false, that is for any j € Dj, there exists N(j) € IN such that (C); # j for any C € D). Moreover
{C€ Dy : (O)1 = j} = 0Oforanyk > N(j). Since D; is finite, max{N(j) : j € D1} < co. Set Ny = max{N(j) : j € D1},
itis easy to see Dy, = 0, which is a contradiction. Let Di ={a e Dy :(a) =11}, D; is a nonempty finite subset
of Dy. Furthermore, if @ € D, ,, then (a); = i1. Thus (a); € D}, which implies that {D,} has the property A.

Similarly, there is an index 7, such that i1i, € D; and for any k > 3, thereis a € D}( such that (a); = 1.
Set

D? =

{ D;, fork=1,
k

{a € Dll : (0()2 = iliz}, fork > 2.

Obviously, D? is a nonempty finite subset of D; and {D?} has the property A.
Inductively, for any I € IN, we can find 17 - - i) € D;’l such that for any k > I, thereis a € Df{’l such that

(a); = iyip---1;. Let

{ {inia -~ i}, forl <k<l,

D =
foeD () =ip---1)), fork>1

k
Obviously, D; is a nonempty finite subset of Di~! and {D; }=1 has the property A.

Thus, for any | > 1, we obtain i1i---i; € Dﬁ C D;. Put g = iyiziz..., we have (B)x = i1ir... i € Dy for all
keN. O

Lemma 3.5. ¥ x € K, there exists a € A such that {x} = ;2 V(.-

Proof. Let us fix a point x € K. Since K = 2y Uaen, V., we have x € Unea, V, for each k € N. Put
Di={aeA:x€eV,). Diisa nonempty finite set. Ya € Dy and 1 < s < k, since V, C V(a)s, we have
(a)s € Ds . Hence by Lemma 3.4, there exists @ € A such that (a)r € Dy, thatis x € V(a)k. Besides, by
Definition 2.1, limy_e [V(4),| = 0. Hence ;2 V() contains only one point, i.e. x. [

Theorem 3.6. Let (K, p) be a metric space with diam(K) > 0 (recall that p is the usual metric on R?). If there exists

a constant C > 1 such that for any a € A,

mm{"’“"' Weil 1 i < na1 < '<m(a)} .
Vol v - Sismart=g= =

1
CI

then (Con(K), pc) and (X, h) are roughly isometric.

Proof. Let C be a constant such that C|K| > |V]. By Lemma 3.5, for every x € K, there exists @ € A such that
{x} = Nizo Viay.- Now define the map g : K — A by g(x) = a.

Given a point (x,7) € Con(K) with g(x) = @, we could find a unique k such that [Vu,,,| < 7 < [V(a,l-
Define f : Con(K) — X by f(x,7) = W(a),1, and we claim that f is a rough isometry.

First of all, we show that f(Con(K)) is cobounded in X.

Foranya € Aand any 1 < j < m(a),

2M a1 Xag] + (Waal +[Wajl)/2 IMIV,| + |V,
h(Wa1, Waj) = 21log <2log————
o W lWa | Val/C

= 2log ((2M + 1)C).

For a € A with |[V,| > K|, we take = a11...1 such that [Vy| < |K| and || is minimum. We have

2Mlxarxp1| + (lWall + |W/31|)/2 <01 2M|Val + [Vl
<2log =
[Wa W VIVal/CHIVI/(C2C)

W(Wa1, Wgn) = 2log < Zlog((ZM +1) x/c3(:).
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By the above arguments, when talking about the distance from any point W,; € X to f(Con(K)), we could
assume that |V,| < |K| and i = 1. Take a point y € V. NK, then (y,1Val) € Con(K) since |V,| < IK|. Suppose
g(y) = B, thatis {y} = N2, V(ﬁ)k, then there exists s € IN such that [V(g) | < [V, < [V, |- Le’cﬂ~ = (B)s, we
have f(y,|V).l) = Wi € f(Con(K)). But

Mgy xan| + (Wl + [Waal) /2 1oy MVl + 1Vl

<2log
,¢|W51||Wa1| V|Va|/c2 V|Va|/c

which implies that f(Con(K)) is cobounded in X.
Secondly, take two points (x, 7), (y,s) € Con(K). Suppose f(x,7) = W),1 and f(y,s) = W1, we put

h(W/§1/ Wa1) = 2log =2log ((4M +1) \/5),

Ao Ixyl+rVs and B \/|W(a)k1||W(5)11|.
2MIxaxpl + (Wil + [Wigal)/2 Vs

Since Wyl 2 V(@) |/C, W1l 2 [V l/C,

Vi,

IV("‘)k' 271> |V(f¥)k+1| 2 c ’

and Vil =5 > [V, | =

Vil
C

we have

Ol

Vrs < \[IW@allWgal < Crs,
thus £ <B<C.

