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Available at: http://www.pmf.ni.ac.rs/filomat

Quasi-Uniform and Uniform Convergence of Riemann and
Riemann-Type Integrable Functions With Values in a Banach Space

Pratikshan Mondala, Lakshmi Kanta Deyb, Sk. Jaker Alic

aDepartment of Mathematics, Durgapur Government College, Durgapur - 713214, Burdwan, West Bengal, India
bDepartment of Mathematics, National Institute of Technology Durgapur, India

cDepartment of Mathematics, Bolpur College, Bolpur, Birbhum - 731204, West Bengal, India

Abstract. In this article, we study quasi-uniform and uniform convergence of nets and sequences of
different types of functions defined on a topological space, in particular, on a closed bounded interval of
R, with values in a metric space and in some cases in a Banach space. We show that boundedness and
continuity are inherited to the quasi-uniform limit, and integrability is inherited to the uniform limit of a
net of functions. Given a sequence of functions, we construct functions with values in a sequence space
and consequently we infer some important properties of such functions. Finally, we study convergence of
partially equi-regulated* nets of functions which is shown to be a generalized notion of exhaustiveness.

1. Introduction

The object of the present paper is to study quasi-uniform and uniform convergence of nets and sequences
of different types of functions defined on a topological space or on a closed bounded interval of R with
values in a metric space or in a Banach space. It is known that pointwise convergence is too weak to inherit
many properties, such as, boundedness, continuity, differentiability, integrability etc. to the limit function.
This lacuna of pointwise convergence is met either by imposing some restrictions on the net or sequence,
or by strengthening the nature of convergence. Quasi-uniform convergence is stronger than pointwise
convergence while uniform convergence is stronger than quasi-uniform convergence.

We begin with the study of quasi-uniform convergence of a net of functions and show that boundedness
and continuity are inherited to the limit function under such convergence. The result is seen to hold for
Darboux integrability under an additional condition which is automatically satisfied in case of a sequence
of Darboux integrable functions.

Next we consider uniform convergence of nets and sequences of Riemann and Riemann-type integrable
functions. It is shown that uniform limit of a net of Riemann integrable functions is Riemann integrable.
Similar results are shown to be true for Darboux, Riemann-Dunford and Riemann-Pettis integrable func-
tions. We also show that uniformly convergent sequence of Riemann (resp. Darboux) integrable functions
is equi-Riemann (resp. equi-Darboux) integrable.
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Then with the help of suitable sequences of functions, we construct functions with values in l∞, c, l1, and
study how integrability and some related properties of the derived function are connected with those of
the functions constituting the initial sequence.

We end the article with the study of convergence of nets and sequences in localized senses. We
introduce the notion of partially equi-regulated* net of functions and investigate when such a net is
uniformly convergent about a point. We show that partially equi-regulated*ness is a generalized notion of
exhaustiveness.

2. Preliminaries

Throughout the paper, S stands for a topological space, (Y, d) for a metric space and X for a real Banach
space with dual X∗ (any other normed linear space or Banach space appeared in this article will also be
assumed to be a real normed linear space or a real Banach space). The closed unit ball of X and X∗ will be
denoted by BX and BX∗ respectively.

Throughout [a, b] stands for a closed bounded interval of R, ΣL for the σ-algebra of the Lebesgue
measurable subsets of [a, b] and λ for the Lebesgue measure on ΣL so that ([a, b],ΣL, λ) becomes a complete
finite measure space. For details on Bochner and Pettis integrable functions on a finite measure space with
values in a Banach space, we refer to [3] and [14].

A partition of the interval [a, b] is a finite set of points {ti : 0 ≤ i ≤ n} in [a, b] that satisfy a = t0 < t1 <
t2 < · · · < tn−1 < tn = b. The points {ti : 0 ≤ i ≤ n} are called the points of the partition and the intervals
{[ti−1, ti] : 1 ≤ i ≤ n} are called the intervals of the partition. A tagged partition of [a, b] is a partition
{ti : 0 ≤ i ≤ n} of [a, b] together with a set of points {si : 1 ≤ i ≤ n} that satisfy si ∈ [ti−1, ti] for each i and it is
denoted as {(si, [ti−1, ti]) : 1 ≤ i ≤ n}. The points {si : 1 ≤ i ≤ n} are called the tags of the partition. The norm
of a partition P = {ti : 0 ≤ i ≤ n}, denoted as |P|, is defined as |P| = max{ti − ti−1 : 1 ≤ i ≤ n}. For any δ > 0,
we say that a partition P of [a, b] is δ-fine if |P| < δ. Finally, a partition P1 of [a, b] is said to refine a partition
P2 of [a, b] if every point of P2 is a point of P1.

Let f ∈ X[a,b] and let E ⊂ [a, b]. Then the oscillation of f on E is defined as ω( f ,E) = sup{‖ f (u) − f (v)‖ :
u, v ∈ E}. For any tagged partition P = {(si, [ti−1, ti]) : 1 ≤ i ≤ n} of [a, b], f (P) will denote the Riemann sum

n∑
i=1

f (si)(ti − ti−1), and for any partition P = {ti : 0 ≤ i ≤ n} of [a, b], ω( f ,P) will denote the oscillatory sum

n∑
i=1

ω( f , [ti−1, ti])(ti − ti−1).

For definitions and some standard results on Riemann, Darboux, scalarly Riemann or Riemann-Dunford
and Riemann-Pettis integrable functions defined on a closed bounded interval ofRwith values in a Banach
space, we refer to [6] and [16].

The collections of all Riemann, Darboux, Riemann-Dunford and Riemann-Pettis integrable functions
defined on [a, b] with values in X will be denoted by R([a, b],X), D([a, b],X), RD([a, b],X) and RP([a, b],X)
respectively. If, in particular, X = R, we write R([a, b]) for R([a, b],X) and similarly for other such collections.
It is well known that D([a, b],X) ⊂ R([a, b],X) ⊂ RP([a, b],X) ⊂ RD([a, b],X) ⊂ l∞([a, b],X), l∞([a, b],X) being
the set of all bounded functions in X[a,b]. Further, for a finite-dimensional space X, we have D([a, b],X) =
R([a, b],X) = RP([a, b],X) = RD([a, b],X).

