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Hyperbolization of the Limit Sets of Some Geometric Constructions
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Abstract. Inspired by the construction of Sierpiński carpets, we introduce a new class of fractal sets. For
a such fractal set K, we construct a Gromov hyperbolic space X (which is also a strongly hyperbolic space)
and show that K is isometric to the Gromov hyperbolic boundary of X. Moreover, under some conditions,
we show that Con(K) and X are roughly isometric, where Con(K) is the hyperbolic cone of K.

1. The first section

During the past several years, the hyperbolic construction of all kinds of fractal sets has been considered
by many authors. For examples, in [6, 7, 9] the authors proved that for an iterated function system {S j}

N
j=1

of similitudes, there is a natural graph structure in the representing symbolic space to make it a hyperbolic
graph in the sense of Gromov, and the Gromov hyperbolic boundary at infinity is Hölder equivalent to
the self-similar set generated by {S j}

N
j=1. Under this framework they studied the Lipschitz equivalence of

self-similar sets and the topological properties of the attractors. In [8], the author obtained that the Julia sets
of postcritically finite rational maps arise as Gromov hyperbolic boundaries at infinity. In [4], the author
established connections between a metric space X and the large-scale geometry of the hyperspaceH(X) of
its nondegenerate closed bounded subsets, and studied mappings on X in terms of the induced mappings
onH(X). In [5], Z. Ibragimov and J. Simanyi considered the hyperbolization of the ternary Cantor set. They
introduced a construction of the ternary Cantor set within the context of Gromov hyperbolic geometry and
proved that the ternary Cantor set is isometric to the hyperbolic boundary of some Gromov hyperbolic
space. Their results have been generalized to the uniform Cantor sets case in [10]. From the construction of
Cantor sets or uniform Cantor sets, we know that the gaps, which were removed from the origin interval are
still similar to the origin interval. Many fractal sets have the same properties. For examples, the Sierpiński
gasket and Sierpiński carpet. Let us recall the construction of Sierpiński carpet. The construction of the
Sierpiński carpet begins with a square ∆. The square is cut into 9 congruent subsquares in a 3-by-3 grid,
and the central subsquare is removed. The same procedure is then applied recursively to the remaining 8
subsquares, ad infinitum. From the construction, we can see that the removed central subsquare in each
step are still similar to the origin square ∆. Based on this intuition, in this paper, we introduction a new
class of fractal sets (see Definition 2.1) and consider its hyperbolic construction.
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The paper is organized as follows. In section 2, we define a fractal set K and give some background
knowledge about Gromov hyperbolic space; in section 3, we construct a Gromov hyperbolic space X and
under some conditions, show that Con(K) and X are roughly isometric, where Con(K) is the hyperbolic cone
of K; in section 4, we prove the fractal set K is isometric to the Gromov hyperbolic boundary of X.

2. Basic Concepts

In order to introduce the set K we talk about in this paper, we first present some notations and definitions.
Let

Γ0 = {∅}, Γk = {i1i2 · · · ik : i j ∈N, j = 1, 2, . . . , k},

Γ∞ = {i1i2i3 · · · : i j ∈N, j ∈N}, Γ =

∞⋃
k=0

Γk.

Let us fix two maps n : Γ→N and m : Γ→N. After that, let

Λ0 = {∅}, Λk = {i1i2 · · · ik ∈ Γk : 1 ≤ i1 ≤ n(∅), 1 ≤ i2 ≤ n(i1), . . . , 1 ≤ ik ≤ n(i1i2 · · · ik−1)},

Λ∞ = {i1i2i3 · · · : i1i2 · · · ik ∈ Λk, k ∈N}, Λ =

∞⋃
k=0

Λk.

For k ∈Nwe let Sk = {i1i2 · · · ik : i1i2 · · · ik−1 ∈ Λk−1, 1 ≤ ik ≤ m(i1i2 · · · ik−1)} and S =
⋃
∞

k=1 Sk.
For α = i1i2 · · · ik ∈ Γ, we denote its length by |α|, i.e. |α| = k. For α = i1i2i3 . . . ∈ Γ∞ and k ∈ N, let (α)k be

the initial k characters of α, i.e. (α)k = i1i2 · · · ik.
(Rd, ρ) is d-dimensional Euclidean space with the usual metric. ∀ x, y ∈ Rd, we denote ρ(x, y) by |xy| for

convenience. ∀A ⊆ Rd, we denote diam(A) by |A|. For A,B ⊆ Rd, if there exists a similitude T such that
A = TB, then we write A ' B (recall that a map T : Rd

→ Rd is a similitude if and only if there exists r > 0
such that ∀ x, y ∈ Rd, |xy| = r|T(x)T(y)|). The interior of a set A ⊆ Rd is written Ao, and the closure of A is
written A. For x, y ∈ R, we denote max{x, y} by x ∨ y and min{x, y} by x ∧ y.