By Lemma 3.1, we have [x(),1x(@)1] > (|W(a)k1| + |W(5),1|)/M. Since x € V(a)k,y € V(,g)l, and Wy, €
Viays W1 € Vi), we have

lxyl +1 Vs < Ix@axgal + X@axl + lyxgal+rVs
< Ix@ax@al + C([Wayal + [Wigal) + C([Wal v [Wigal)
< R@ax@nal + C(IWwal + Wignl) + (Wl + Wegal)

1
<4C (2M|x(a)k1x(ﬁ)11| + §(|W(a>k1| + |W<ﬁ>11|))-
Hence A < 4C. Besides, since

2Mlxa1xp1| + %(|Wa1| + Ingll) < 2M(Jxyl + C(r +5)) + %(r +5)
< 2M(Jxy| +2C(r v 5)) + C(r V 5)
< max{2M,4MC + C}(Ixyl +rVv s)
< (AMC + O)(Jxyl + 7 V 5),

__1
we have A > @Tc

In conclusion, one can easily verify that

I(f(x,7), £(¥,5)) = pe((x, 1), (v,9)] = |10g(AB)| < 2log ((4M +1)C?),

which implies f is a rough-isometric map. Obviously, (Con(K), pc) and (X, h) are roughly isometric. [J
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4. Boundary at infinity

In this section, we are in the place to establish an isometry between K and dX. We derive some properties

of dX first. Let W; € X be the base point and denote it by o. For any {W,,}? | € a € dX, we have

u(Wan ’ Wl)u(Wam, Wl)

W, IW, =1
( ““I “"’)0 og |Wl|u(wan/ Wﬂ’m)

Butforalla € S,

4%
% <u(W,, W1) < M + 1|V,

thus oo
|W1| M + 1)7|V|
10 — < W[xn Wam 0 < 10 TR TN
8 Zu(Wy, Wo) = WarlWado < 108 1o Wy

Because of this argument, the following lemma is apparent.

Lemma 4.1. {W,,}»  converge at infinity if and only if limy, ;o u(Wa,, Wa,,) = 0. Wealso have lim,—, 0 [Wy, | = 0
and {x,,}>, isa Cauchy sequence.

By similar arguments, we could observe that two sequences {W,,} and {Wp,} converging at infinity are
equivalent if and only if lim,,—,c u(W,,, Wp,) = 0. We also need the following lemma which presents some
properties of {x,}qes.

Lemma 4.2. For {W,,}", € a € dX, if the members of {W,
sequence {x,,} ", belongs to the compact K.

are different pairwise, then the limit of the Cauchy

annl

Proof. Without loss of generality, we assume that {|a,|};” , is strictly increasing. Let f, = (a)jq,1-1 and take
a point yg, € Vﬁ” (K. It is obvious that |xa,yg,| < [Vg,|. For any € > 0, there exists Ny such that |x,,x, | < §
for i, j > Np. By Definition 2.1, there exists N, such that |x,,y4| < § fori > N». So for i, j > max{Ny, N2}, we
have |yg,yp,| < ¢, thatis {yg,};7; is a cauchy sequence. Finally, we obtam limy, 00 X4, = limy, 00 Y, € K since
Kis compact. [OJ

After all these preparations, we turn to our main theorem:
Theorem 4.3. There is an isometry ¢ : IX — K.

Proof. Foranya € dX, take {(W,, | | € a. {W,,}>, has infinite different members since lim,_,, [Wq,| = 0. Find
asubsequence {W,, };7, whose members are different pairwise. By Lemma 4.2, lim;, 0 Xq, = limje X4, € K
and we denote it by x,. Take {Wﬁn} € a, since lim;, e |Xq,xp,| = 0, we have lim;, e Xg, = X,. Therefore X,
is well defined, and we define ¢ : &X — Kby ¢(a) = x,.

For a,b € JdX, if x, = xp, take any { Wa,}o2, € a and any (W}, € b. It is obvious that lim, e Xa, =
X, = xp = lim, 0 xp,, that is lim,, e [Xa,xp,| = 0. Besides we have lim,,,c(|Wa,| + [Wp,[) = 0. So we get
limy, 00 u(Wa,, Wg,) = 0, that is a = b. Hence ¢ is injective.

By Lemma 3.5, for any x € K, we find a € Aw such that x € N2y Via,- (Wl converges at infinity
and limy_,c0 X(a),1 = %, that is qb({{W(a)kl}]‘j;O}) = x which shows ¢ is surjective.

Define d : 9X X dX — R by d(a, b) = |x,xp| for any a,b € dX. It suffices to show d is a visual metric.

Fora,b € 9X,a # b, take any { W, 12, €aand any {Wg,}> | € b, we have

u(Wa,, Wi)u(Wg,, W)
[W1lu(Wa,, Wg,)

(Wa,, |Wﬁn )o =lo

We can also obtain

tim u(We,, W) = 21 + 2V, )
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W
lim u(Wg,, W) = % + 2Mlx1xp, ©)
n—00
and
lim #(W,,, Wp,) = 2Mlx,x;. )
n—0o0

By equations (5), (6) and (7), we have

—(alb) 2M|W1|
e o = W Wl |22 x|
(%2 + 2Mey ) (52 + 2Mey )
But
2M|W4| < 2M|W1| 8M

< < =
@M+ 32 VE ™ (52 + 2Mir gl ) (Y + 2Mixaxl) — 1WA

M.\, @M+3 2|V

Take a constant C such that C > A S

, we get

1
Ee—(ulb)o <d(a,b) = |x.xp] < Ce_(ﬂlb)nl

which shows that 4 is a visual metric and ¢ : 9X — Kis an isometric map. [
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