If f ∈ X[a,b] is integrable on [a, b] in any of the above senses, then it is so on every closed subinterval
of [a, b]. If f ∈ R([a, b],X), then the function F ∈ X[a,b], defined by F(t) = R-

∫ t

a f (t)dt, t ∈ [a, b] is called
the indefinite Riemann integral of f . Indefinite integrals of other types of integrable functions in X[a,b]

mentioned above are defined similarly.
Let f ∈ R([a, b],X). Then the Alexiewicz norm of f , denoted as ‖ f ‖A, is defined as ‖ f ‖A =

sup
{∥∥∥∥R-

∫ t

a f (t)dt
∥∥∥∥ : a ≤ t ≤ b

}
, that is, ‖ f ‖A = ‖F‖∞, F being the indefinite integral of f . Hence it follows that

convergence of a net in R([a, b],X) in Alexiewicz norm is equivalent to the uniform convergence of the net
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of indefinite integrals of its members. We define

‖ f ‖′ = sup
{∥∥∥∥∥∥R-

∫ d

c
f (t)dt

∥∥∥∥∥∥ : [c, d] is a closed subinterval of [a, b]
}
.

It can be shown that ‖ · ‖′ is a norm on R([a, b],X). Also it can be verified that ‖ f ‖A ≤ ‖ f ‖′ ≤ 2‖ f ‖A which
implies that the norms ‖ · ‖A and ‖ · ‖′ are equivalent in R([a, b],X).

Also we recall the following definitions from [12]:
Let P be any partition of [a, b]. Then for any f ∈ X[a,b],

θP( f ) = sup{‖ f (P1) − f (P2)‖ : P1,P2 are tagged partitions of [a, b] that refine P},

ωP( f ) = sup{ω( f ,P′) : P′ is a partition of [a, b] that refines P},

and for any F ⊂ X[a,b], θP(F ) = sup
f∈F

θP( f ) and ωP(F ) = sup
f∈F

ωP( f ).

It follows from [6, p. 925, Theorem 5 ((1)⇐⇒ (3))] (resp. [6, p. 933, Definition 17 (b)]) that a function
f ∈ X[a,b] is Riemann integrable (resp. Darboux integrable) on [a, b] if and only if for each ε > 0, there exists
a partition P of [a, b] such that θP( f ) < ε (resp. ωP( f ) < ε).

For definition of equi-Riemann integrable collection of functions, we refer to [12]. We recall that a
collection of functions F , in X[a,b], is equi-Riemann integrable on [a, b] if and only if for each ε > 0, there
exists a partition P of [a, b] such that θP(F ) < ε [12, p. 310, Theorem 3.10 ((a)⇐⇒ (b))].

Also we recall the following definitions from [12]:
A collection of functions, F , in X[a,b], is said to be

(a) equi-Darboux integrable on [a, b] if for each ε > 0, there exists a partitionP of [a, b] such thatωP(F ) < ε
[12, p. 312, Definition 3.12],

(b) equi-Riemann-Dunford integrable on [a, b] if for each x∗ ∈ X∗, {x∗ f : f ∈ F } is equi-Riemann integrable
thereon [12, p. 316, Definition 3.26],

(c) equi-Riemann-Pettis integrable on [a, b] if it is equi-Riemann-Dunford integrable thereon and each
f ∈ F is Pettis integrable on ([a, b],ΣL, λ) [12, p. 316, Definition 3.26].

We would like to mention here that every equi-Riemann integrable collection in X[a,b] is contained in
R([a, b],X) and similarly for other equi-integrable collections of functions.

For some important properties of different types of equi-integrable collections of functions as mentioned
above, we refer to [12].

3. Main Results

Let us recall the following definition of quasi-uniformly convergent nets of functions from [5, p. 221]:

Definition 3.1. A net { fι}ι∈I in YS is said to converge quasi-uniformly to f ∈ YS at a point s ∈ S if for each ε > 0,
there exists an ι0 ∈ I such that for each ι ∈ I with ι0 ≤ ι, there exists a neighbourhood U of s with the property

d( fι(t), f (t)) < ε

for all t ∈ U.
As usual, a net in YS is said to converge quasi-uniformly to f ∈ YS on S if it converges quasi-uniformly to f at

each point of S.
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Clearly a uniformly convergent net of functions is quasi-uniformly convergent and a quasi-uniformly
convergent net of functions is pointwise convergent to the same limit.

It is well known that the pointwise limit of a sequence of continuous functions is not necessarily
continuous. On the other hand, the uniform limit of a net of continuous functions is continuous. The
converse of this result is not necessarily true. The following lemma shows that the result as well as its
converse are true for quasi-uniform convergence of a net of functions defined on a topological space with
values in a metric space. The result can be found in [15, p. 32, Theorem 1] and [1, p. 74, Theorem 4.1] in
a more generalized form. However for the sake of completeness we present a proof here.

Lemma 3.2. Let { fι}ι∈I be a net in YS and let fι be continuous at s ∈ S for each ι ∈ I. Then { fι}ι∈I converges
quasi-uniformly to f ∈ YS at s if and only if { fι(s)}ι∈I converges to f (s) and f is continuous at s.

Proof. Let { fι}ι∈I converge quasi-uniformly to f at s. That { fι(s)}ι∈I converges to f (s) follows from the definition
and the fact that s belongs to each neighbourhood of itself.

Let ε > 0. Then there exist an ι0 ∈ I and a neighbourhood U0 of s with the property that

d( fι0 (t), f (t)) <
ε
3

for all t ∈ U0.
In particular,

d( fι0 (s), f (s)) <
ε
3
.