Definition 2.1. Suppose V is a nonempty bounded open set on Rd with
(
V
)o

= V. Let n : Γ→N and m : Γ→N

be two maps. According to above introductions, we obtain Λ and S decided by n and m. We declare that the compact
set K fulfill the structure (V,Λ,S) if

(1) For any α ∈ Λ, there exist two classes of open sets, {Vαi}
n(α)
i=1 and {Wα j}

m(α)
j=1 , such that

Vα =
( n(α)⋃

i=1

Vαi

)
∪

( m(α)⋃
j=1

Wα j

)
.

Besides Vαi ' Vα, Wα j ' Vα for all i, j, and they are disjoint pairwise (V∅ = V for convention);
(2) lim|α|→∞ |Vα| = 0, that is, ∀ ε > 0, there exists k ∈N such that |Vα| < ε for any |α| ≥ k and α ∈ Λ;
(3) K is the compact set satisfying K =

⋂
∞

k=0
⋃
α∈Λk

Vα.

From the construction, we know, every open subset Wα j removed from Vα is still similar to Vα, thus similar
to the origin open set V. In the rest of the paper, when we claim that K fulfills the structure (V,Λ,S), we
always suppose that V is a open bounded set onRd with

(
V
)o

= V and V , ∅. Λ and S are decided by some
maps n, m following the rules we described above.

Example 2.2. (Moran set) Let us fix a sequence of positive integers {nk}k≥1. Let {ck, j}1≤k,1≤ j≤nk be a sequence of
positive numbers satisfying Σnk

j=1ck, j < 1. Set Dk = max1≤ j≤nk ck, j and assume limk→∞
∏k

s=1 Ds = 0. Let n : Γ→ N

be the map such that n(α) = n|α|+1 for α ∈ Γ, and m : Γ→N some map satisfying m(α) ≤ n|α|+1 + 1 for α ∈ Γ. Fix an
open interval V = V∅ ⊆ R. For any α ∈ Λk−1, we can find open intervals Vα j with 1 ≤ j ≤ nk belonging to Vα, and
they are disjoint pairwise. Besides |Vα j|/|Vα| = ck, j. Then {Wα j}

m(α)
j=1 consists of component intervals of Vα \

⋃nk
j=1 Vα j.

There is a compact set K fulfill the structure (V, Λ, S) and K is indeed a Moran set. See Fig. 1.
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Figure 1: Construction of the open interval Vα with n|α|+1 = 3 and m(α) = 1

Example 2.3. (Sierpiński carpet) Let n : Γ → N be the map such that n(α) ≡ 8 for α ∈ Γ, and m : Γ → N the
map satisfying m(α) ≡ 1 for α ∈ Γ. Fix an open square V ⊆ R2. For all α ∈ Λk−1, let Vα be an open square and it
could be divided into 9 squares with the same volume. Let Wα1 denote the central open square and Vα1,Vα2, . . . ,Vα8
denote the others. There is a unique set K fulfill the structure (V,Λ,S) and K is the Sierpiński carpet. See Fig. 2.
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Figure 2: Left: the first two stages of the construction of Sierpiński carpet; Right: construction of Vα

Example 2.4. (Sierpiński gasket) Let n : Γ → N be the map such that n(α) ≡ 3 for α ∈ Γ, and m : Γ → N
the map satisfying m(α) ≡ 1 for α ∈ Γ. Fix an open equilateral triangle V ⊆ R2. For all α ∈ Λk−1, let Vα be an
open equilateral triangle and it could be divided into 4 equilateral triangles with the same volume. Let Wα1 denote
the central open equilateral triangle and Vα1,Vα2,Vα3 denote the others. There is a unique set K fulfill the structure
(V,Λ,S) and K is the Sierpiński gasket. See Fig. 3.
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Figure 3: Left: the first two stages of the construction of Sierpiński gasket; Right: construction of Vα