Since fι0 is continuous at s, there exists a neighbourhood U1 of s such that

d( fι0 (t), fι0 (s)) <
ε
3

for all t ∈ U1.
Let U = U0 ∩U1. Then U is a neighbourhood of s. Now for all t ∈ U, we have

d( f (t), f (s)) ≤ d( f (t), fι0 (t)) + d( fι0 (t), fι0 (s)) + d( fι0 (s), f (s))

<
ε
3

+
ε
3

+
ε
3

= ε

which implies that f is continuous at s.
Conversely, let { fι(s)}ι∈I converge to f (s) and let f be continuous at s. Let ε > 0. Then there exists an

ι0 ∈ I such that
d( fι(s), f (s)) <

ε
3

for all ι ∈ I with ι0 ≤ ι.
Let ι ∈ I be such that ι0 ≤ ι. Since both f and fι are continuous at s, there exists a neighbourhood V of s

such that
d( f (t), f (s)) <

ε
3

and
d( fι(t), fι(s)) <

ε
3

for all t ∈ V.
Hence for all t ∈ V, we have

d( fι(t), f (t)) ≤ d( fι(t), fι(s)) + d( fι(s), f (s)) + d( f (s), f (t))

<
ε
3

+
ε
3

+
ε
3

= ε

which implies that { fι}ι∈I converges quasi-uniformly to f at s.
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Lemma 3.2 yields that for a net or a sequence of functions, continuity is not preserved by any convergence
weaker than quasi-uniform convergence.

For f ∈ YS, C f (resp. D f ) denote, as usual, the set of points of continuity (resp. discontinuity) of f in S.
The following result follows trivially from Lemma 3.2:

Corollary 3.3. Let { fι}ι∈I be a net in YS and let f ∈ YS. Let { fι}ι∈I converge quasi-uniformly to f on S. Then⋂
ι∈I

C fι ⊆ C f and hence D f ⊆
⋃
ι∈I

D fι .

A net { fι}ι∈I in XS is said to converge weakly quasi-uniformly to f ∈ XS at s ∈ S if for each x∗ ∈ X∗, {x∗ fι}ι∈I
converges quasi-uniformly to x∗ f at s.

Corollary 3.4. Let { fι}ι∈I be a net in XS and let fι be weakly continuous at s ∈ S for each ι ∈ I. Then { fι}ι∈I converges
weakly quasi-uniformly to f at s if and only if { fι(s)}ι∈I converges weakly to f (s) and f is weakly continuous at s.

Proof. Follows by an application of Lemma 3.2 to the net {x∗ fι}ι∈I for each x∗ ∈ X∗.

A function f ∈ YS is said to be locally bounded at a point in S if it is bounded in some neighbourhood
of that point; if f is locally bounded at every point in S, then it is called locally bounded on S [11, p. 251,
Definition 1].

It is evident that if a function f is bounded on S, then it is locally bounded on S. But the converse is not
true, even if S is locally compact [11, p. 255].

However we have the following result which is an easy generalization of [11, p. 255, Theorem 5]:

Lemma 3.5. Let f ∈ YS be locally bounded on S. If S is compact, then f is bounded on S.

Theorem 3.6. Let { fι}ι∈I be a net in YS such that each fι is locally bounded at s ∈ S. If { fι}ι∈I converges quasi-uniformly
to f ∈ YS at s, then f is locally bounded at s.

Proof. Let ε = 1. Since { fι}ι∈I converges quasi-uniformly to f at s, there exist an ιs ∈ I and a neighbourhood
U1 of s such that

d( fιs (t), f (t)) < 1

for all t ∈ U1.
Now fιs is locally bounded at s. So there exist an Mιs > 0 and a neighbourhood U2 of s such that

d( fιs (t1), fιs (t2)) ≤Mιs

for all t1, t2 ∈ U2.
Let U = U1 ∩U2. Then U is a neighbourhood of s, and for any t1, t2 ∈ U, we have

d( f (t1), f (t2))
≤ d( f (t1), fιs (t1)) + d( fιs (t1), fιs (t2)) + d( fιs (t2), f (t2))
< 1 + Mιs + 1 = 2 + Mιs

which shows that f is locally bounded at s.

Theorem 3.7. Let { fι}ι∈I be a net of bounded functions in X[a,b] which converges quasi-uniformly to f ∈ X[a,b] on

[a, b] and let λ

⋃
ι∈I

D fι

 = 0. Then f ∈ D([a, b],X).

Proof. Since [a, b] is compact, it follows from Theorem 3.6 and Lemma 3.5 that f is bounded on [a, b]. Hence
the result follows from Corollary 3.3 and [6, p. 933, Theorem 18].
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For a sequence of functions, we have the following result which obviously follows from [6, p. 933,
Theorem 18] and Theorem 3.7:

Corollary 3.8. Let { fn} be a sequence in D([a, b],X) and let f ∈ X[a,b]. If { fn} converges quasi-uniformly to f on
[a, b], then f ∈ D([a, b],X).

Corollary 3.9. Let { fn} be a sequence in RD([a, b],X) which converges weakly quasi-uniformly to f ∈ X[a,b] on [a, b].
Then f ∈ RD([a, b],X).

If, moreover, each fn ∈ RP([a, b],X) and {x∗ fn : x∗ ∈ BX∗ ,n ∈N} is uniformly integrable, then f ∈ RP([a, b],X)

and {RP-
∫ d

c fndt} converges weakly to RP-
∫ d

c f dt uniformly with respect to closed subintervals [c, d] of [a, b].

Proof. First part follows by an application of Corollary 3.8 to the sequence {x∗ fn} for each x∗ ∈ X∗.
For the second part, it follows from hypothesis that {x∗ fn} converges to x∗ f pointwise on [a, b] for each

x∗ ∈ X∗. Hence it follows from [14, p. 550, Theorem 5.2] that f is Pettis integrable and hence f ∈ RP([a, b],X).
Last part follows by an application of Vitali’s convergence theorem for Lebesgue integral to {x∗ fn} for

each x∗ ∈ X∗.

Let us consider the following example due to Doboš and Šalát [4, p. 222]:

Example 3.10. For each n, let

fn(t) =


0 for 0 ≤ t ≤ 1

n+1
{2n(n + 1)}2(t − 1

n+1 ) for 1
n+1 < t < 1

2 ( 1
n + 1

n+1 )
2n(n + 1) for t = 1

2 ( 1
n + 1

n+1 )
{2n(n + 1)}2( 1

n − t) for 1
2 ( 1

n + 1
n+1 ) < t < 1

n
0 for 1

n ≤ t ≤ 1.

Also let
f (t) = 0, f or 0 ≤ t ≤ 1.