Now we turn to a brief discussion of Gromov hyperbolic spaces. A metric space (X, d) is called Gromov
δ-hyperbolic (or δ-hyperbolic) if there exists δ ≥ 0 such that for all x, y, z,w ∈ X,

d(x, y) + d(z,w) ≤ (d(x, z) + d(y,w)) ∨ (d(x,w) + d(y, z)) + 2δ.
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For x, y, z ∈ X, the Gromov product of x and y with respect to z is defined by

(x|y)z =
1
2

(
d(x, z) + d(y, z) − d(x, y)

)
.

Alternatively, the space (X, d) is δ-hyperbolic if

(x|y)v ≥ (x|z)v ∧ (z|y)v − δ

for all x, y, z, v ∈ X.
To each Gromov hyperbolic space X, we associate a boundary at infinity ∂X (also called the Gromov

boundary). Let us fix a base point v ∈ X. A sequence {ai} in X is said to converge at infinity if limi, j→∞(ai|a j)v =
∞. Two such sequences {ai} and {bi} are equivalent if limi→∞(ai|bi)v = ∞. The boundary at infinity is defined
to be the equivalence classes of sequences converging at infinity. Obviously, the boundary at infinity is
independent of the base point. A metric d on ∂X is called a visual metric if there exist v ∈ X, C ≥ 1 and ε > 0
such that for all x, y ∈ ∂X,

1
C
ρε,v(x, y) ≤ d(x, y) ≤ Cρε,v(x, y), where ρε,v(x, y) = e−ε(x|y)v .

Here (x|y)v is the Gromov product on ∂X defined by

(x|y)v = inf{lim inf
i→∞

(ai|bi)v : {ai} ∈ x, {bi} ∈ y}.

Definition 2.5. We say that a metric space is strongly hyperbolic with parameter ε > 0 if

exp(−ε(x|y)o) ≤ exp(−ε(x|z)o) + exp(−ε(z|y)o)

for all x, y, z, o ∈ X; equivalently, the four-point condition

exp
(ε
2

(|xy| + |zt|)
)
≤ exp

(ε
2

(|xz| + |yt|)
)

+ exp
(ε
2

(|xt| + |zy|)
)

holds for all x, y, z, t ∈ X.

A strongly hyperbolic space is a Gromov hyperbolic space with better properties. For example, the
strongly hyperbolic space is boundary continuous and its Gromov hyperbolic boundary is a Ptolemy space
under the visual metric (refer to [1, 3, 11]).

Recall the hyperbolic cone construction [2]. Let (X, d) be a bounded metric space, and let Con(X) =
X × (0,diam(X)]. The metric ρC on Con(X) is defined by

ρC((x, r), (y, s)) = 2 log
(

d(x, y) + r ∨ s
√

rs

)
.

The space (Con(X), ρC) is δ-hyperbolic with well properties (k-visual and k-roughly geodesic for some k ≥ 0).
In the end of this section, we recall the definition of k-rough isometry:

Definition 2.6. Let (X, d1) and (Y, d2) be arbitrary metric spaces. Suppose that f : X → Y is a map such that f (X)
is k-cobounded in Y for some k ≥ 0, that is dist(y, f (X)) ≤ k for all y ∈ Y. We say that f is a k-rough isometry if

|d2( f (a), f (b)) − d1(a, b)| ≤ k

for all a, b ∈ X. In this case, we also say that X and Y are k-roughly isometric.
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3. Hyperbolization

In the rest of this paper, we fix a compact set K that fulfills the structure (V,Λ,S). Λ and S are decided
by some maps n,m : Γ → N. For all α ∈ Λ and β ∈ S, Vα and Wβ are given. SET X = {Wβ}β∈S. We are in
the place to find a metric for X under which X is hyperbolic. In the final section, we establish an isometry
between K and ∂X.

According to the assumptions in Definition 2.1, we have Vα ' V for all α ∈ Λ and Wβ ' V for all β ∈ S.
Let {Tα}α∈Λ, {Rα}β∈S be two classes of similitudes such that TαV = Vα and RβV = Wβ. Fix a point x in V such
that B(x, |V|/M) = {y : |xy| < |V|/M} ⊆ V, where M > 1 is some positive number. Set xβ = Rβ(x) for all β ∈ S.