Then it can be verified that each fn and f are continuous and hence Darboux integrable on [0, 1] and the sequence
{ fn} converges pointwise to f on [0, 1]. This implies by Lemma 3.2 that { fn} converges quasi-uniformly to the function
f on [0, 1]. But

∫ 1

0 fn(t)dt does not converge to
∫ 1

0 f (t)dt.
From this example, we observe in view of [13, p. 223–224, Corollary 3.36 (b)] and Vitali’s Convergence Theorem

for Lebesgue integrable functions that a quasi-uniformly convergent sequence of real-valued Riemann integrable
functions defined on a closed interval need neither be equi-Riemann integrable nor be uniformly integrable.

It should be noted that pointwise limit of an equi-Riemann integrable sequence of functions is Riemann integrable
[13, p. 223–224, Corollary 3.36 (b)]. The above example shows that for the pointwise limit of a sequence of Riemann
integrable functions to be Riemann integrable, it is not necessary for the sequence to be equi-Riemann integrable.

The following result follows in a straightforward way:

Lemma 3.11. Let { fι}ι∈I be a net in X[a,b] which converges uniformly to f ∈ X[a,b] on [a, b]. Then

(a) { fι(P)}ι∈I converges to f (P) uniformly with respect to tagged partitions P of [a, b],

(b) {ωP( fι)}ι∈I converges to ωP( f ) uniformly with respect to partitions P of [a, b].

A net { fι}ι∈I in X[a,b] is said to be partially equi-Riemann (resp. partially equi-Darboux) integrable on
[a, b] if for any ε > 0, there exist an ι0 ∈ I and a partition Pε of [a, b] such that θPε ( fι) < ε (resp. ωPε ( fι) < ε)
for all ι ∈ I with ι0 ≤ ι.

As θP(F ) ≤ 2ωP(F ) for any F ⊂ X[a,b] and for all partitions P of [a, b] [12, p. 305, Theorem 3.3 (a)], it
follows that a partially equi-Darboux integrable net of functions is partially equi-Riemann integrable.

We recall the following definitions from [13, p. 209, Definition 3.6]:
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A net { fι}ι∈I in X[a,b] is said to be Riemann δ-Cauchy (resp. Riemann ∆-Cauchy) on [a, b] if for each ε > 0,
there exist a δ > 0 (resp. a partition Pε of [a, b]) and an ι0 ∈ I such that

‖ fι(P) − fκ(P)‖ < ε

for all ι, κ ∈ I with ι0 ≤ ι, κ and for all δ-fine tagged partitions P of [a, b] (resp. for all tagged partitions P of
[a, b] that refine Pε).

Theorem 3.12. Let { fι}ι∈I be a net in X[a,b] which converges uniformly to f ∈ X[a,b] on [a, b] and let [c, d] be an
arbitrary closed subinterval of [a, b]. Then the following statements hold good:

(a) { fι}ι∈I is Riemann δ-Cauchy on [c, d].

(b) If { fι}ι∈I ⊂ R([a, b],X) (resp. D([a, b],X)), then f ∈ R([c, d],X) (resp. D([c, d],X)), { fι}ι∈I is partially equi-
Riemann (resp. partially equi-Darboux) integrable on [c, d], and { fι}ι∈I converges to f in Alexiewicz norm, and
hence {Fι}ι∈I converges uniformly to F on [c, d], Fι,F being the indefinite integrals of fι, f respectively.

Proof. (a) Follows from the fact that { fι(P)}ι∈I is uniformly convergent by part (a) of Lemma 3.11 and hence
uniformly Cauchy with respect to tagged partitions P of [c, d].

(b) From part (a), it follows that { fι}ι∈I is Riemann δ-Cauchy and hence Riemann ∆-Cauchy on [c, d] [13,
p. 216, Lemma 3.17 ((a) =⇒ (b))].

For the Riemann part, it follows from [13, p. 214, Theorem 3.14] that { fι}ι∈I is partially equi-Riemann
integrable on [c, d], and hence it follows from [13, p. 217, Theorem 3.20 ((b) =⇒ (d))] that f ∈ R([c, d],X).

For the Darboux part, let ε > 0. Then by part (b) of Lemma 3.11, there exists an ι0 ∈ I such that

|ωP( fι) − ωP( f )| <
ε
3

for all ι ∈ I with ι0 ≤ ι and for all partitions P of [c, d].
Since fι0 ∈ D([a, b],X), we have fι0 ∈ D([c, d],X), and so there exists a partition P of [c, d] such that

ωP( fι0 ) <
ε
3
.

Now we have

ωP( f ) ≤ |ωP( fι0 ) − ωP( f )| + ωP( fι0 ) <
ε
3

+
ε
3

=
2ε
3
< ε

which implies that f ∈ D([c, d],X).
Again for all ι ∈ I with ι0 ≤ ι, we have

ωP( fι) ≤ |ωP( fι) − ωP( f )| + ωP( f ) <
ε
3

+
2ε
3

= ε

which implies that { fι}ι∈I is partially equi-Darboux integrable on [c, d].
That { fι}ι∈I converges to f in Alexiewicz norm follows from [13, p. 217, Theorem 3.20 ((b) =⇒ (d))] in

both the cases as D([a, b],X) ⊂ R([a, b],X).

Corollary 3.13. Let { fι}ι∈I be a net in RD([a, b],X) which converges weakly uniformly to f ∈ X[a,b] on [a, b]. Then
f ∈ RD([a, b],X).

Proof. Follows by an application of part (b) of Theorem 3.12 to {x∗ fι}ι∈I for each x∗ ∈ X∗.

Corollary 3.14. If { fι}ι∈I is a net in RP([a, b],X) which converges uniformly to f ∈ X[a,b] on [a, b], then f ∈
RP([a, b],X).
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Proof. It follows from Corollary 3.13 that f ∈ RD([a, b],X). Also each fι is Pettis integrable. It is easy to

verify that for any closed subinterval [c, d] of [a, b],
{

RP -
∫ d

c
fιdt

}
ι∈I

is Cauchy in X and hence convergent,

and that lim
ι

RP -
∫ d

c
fιdt = RD -

∫ d

c
f dt which implies that RD -

∫ d

c
f dt ∈ X. Hence f ∈ RP([a, b],X) [6, p.

943–944, Definition 28].

We observed in Example 3.10 that a quasi-uniformly convergent sequence of Riemann integrable func-
tions is not necessarily equi-Riemann integrable. In contrast with this, we have the following result:

Corollary 3.15. A uniformly convergent sequence in R([a, b],X) (resp. D([a, b],X)) is equi-Riemann integrable
(resp. equi-Darboux integrable).