For α, β ∈ S, we define a map u : X × X→ R by

u(Wα,Wβ) =
|Wα| + |Wβ|

2
+ 2M|xαxβ|

and set

h(Wα,Wβ) = 2 log
u(Wα,Wβ)√
|Wα||Wβ|

.

In order to prove that (X, h) is a Gromov hyperbolic space, we derive some properties of {Wβ}β∈S first.

Lemma 3.1. (1) For any α ∈ Λ, ∀ 1 ≤ i ≤ n(α) and ∀ 1 ≤ j ≤ m(α), we have Vαi ⊆ Vα and Wα j ⊆ Vα;
(2) ∀α, β ∈ S, if α , β, then Wα

⋂
Wβ = ∅. Furthermore we have |xαxβ| ≥

|Wα |+|Wβ |

M .

Proof. (1) For any α ∈ Λ, TαV = Vα, so
(
TαV

)o
= Tα

(
V
)o

= TαV, that is
(
Vα

)o
= Vα. By Definition 2.1,

Vαi ⊆ Vα, then
(
Vαi

)o
⊆

(
Vα

)o
, that is Vαi ⊆ Vα. Analogously, we obtain Wα j ⊆ Vα.

(2) Suppose that α, β ∈ S and α , β. Write α = α̂i(α̂ ∈ Λ|α|−1) and β = β̂ j (β̂ ∈ Λ|β|−1). If α̂ =β̂, the conclusion
is obvious. If α̂ , β̂, without loss of generality we assume |α̂| ≥ |β̂|. If (α̂)

|β̂| = β̂, we write α̂ as β̂i1i2 . . . it. Since
Vβ̂i1

⋂
Wβ̂ j = ∅ and Wα ⊆ Vβ̂i1 , we have the desired result. If (α̂)

|β̂| , β̂, we write α̂ = i1i2 . . . is j1 j2 . . . jp and
β̂ = i1i2 . . . isl1l2 . . . jq with j1 , l1. Since Vi1i2...is j1

⋂
Vi1i2...isl1 = ∅, the conclusion is obvious now.

For α, β ∈ S with α , β, we obtain Wα
⋂

Wβ = ∅. One can verify that B(xα, |Wα|/M)
⋂

B(xβ, |Wβ|/M) = ∅.

Hence |xαxβ| ≥
|Wα |+|Wβ |

M .

Theorem 3.2. (X, h) is a metric space.

Proof. It suffices to prove h satisfies the triangle inequality, that is for any α, β, γ ∈ S, we have

h(Wα,Wβ) = 2 log
u(Wα,Wβ)√
|Wα||Wβ|

≤ 2 log
u(Wα,Wγ)u(Wγ,Wβ)√

|Wα||Wβ||Wγ|
= h(Wα,Wγ) + h(Wγ,Wβ).

Without loss of generality, assume α, β and γ are different pairwise. It suffices to show

|Wγ|u(Wα,Wβ) ≤ u(Wα,Wγ)u(Wγ,Wβ).

But
|Wγ|u(Wα,Wβ) = 2M|xαxβ||Wγ| +

1
2
|Wγ|

(
|Wα| + |Wβ|

)
and

u(Wα,Wγ)u(Wγ,Wβ) =
1
4

(
|Wα| + |Wγ|

)(
|Wγ| + |Wβ|

)
+ 4M2

|xαxγ||xγxβ|

+ M|xαxγ|
(
|Wγ| + |Wβ|

)
+ M|xγxβ|

(
|Wα| + |Wγ|

)
.

By Lemma 3.1, we obtain |xαxγ| ∧ |xγxβ| ≥ |Wγ|/M. Besides |xαxγ| ∨ |xγxβ| ≥ |xαxβ|/2. Then 4M2
|xαxγ||xγxβ| ≥

2M|xαxβ||Wγ|. According to Lemma 3.1, one can easily verify that M|xαxγ|(|Wγ| + |Wβ|) ≥ |Wγ||Wβ| and
M|xγxβ|(|Wα| + |Wγ|) ≥ |Wγ||Wα|. In conclusion, the triangle inequality holds, thus h is a metric on X.
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Theorem 3.3. (X, h) is a strongly hyperbolic space with parameter 1.