Proof. It is easy to check that the notions of equi-Riemann (resp. equi-Darboux) integrability and par-
tial equi-Riemann (resp. partial equi-Darboux) integrability coincide for a sequence in R([a, b],X) (resp.
D([a, b],X)). Hence the results follow from part (b) of Theorem 3.12.

From Corollary 3.15, it follows that a uniformly convergent sequence { fn} in R([a, b],X) (resp. D([a, b],X))
is pointwise convergent as well as equi-Riemann (resp. equi-Darboux) integrable. Lee presented an example
to show that the converse of this result is not true [10, p. 18, Example 5].

Corollary 3.16. Let { fn} be a sequence in RP([a, b],X) which converges weakly uniformly to f ∈ X[a,b] on [a, b]. Then
f ∈ RP([a, b],X) and {RP-

∫ d

c fndt} converges weakly to RP-
∫ d

c f dt uniformly with respect to closed subintervals
[c, d] of [a, b].

Proof. It follows by an application of Corollary 3.15 to {x∗ fn} that {x∗ fn} is equi-Riemann integrable for
each x∗ ∈ X∗ which implies that { fn} is equi-Riemann-Dunford integrable and hence equi-Riemann-Pettis
integrable. So the result follows from [13, p. 221, Corollary 3.30].

Gordon extended the uniform convergence results to sequences of real-valued functions that do not
converge uniformly but for which the convergence is closed to being uniform [7, p. 143, Theorem 2]. In
the next theorem we generalize this result for nets of functions with values in a Banach space:

Theorem 3.17. Let { fι}ι∈I be a net in X[a,b] that converges pointwise to f ∈ X[a,b] on [a, b] and uniformly bounded in
some neighbourhood of a as well as in some neighbourhood of b. Let { fι}ι∈I converge uniformly to f on every closed
subinterval of (a, b). If each fι is Darboux integrable on every closed subinterval of (a, b), then fι, f ∈ D([a, b],X) for
each ι ∈ I and {D-

∫ d

c fιdt}ι∈I converges to D-
∫ d

c f dt uniformly with respect to closed subintervals [c, d] of [a, b].

Proof. From hypothesis, it follows that f is bounded in some neighbourhood of a as well as in some
neighbourhood of b. Hence there exist a δ > 0 and an M > 0 such that

‖ fι(t)‖ ≤M and ‖ f (t)‖ ≤M

for all t ∈ [a, a + δ) ∪ (b − δ, b] and for all ι ∈ I.
Also by part (b) of Theorem 3.12, f is Darboux integrable on every closed subinterval of (a, b). Hence an

application of [12, p. 318, Corollary 3.33 (a)] to a single function yields that fι, f ∈ D([a, b],X) for each ι ∈ I.
Let Fι,F be the indefinite integrals of fι, f respectively.
Let ε > 0. Let us choose c and d such that a < c < d < b and c − a = b − d < min

{
δ, ε

4M

}
. Then for any

s ∈ [a, c] and for all ι ∈ I, we have

‖Fι(s) − F(s)‖ ≤
∫ s

a
‖ fι(t) − f (t)‖dt

≤ 2M(s − a) <
2Mε
4M

< ε
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which shows that {Fι}ι∈I converges uniformly to F on [a, c].
Since { fι}ι∈I converges uniformly to f on [c, d], it follows from part (b) of Theorem 3.12 that {Fι}ι∈I

converges uniformly to F on [c, d]. Hence {Fι}ι∈I converges uniformly to F on [a, d]. So there exists an ι0 ∈ I
such that

‖Fι(d) − F(d)‖ <
ε
2

for all ι ∈ I with ι0 ≤ ι.
Now for any s ∈ [d, b] and for all ι ∈ I with ι0 ≤ ι, we have

‖Fι(s) − F(s)‖ =

∥∥∥∥∥∥
{

Fι(d) + D-
∫ s

d
fι(t)dt

}
−

{
F(d) + D-

∫ s

d
f (t)dt

}∥∥∥∥∥∥
≤ ‖Fι(d) − F(d)‖ +

∫ s

d
‖ fι(t) − f (t)‖dt

<
ε
2

+ 2M(s − d) <
ε
2

+
2Mε
4M

= ε

which implies that {Fι}ι∈I converges uniformly to F on [d, b]. Consequently {Fι}ι∈I converges uniformly to F
on [a, b]. Therefore { fι}ι∈I converges to f in the Alexiewicz norm and hence in the norm ‖ · ‖′ and the result
follows.

The following result on series of Riemann and Darboux integrable functions follows from part (b) of
Theorem 3.12:

Lemma 3.18. If
∑

fn is a series of functions in R([a, b],X) (resp. D([a, b],X)) and converges uniformly to f on [a, b],
then f ∈ R([a, b],X) (resp. D([a, b],X)).

Lemma 3.19. Let { fn} be a sequence of uniformly bounded functions in R([a, b],X) (resp. D([a, b],X)). Let
∑
λn be

an absolutely convergent series of real numbers. Then the series
∑
λn fn is absolutely uniformly convergent on [a, b]

and the uniform limit is contained in R([a, b],X) (resp. D([a, b],X)).

Proof. That the series
∑
λn fn is absolutely uniformly convergent on [a, b] follows very easily and the next

part follows from Lemma 3.18.

Let l∞(X), the vector space of all bounded X-valued sequences, be equipped with the usual sup norm
under which it is a Banach space.

Theorem 3.20. Let Z be a closed subspace of l∞(X) and let
{
fn
}

be a sequence in X[a,b] such that ( f1(t), f2(t), · · · ) ∈ Z
for each t ∈ [a, b]. Let

f (t) = ( f1(t), f2(t), · · · )

for each t ∈ [a, b]. Then f ∈ Z[a,b] and the following results hold good:

(a) f is bounded on [a, b] if and only if { fn} is uniformly bounded on [a, b].

(b) f ∈ R([a, b],Z) if and only if { fn} is equi-Riemann integrable on [a, b].

(c) If f ∈ D([a, b],Z), then { fn} is equi-Darboux integrable on [a, b].

(d) f is continuous at a point in [a, b] if and only if { fn} is equicontinuous thereat.