Proof. First of all, we prove that for any α, β, γ, η ∈ S, the following inequality

u(Wα,Wβ)u(Wγ,Wη) ≤ u(Wα,Wγ)u(Wβ,Wη) + u(Wα,Wη)u(Wβ,Wγ) (1)

holds.
According to the definition of u, we have

u(Wα,Wβ)u(Wγ,Wη) =
1
4

(
|Wα| + |Wβ|

)(
|Wγ| + |Wη|

)
+ 4M2

|xαxβ||xγxη|

+ M|xαxβ|
(
|Wγ| + |Wη|

)
+ M|xγxη|

(
|Wα| + |Wβ|

)
,

u(Wα,Wγ)u(Wβ,Wη) =
1
4

(
|Wα| + |Wγ|

)(
|Wβ| + |Wη|

)
+ 4M2

|xαxγ||xβxη|

+ M|xαxγ|
(
|Wβ| + |Wη|

)
+ M|xβxη|

(
|Wα| + |Wγ|

)
,

u(Wα,Wη)u(Wβ,Wγ) =
1
4

(
|Wα| + |Wη|

)(
|Wβ| + |Wγ|

)
+ 4M2

|xαxη||xβxγ|

+ M|xαxη|
(
|Wβ| + |Wγ|

)
+ M|xβxγ|

(
|Wα| + |Wη|

)
.

Since (Rd, ρ) is Euclidean space, ρ is ptolemaic. Thus

|xαxβ||xγxη| ≤ |xαxγ||xβxη| + |xαxη||xβxγ|. (2)

It is obvious that(
|Wα| + |Wβ|

)(
|Wγ| + |Wη|

)
≤

(
|Wα| + |Wγ|

)(
|Wβ| + |Wη|

)
+

(
|Wα| + |Wη|

)(
|Wβ| + |Wγ|

)
. (3)

Since ρ satisfies the triangle inequality, we also have

M|xαxβ|
(
|Wγ| + |Wη|

)
+ M|xγxη|

(
|Wα| + |Wβ|

)
≤M|xαxγ|

(
|Wβ| + |Wη|

)
+ M|xβxη|

(
|Wα| + |Wγ|

)
+ M|xαxη|

(
|Wβ| + |Wγ|

)
+ M|xβxγ|

(
|Wα| + |Wη|

)
.

(4)

Combining the equations (2), (3), (4), it is easy to see equation (1) is valid.
Secondly, note that

exp
{1

2

(
h(Wα,Wβ) + h(Wγ,Wη)

)}
= u(Wα,Wβ)u(Wγ,Wη)/

√
|Wα||Wβ||Wγ||Wη|.

We could obtain other equations analogously. Combining these equations and using equation (1), we have

exp
{1

2

(
h(Wα,Wβ) + h(Wγ,Wη)

)}
≤ exp

{1
2

(
h(Wα,Wγ) + h(Wβ,Wη)

)}
+ exp

{1
2

(
h(Wα,Wη) + h(Wβ,Wγ)

)}
.

In conclusion, (X, h) is a strongly hyperbolic space with parameter 1.

Next we present some connections between the hyperbolic cone Con(K) and the Gromov hyperbolic
space (X, h). First of all, we prove the following two lemmas, which are also important in the final section.

For each k ∈N, let Dk be a nonempty finite subset of Γk. We say that the sequence {Dk}
∞

k=1 has the property
A, if for any α ∈ Dk, we have (α)s ∈ Ds for all 1 ≤ s ≤ k.
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Lemma 3.4. Suppose the sequence {Dk}
∞

k=1 has the property A. Then there is β ∈ Γ∞ such that (β)k ∈ Dk for all
k ∈N.

Proof. We claim that there exists i1 ∈ D1 such that for any k ∈ N, we could find ζ ∈ Dk with (ζ)1 = i1. If this
claim is false, that is for any j ∈ D1, there exists N( j) ∈ N such that (ζ)1 , j for any ζ ∈ DN( j). Moreover
{ζ ∈ Dk : (ζ)1 = j} = ∅ for any k ≥ N( j). Since D1 is finite, max{N( j) : j ∈ D1} < ∞. Set N1 = max{N( j) : j ∈ D1},
it is easy to see DN1 = ∅, which is a contradiction. Let D1

k = {α ∈ Dk : (α)1 = i1}, D1
k is a nonempty finite subset

of Dk. Furthermore, if α ∈ D1
k+1, then (α)1 = i1. Thus (α)k ∈ D1

k , which implies that {D1
k} has the property A.

Similarly, there is an index i2 such that i1i2 ∈ D1
2 and for any k ≥ 3, there is α ∈ D1

k such that (α)2 = i1i2.
Set

D2
k =

{
D1

k , for k = 1,
{α ∈ D1

k : (α)2 = i1i2}, for k ≥ 2.

Obviously, D2
k is a nonempty finite subset of D1

k and {D2
k} has the property A.

Inductively, for any l ∈ N, we can find i1i2 · · · il ∈ Dl−1
l such that for any k > l, there is α ∈ Dl−1

k such that
(α)l = i1i2 · · · il. Let

Dl
k =

{
{i1i2 · · · ik}, for 1 ≤ k ≤ l,
{α ∈ Dl−1

k : (α)l = i1 · · · il}, for k > l.

Obviously, Dl
k is a nonempty finite subset of Dl−1

k and {Dl
k}k=1 has the property A.

Thus, for any l ≥ 1, we obtain i1i2 · · · il ∈ Dl
l ⊂ Dl. Put β = i1i2i3 . . ., we have (β)k = i1i2 . . . ik ∈ Dk for all

k ∈N.

Lemma 3.5. ∀ x ∈ K, there exists α ∈ Λ∞ such that {x} =
⋂
∞

k=0 V(α)k .

Proof. Let us fix a point x ∈ K. Since K =
⋂
∞

k=0
⋃
α∈Λk

Vα, we have x ∈
⋃
α∈Λk

Vα for each k ∈ N. Put
Dk = {α ∈ Λk : x ∈ Vα}. Dk is a nonempty finite set. ∀α ∈ Dk and 1 ≤ s ≤ k, since Vα ⊆ V(α)s , we have
(α)s ∈ Ds . Hence by Lemma 3.4, there exists α ∈ Λ∞ such that (α)k ∈ Dk, that is x ∈ V(α)k . Besides, by
Definition 2.1, limk→∞ |V(α)k | = 0. Hence

⋂
∞

k=0 V(α)k contains only one point, i.e. x.

Theorem 3.6. Let (K, ρ) be a metric space with diam(K) > 0 (recall that ρ is the usual metric on Rd). If there exists
a constant C ≥ 1 such that for any α ∈ Λ,

min
{
|Vαi|

|Vα|
,
|Wα j|

|Vα|
: 1 ≤ i ≤ n(α), 1 ≤ j ≤ m(α)

}
≥

1
C
,

then (Con(K), ρC) and (X, h) are roughly isometric.

Proof. Let C̃ be a constant such that C̃|K| > |V|. By Lemma 3.5, for every x ∈ K, there exists α ∈ Λ∞ such that
{x} =

⋂
∞

k=0 V(α)k . Now define the map 1 : K→ Λ∞ by 1(x) = α.
Given a point (x, r) ∈ Con(K) with 1(x) = α, we could find a unique k such that |V(α)k+1 | < r ≤ |V(α)k |.

Define f : Con(K)→ X by f (x, r) = W(α)k1, and we claim that f is a rough isometry.
First of all, we show that f (Con(K)) is cobounded in X.
For any α ∈ Λ and any 1 ≤ j ≤ m(α),

h(Wα1,Wα j) = 2 log
2M|xα1xα j| +

(
|Wα1| + |Wα j|

)
/2√

|Wα1||Wα j|
≤ 2 log

2M|Vα| + |Vα|

|Vα|/C
= 2 log

(
(2M + 1)C

)
.

For α ∈ Λ with |Vα| > |K|, we take β = α11 . . . 1 such that |Vβ| ≤ |K| and |β| is minimum. We have

h(Wα1,Wβ1) = 2 log
2M|xα1xβ1| +

(
|Wα1| + |Wβ1|

)
/2√

|Wα1||Wβ1|
≤ 2 log

2M|Vα| + |Vα|
√
|Vα|/C

√
|V|/(C2C̃)

≤ 2 log
(
(2M + 1)

√
C3C̃

)
.
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By the above arguments, when talking about the distance from any point Wαi ∈ X to f (Con(K)), we could
assume that |Vα| ≤ |K| and i = 1. Take a point y ∈ Vα