(e) f ∈ D([a, b],Z) if and only if { fn} is uniformly bounded and equicontinuous almost everywhere on [a, b].
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Proof. (a) Follows from the equality
‖ f (t)‖Z = sup

n
‖ fn(t)‖X

for each t ∈ [a, b].
(b) It is easy to verify that for any two tagged partitions P1,P2 of [a, b]

‖ f (P1) − f (P2)‖Z = sup
n
‖ fn(P1) − fn(P2)‖X.

Hence the result follows from [6, p. 925, Theorem 5 ((1) ⇐⇒ (3))] and [12, p. 310, Theorem 3.10
((a)⇐⇒ (b))].

(c) It is easy to verify that
ωP( fn) ≤ ωP( f )

for all n and for all partitions P of [a, b]. Hence the result follows.
(d) Follows from the equality

‖ f (s) − f (t)‖Z = sup
n
‖ fn(s) − fn(t)‖X

for all s, t ∈ [a, b].
(e) Follows from [6, p. 933, Theorem 18], parts (a) and (d).

We recall that a function f ∈ (X∗)[a,b] is said to be Riemann-Gelfand integrable on [a, b], if x f ∈ R([a, b]) for
each x ∈ X. The collection of all Riemann-Gelfand integrable functions in (X∗)[a,b] is denoted by RG([a, b],X∗)
[16, p. 432].

Theorem 3.21. Let {φn} be a pointwise bounded sequence in R[a,b] so that (φ1(t), φ2(t), · · · ) ∈ l∞ for each t ∈ [a, b].
Let

f (t) = (φ1(t), φ2(t), · · · )

for each t ∈ [a, b]. Then f ∈ (l∞)[a,b] and the following statements hold good:

(a) f ∈ RG([a, b], l∞) if and only if {φn} is uniformly bounded on [a, b] and {φn} ⊂ R([a, b]).

(b) f ∈ R([a, b], l∞) if and only if {φn} is equi-Riemann integrable on [a, b] if and only if {φn} is equi-Darboux
integrable on [a, b].

Proof. (a) Let f ∈ RG([a, b], l∞). Then f is bounded and hence {φn} is uniformly bounded by part (a) of
Theorem 3.20 by taking X = R and Z = l∞. Next let en,n = 1, 2, · · · , be the standard unit vectors of l1, the
pre-dual of l∞. Then clearly φn(·) = f (·)(en) ∈ R([a, b]) for n = 1, 2, · · · and the direct part follows.

Conversely, let {φn} be uniformly bounded and let {φn} ⊂ R([a, b]). Now for each γ = (γ1, γ2, · · · ) ∈ l1, we
have

f (·)(γ) =
∑

γnφn(·).

Hence by Lemma 3.19, f (·)(γ) ∈ R([a, b]) which implies that f ∈ RG([a, b], l∞).
(b) First part follows from part (b) of Theorem 3.20, by taking X = R and Z = l∞, and the second part

follows from [12, p. 312, Theorem 3.14].

Example 3.22. Let us consider the function

f (t) = (sin t, sin 2t, · · · )

for t ∈ [0, 2π]. Then clearly f ∈ (l∞)[0,2π]. Since {sin nt} is uniformly bounded and sin nt is Riemann integrable on
[0, 2π] for each n, f is Riemann-Gelfand integrable on [0, 2π] by part (a) of Theorem 3.21.

Now it is easy to note that if the length of the smallest interval of a partition P of [0, 2π] is equal to δ, then
ω(sin kt,P) = 4π whenever k > 2π

δ which implies that {sin nt} is not equi-Darboux integrable on [0, 2π] and hence
by part (b) of Theorem 3.21, f is not Riemann integrable on [0, 2π].

Also we see that sin nt is continuous on [0, 2π] for each n, but {sin nt} is equicontinuous at no point of [0, 2π].
Hence by part (d) of Theorem 3.20, f is continuous at no point of [0, 2π].
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Corollary 3.23. Let {φn} be a sequence in R[a,b] which converges pointwise on [a, b] so that (φ1(t), φ2(t), · · · ) ∈ c for
each t ∈ [a, b]. Let

f (t) = (φ1(t), φ2(t), · · · )

for each t ∈ [a, b]. Then f ∈ c[a,b] and the following statements hold good:

(a) f is bounded on [a, b] if and only if {φn} is uniformly bounded on [a, b].

(b) f ∈ RP([a, b], c) if and only if {φn} is uniformly bounded on [a, b] and {φn} ⊂ R([a, b]).

(c) f ∈ R([a, b], c) if and only if {φn} is equi-Riemann integrable on [a, b].

(d) f ∈ D([a, b], c) if and only if {φn} is uniformly bounded and equicontinuous almost everywhere on [a, b].

Proof. (a), (c) & (d) Follow from parts (a), (b) and (e) respectively of Theorem 3.20 by taking X = R and Z = c.
(b) Let f ∈ RP([a, b], c). Then f is bounded and hence {φn} is uniformly bounded on [a, b] by part (a).

Next let en,n = 1, 2, · · · , be the standard unit vectors of l1, the dual of c. Then as in the proof of part (a) of
Theorem 3.21, φn(·) = en f (·) ∈ R([a, b]) for n = 1, 2, · · · and the necessary part follows.

Conversely, let {φn} be uniformly bounded on [a, b] and let {φn} ⊂ R([a, b]). Then as in part (a) of
Theorem 3.21, for each γ = (γ1, γ2, · · · ) ∈ l1,

γ( f ) =
∑

γnφn ∈ R([a, b])

which implies that f ∈ RD([a, b], c). As c is separable, the result follows from [6, p. 944, Theorem 29].

Corollary 3.24. If {φn} is a uniformly convergent sequence in R([a, b]), then (φ1, φ2, · · · ) ∈ D([a, b], c).

Proof. According to hypothesis, each φn is bounded and continuous almost everywhere on [a, b] which
implies that {φn} is uniformly bounded and equicontinuous almost everywhere on [a, b]. Hence the result
follows from part (d) of Corollary 3.23.

Theorem 3.25. Let {φn} be a sequence in R[a,b] such that
∑

n

φn is absolutely uniformly convergent on [a, b] and let

f (t) = (φ1(t), φ2(t), · · · ) for each t ∈ [a, b]. Then f ∈ (l1)[a,b] and the following statements are equivalent:

(a) f ∈ RD([a, b], l1).

(b) f ∈ D([a, b], l1).

(c) {φn} ⊂ D([a, b]).

(d) {φn} is equi-Darboux integrable on [a, b].

(e) {φn} is equicontinuous almost everywhere and uniformly bounded on [a, b].

Proof. (a)⇐⇒ (b) Follows from [6, p. 946, Theorem 34] as l1 has the Schur property as well as the property
of Lebesgue [6, p. 939, Theorem 26].

(b) =⇒ (d) It is easy to verify that
ωP(φn) ≤ ωP( f )

for all n and for all partitions P of [a, b], whence the result follows.
(d) =⇒ (c) Obvious.
(c) =⇒ (e) Let (c) hold. Then φn is bounded and continuous almost everywhere on [a, b] for each n. Let

En be the set of points of discontinuity of φn in [a, b]. Then λ(En) = 0 for each n. Let E =
⋃

n

En. Then

λ(E) = 0. Now it should be noted that {φn} is uniformly convergent on [a, b]. So {φn} is uniformly bounded
on [a, b], and equicontinuous on [a, b] \ E, and hence equicontinuous almost everywhere on [a, b].
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(e) =⇒ (c) Trivial.
(c) =⇒ (a) For any γ = (γ1, γ2, · · · ) ∈ l∞ = (l1)∗, the series

∑
n

γnφn is clearly absolutely uniformly

convergent and hence converges uniformly on [a, b] with uniform limit γ( f ). Also γnφn ∈ D([a, b]) for each
n. Hence by Lemma 3.18, γ( f ) ∈ D([a, b]) which implies that f ∈ RD([a, b], l1).

Following Klippert and Williams [9, p. 53, Definition 2.3], we have the following definitions:

Definition 3.26. Let { fι}ι∈I be a net in YS and let f ∈ YS. Let s ∈ S. We say that { fι}ι∈I

(a) is pointwise Cauchy (resp. converges pointwise to f ) about or at s if for each ε > 0, there exists a neighbourhood
V of s such that for each t ∈ V, there exists an ιt ∈ I such that

d( fι(t), fκ(t)) < ε for all ι, κ ∈ I with ιt ≤ ι, κ(
resp. d( fι(t), f (t)) < ε for all ι ∈ I with ιt ≤ ι

)
,

(b) is uniformly Cauchy (resp. converges uniformly to f ) about or at s if for each ε > 0, there exist an ι0 ∈ I and a
neighbourhood V of s such that

d( fι(t), fκ(t)) < ε for all ι, κ ∈ I with ι0 ≤ ι, κ(
resp. d( fι(t), f (t)) < ε for all ι ∈ I with ι0 ≤ ι

)
and for all t ∈ V.

From the very definition it follows that if a net converges uniformly about a point, then it converges
pointwise to the same limit about that point; also it follows that a uniformly Cauchy net about a point is
pointwise Cauchy about that point. It is clear that a net in YS converges pointwise about every point of S
if and only if it converges pointwise on S. Also it is clear that if a net in YS converges uniformly on S, then
it converges uniformly about every point of S. But the converse is not necessarily true [9, p. 54, Example
2.2]. However we have the following result whose proof is straightforward and so omitted:

Lemma 3.27. Let a net { fι}ι∈I in YS converge uniformly to f ∈ YS about every point of S. If S is compact, then { fι}ι∈I
converges uniformly to f on S.

The following result also follows trivially:

Lemma 3.28. If a net { fι}ι∈I in YS converges pointwise to f ∈ YS about s ∈ S and is uniformly Cauchy about s, then
it converges uniformly to f about that point.

Definition 3.29. (a) A function f ∈ YS is said to be regulated* at s ∈ S if there exists an element l ∈ Y such that
for any ε > 0, there exists a neighbourhood U of s with the property

d( f (t), l) < ε

for all t ∈ U − {s}.

(b) A net { fι}ι∈I in YS is said to be partially equi-regulated* at s ∈ S if there exists a net {lι}ι∈I ⊂ Y such that for any
ε > 0, there exist an ι0 ∈ I and a neighbourhood U of s with the property

d( fι(t), lι) < ε

for all ι ∈ I with ι0 ≤ ι and for all t ∈ U − {s}; the net {lι}ι∈I is said to be the associated net of { fι}ι∈I at s.

Theorem 3.30. Let { fι}ι∈I be a partially equi-regulated* net in YS at s ∈ S with Cauchy associated net. Then the
following statements hold good:
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(a) If { fι(s)}ι∈I is Cauchy, then { fι}ι∈I is uniformly Cauchy about s.

(b) If { fι}ι∈I converges pointwise to f ∈ YS about s, then it converges uniformly to f thereabout. If, moreover, the
associated net is convergent, then f is regulated* at s.

Proof. Let {lι}ι∈I be the associated net of { fι}ι∈I, which is Cauchy in Y.
Let ε > 0. Then there exists an ι1 ∈ I such that

d(lι, lκ) <
ε
3

for all ι, κ ∈ I with ι1 ≤ ι, κ.
Also there exist an ι2 ∈ I and a neighbourhood U1 of s such that

d( fι(t), lι) <
ε
3

for all ι ∈ I with ι2 ≤ ι and for all t ∈ U1 − {s}.
(a) Let ι0 ∈ I be such that ι1, ι2 ≤ ι0. Then for any t ∈ U1 − {s} and for all ι, κ ∈ I with ι0 ≤ ι, κ, we have

d( fι(t), fκ(t)) ≤ d( fι(t), lι) + d(lι, lκ) + d(lκ, fκ(t)) <
ε
3

+
ε
3

+
ε
3

= ε.