⋂
K, then (y, |Vα|) ∈ Con(K) since |Vα| ≤ |K|. Suppose

1(y) = β, that is {y} =
⋂
∞

k=0 V(β)k , then there exists s ∈ N such that |V(β)s | < |Vα| ≤ |V(β)s−1 |. Let β̃ = (β)s, we
have f (y, |V(β)s |) = Wβ̃1 ∈ f (Con(K)). But

h(Wβ̃1,Wα1) = 2 log
2M|xβ̃1xα1| +

(
|Wβ̃1| + |Wα1|

)
/2√

|Wβ̃1||Wα1|

≤ 2 log
4M|Vα| + |Vα|√
|Vα|/C2

√
|Vα|/C

= 2 log
(
(4M + 1)

√

C3
)
,

which implies that f (Con(K)) is cobounded in X.
Secondly, take two points (x, r), (y, s) ∈ Con(K). Suppose f (x, r) = W(α)k1 and f (y, s) = W(β)l1, we put

A =
|xy| + r ∨ s

2M|x(α)k1x(β)l1| +
(
|W(α)k1| + |W(β)l1|

)
/2

and B =

√
|W(α)k1||W(β)l1|
√

rs
.

Since |W(α)k1| ≥ |V(α)k |/C, |W(α)l1| ≥ |V(α)l |/C,

|V(α)k | ≥ r > |V(α)k+1 | ≥
|V(α)k |

C
and |V(α)l | ≥ s > |V(α)l+1 | ≥

|V(α)l |

C
,

we have
1
C
√

rs ≤
√
|W(α)k1||W(β)l1| ≤ C

√
rs,

thus 1
C ≤ B ≤ C.

By Lemma 3.1, we have |x(α)k1x(β)l1| ≥
(
|W(α)k1| + |W(β)l1|

)
/M. Since x ∈ V(α)k , y ∈ V(β)l , and W(α)k1 ⊆

V(α)k ,W(β)l1 ⊆ V(β)l , we have

|xy| + r ∨ s ≤ |x(α)k1x(β)l1| + |x(α)k1x| + |yx(β)l1| + r ∨ s

≤ |x(α)k1x(β)l1| + C
(
|W(α)k1| + |W(β)l1|

)
+ C

(
|W(α)k1| ∨ |W(β)l1|

)
≤ |x(α)k1x(β)l1| + C

(
|W(α)k1| + |W(β)l1|

)
+ C

(
|W(α)k1| + |W(β)l1|

)
≤ 4C

(
2M|x(α)k1x(β)l1| +

1
2

(
|W(α)k1| + |W(β)l1|

))
.

Hence A ≤ 4C. Besides, since

2M|xα1xβ1| +
1
2

(
|Wα1| + |Wβ1|

)
≤ 2M(|xy| + C(r + s)) +

C
2

(r + s)

≤ 2M
(
|xy| + 2C(r ∨ s)

)
+ C(r ∨ s)

≤ max{2M, 4MC + C}
(
|xy| + r ∨ s

)
≤ (4MC + C)(|xy| + r ∨ s),

we have A ≥ 1
(4M+1)C .

In conclusion, one can easily verify that

|h( f (x, r), f (y, s)) − ρC((x, r), (y, s))| = | log(AB)| ≤ 2 log
(
(4M + 1)C2

)
,

which implies f is a rough-isometric map. Obviously, (Con(K), ρC) and (X, h) are roughly isometric.
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4. Boundary at infinity

In this section, we are in the place to establish an isometry between K and ∂X. We derive some properties
of ∂X first. Let W1 ∈ X be the base point and denote it by o. For any {Wαn }

∞

n=1 ∈ a ∈ ∂X, we have

(Wαn |Wαm )o = log
u(Wαn ,W1)u(Wαm ,W1)
|W1|u(Wαn ,Wαm )

.

But for all α ∈ S,
|W1|

2
≤ u(Wα,W1) ≤ (2M + 1)|V|,

thus

log
|W1|

4u(Wαn ,Wαm )
≤ (Wαn |Wαm )o ≤ log

(2M + 1)2
|V|2

|W1|u(Wαn ,Wαm )
,

Because of this argument, the following lemma is apparent.

Lemma 4.1. {Wαn }
∞

n=1 converge at infinity if and only if limn,m→∞ u(Wαn ,Wαm ) = 0. We also have limn→∞ |Wαn | = 0
and {xαn }

∞

n=1 is a Cauchy sequence.