This, along with the hypothesis that { fι(s)}ι∈I is Cauchy, implies that { fι}ι∈I is uniformly Cauchy about s.
(b) It follows from hypothesis and part (a) that { fι}ι∈I is uniformly Cauchy about s and hence, by

Lemma 3.28, it converges uniformly to f thereabout.
For the second part, let {lι}ι∈I converge to l ∈ Y. Then there exists an ι3 ∈ I such that

d(lι, l) <
ε
3

for all ι ∈ I with ι3 ≤ ι.
Since { fι}ι∈I converges uniformly to f about s, there exist an ι4 ∈ I and a neighbourhood U2 of s such that

d( fι(t), f (t)) <
ε
3

for all ι ∈ I with ι4 ≤ ι and for all t ∈ U2.
Let U = U1 ∩ U2. Then U is a neighbourhood of s. Let ι ∈ I be such that ι2, ι3, ι4 ≤ ι. Then for all

t ∈ U − {s}, we have
d( f (t), l) ≤ d( f (t), fι(t)) + d( fι(t), lι) + d(lι, l) <

ε
3

+
ε
3

+
ε
3

= ε

which shows that f is regulated* at s.

Following [8, p. 1127, Definition 4.2.1] and [2, p. 69, Definition 3.11], we call a net { fι}ι∈I in YS weakly
exhaustive at a point s ∈ S if for any ε > 0, there exists a neighbourhood U of s such that for each t ∈ U,
there exists an ιt ∈ I such that for all ι ∈ I with ιt ≤ ι, we have d( fι(t), fι(s)) < ε.

Gregoriades and Papanastassiou showed that the pointwise limit of a weakly exhaustive sequence of
functions which are not necessarily continuous is continuous [8, p. 1127, Theorem 4.2.3]. We present
below the net version of the said result:

Lemma 3.31. Let { fι}ι∈I be a net in YS which converges pointwise to f ∈ YS about s ∈ S. Then f is continuous at s
if and only if { fι}ι∈I is weakly exhaustive thereat.

Proof. Let ε > 0. Then by hypothesis, there exists a neighbourhood Vs of s such that for each t ∈ Vs, there is
an ιt ∈ I with

d( fι(t), f (t)) <
ε
3
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for all ι ∈ I with ιt ≤ ι.
Since s ∈ Vs, there exists an ιs ∈ I such that

d( fι(s), f (s)) <
ε
3

for all ι ∈ I with ιs ≤ ι.
Now let f be continuous at s. Then there exists a neighbourhood U1 of s such that for each t ∈ U1, we

have
d( f (t), f (s)) <

ε
3
.

Let U = Vs ∩U1. Then U is a neighbourhood of s. Let t ∈ U. Then t ∈ Vs as well as t ∈ U1. So there exists
an ιt ∈ I such that

d( fι(t), f (t)) <
ε
3

for all ι ∈ I with ιt ≤ ι, and
d( f (t), f (s)) <

ε
3
.

Let ι′t ∈ I be such that ιt, ιs ≤ ι′t. Then for all ι ∈ I with ι′t ≤ ι, we have

d( fι(t), fι(s)) ≤ d( fι(t), f (t)) + d( f (t), f (s)) + d( f (s), fι(s))

<
ε
3

+
ε
3

+
ε
3

= ε

which implies that { fι}ι∈I is weakly exhaustive at s.
Conversely, let { fι}ι∈I be weakly exhaustive at s. Then there exists a neighbourhood V1 of s such that for

each t ∈ V1, there exists an ι′′t ∈ I such that for all ι ∈ I with ι′′t ≤ ι, we have

d( fι(t), fι(s)) <
ε
3
.

Let V = Vs ∩ V1. Then V is a neighbourhood of s. Let t ∈ V. Then t ∈ Vs as well as t ∈ V1. So there exist
ιt, ι′′t ∈ I such that

d( fι(t), f (t)) <
ε
3

for all ι ∈ I with ιt ≤ ι, and
d( fι(t), fι(s)) <

ε
3

for all ι ∈ I with ι′′t ≤ ι.
Let ι ∈ I be such that ιt, ιs, ι′′t ≤ ι. Then we have

d( f (t), f (s)) ≤ d( f (t), fι(t)) + d( fι(t), fι(s)) + d( fι(s), f (s))

<
ε
3

+
ε
3

+
ε
3

= ε

which shows that f is continuous at s.

For definition of an exhaustive net of functions we refer to [8, p. 1119, Definition 3.2.9]. The following
result follows from the very definitions and so the proof is not presented:

Lemma 3.32. Let { fι}ι∈I be a net in YS and let s ∈ S. Let us consider the following statements:

(a) { fι}ι∈I is exhaustive at s.

(b) { fι}ι∈I is partially equi-regulated* at s with associated net { fι(s)}ι∈I.

(c) { fι}ι∈I is weakly exhaustive at s.
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Then (a)⇐⇒ (b) =⇒ (c).

The following result was established in global sense by Gregoriades and Papanastassiou [8, p. 1120,
Theorem 3.2.12 & Theorem 3.2.14]. We present here the local version:

Theorem 3.33. Let { fι}ι∈I be a net in YS and let f ∈ YS. Let s ∈ S. Then { fι}ι∈I is exhaustive at s and converges
pointwise to f thereabout if and only if f is continuous at s and { fι}ι∈I converges uniformly to f thereabout.

Proof. Let { fι}ι∈I be exhaustive at s and converge pointwise to f about s. Then it follows from Lemma 3.32
((a) =⇒ (c)) and Lemma 3.31 that f is continuous at s.

Again it follows from Lemma 3.32 ((a)⇐⇒ (b)) that { fι}ι∈I is partially equi-regulated* at s with associated
net { fι(s)}ι∈I which is clearly convergent and hence Cauchy. Therefore it follows from part (b) of Theorem 3.30
that { fι}ι∈I converges uniformly to f about s.

For the converse part, let f be continuous at s and let { fι}ι∈I converge uniformly to f about s.
Let ε > 0. Then there exists a neighbourhood V1 of s such that

d( f (t), f (s)) <
ε
3

for all t ∈ V1.
Also, there exist an ι0 ∈ I and a neighbourhood V2 of s such that

d( fι(t), f (t)) <
ε
3

for all ι ∈ I with ι0 ≤ ι and for all t ∈ V2.
Let V = V1 ∩ V2. Then V is a neighbourhood of s, and for all ι ∈ I with ι0 ≤ ι and for all t ∈ V, we have

d( fι(t), fι(s)) ≤ d( fι(t), f (t)) + d( f (t), f (s)) + d( f (s), fι(s))

<
ε
3

+
ε
3

+
ε
3

= ε

which implies that { fι}ι∈I is exhaustive at s.
That { fι}ι∈I converges pointwise to f about s is obvious.
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