By similar arguments, we could observe that two sequences {Wαn } and {Wβn } converging at infinity are
equivalent if and only if limn→∞ u(Wαn ,Wβn ) = 0. We also need the following lemma which presents some
properties of {xα}α∈S.

Lemma 4.2. For {Wαn }
∞

n=1 ∈ a ∈ ∂X, if the members of {Wαn }
∞

n=1 are different pairwise, then the limit of the Cauchy
sequence {xαn }

∞

n=1 belongs to the compact K.

Proof. Without loss of generality, we assume that {|αn|}
∞

n=1 is strictly increasing. Let βn = (αn)|αn |−1 and take
a point yβn ∈ Vβn

⋂
K. It is obvious that |xαn yβn | ≤ |Vβn |. For any ε > 0, there exists N1 such that |xαi xα j | <

ε
3

for i, j > N1. By Definition 2.1, there exists N2 such that |xαi yβi | <
ε
3 for i > N2. So for i, j > max{N1,N2}, we

have |yβi yβ j | < ε, that is {yβn }
∞

n=1 is a cauchy sequence. Finally, we obtain limn→∞ xαn = limn→∞ yβn ∈ K since
K is compact.

After all these preparations, we turn to our main theorem:

Theorem 4.3. There is an isometry φ : ∂X→ K.

Proof. For any a ∈ ∂X, take {Wαn }
∞

n=1 ∈ a. {Wαn }
∞

n=1 has infinite different members since limn→∞ |Wαn | = 0. Find
a subsequence {Wαnk

}
∞

k=1 whose members are different pairwise. By Lemma 4.2, limn→∞ xαn = limk→∞ xαnk
∈ K

and we denote it by xa. Take {Wβn }
∞

n=1 ∈ a, since limn→∞ |xαn xβn | = 0, we have limn→∞ xβn = xa. Therefore, xa
is well defined, and we define φ : ∂X→ K by φ(a) = xa.

For a, b ∈ ∂X, if xa = xb, take any {Wαn }
∞

n=1 ∈ a and any {Wβn }
∞

n=1 ∈ b. It is obvious that limn→∞ xαn =
xa = xb = limn→∞ xβn , that is limn→∞ |xαn xβn | = 0. Besides we have limn→∞(|Wαn | + |Wβn |) = 0. So we get
limn→∞ u(Wαn ,Wβn ) = 0, that is a = b. Hence φ is injective.

By Lemma 3.5, for any x ∈ K, we find α ∈ Λ∞ such that x ∈
⋂
∞

k=0 V(α)k . {W(α)k1}
∞

k=0 converges at infinity
and limk→∞ x(α)k1 = x, that is φ({{W(α)k1}

∞

k=0}) = x which shows φ is surjective.
Define d : ∂X × ∂X→ R by d(a, b) = |xaxb| for any a, b ∈ ∂X. It suffices to show d is a visual metric.
For a, b ∈ ∂X, a , b, take any {Wαn }

∞

n=1 ∈ a and any {Wβn }
∞

n=1 ∈ b, we have

(Wαn |Wβn )o = log
u(Wαn ,W1)u(Wβn ,W1)
|W1|u(Wαn ,Wβn )

.

We can also obtain

lim
n→∞

u(Wαn ,W1) =
|W1|

2
+ 2M|x1xa|, (5)
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lim
n→∞

u(Wβn ,W1) =
|W1|

2
+ 2M|x1xb|, (6)

and

lim
n→∞

u(Wαn ,Wβn ) = 2M|xaxb|. (7)

By equations (5), (6) and (7), we have

e−(a|b)o =
2M|W1|(

|W1 |

2 + 2M|x1xa|
)(
|W1 |

2 + 2M|x1xb|
) |xaxb|.

But
2M|W1|

(2M + 1
2 )2|V|2

≤
2M|W1|(

|W1 |

2 + 2M|x1xa|
)(
|W1 |

2 + 2M|x1xb|
) ≤ 8M
|W1|

.

Take a constant C such that C > 8M
|W1 |
∨

(2M+ 1
2 )2
|V|2

2M|W1 |
, we get

1
C

e−(a|b)o ≤ d(a, b) = |xaxb| ≤ Ce−(a|b)o ,

which shows that d is a visual metric and φ : ∂X→ K is an isometric map.
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