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Abstract. Certain twisted product CR-submanifolds in a Kahler manifold and some inequalities of the
second fundamental form of these submanifolds are presented ([14]). Then the length of the second
fundamental form of a twisted product CR-submanifold in alocally conformal K&hler manifold is considered
(2013), ([13D).

In this paper, we consider the relation of the mean curvature and the length of the second fundamental
form in two twisted product CR-submanifolds in a locally conformal Kéhler space forms.

Introduction

The study of twisted product submanifolds was initiated in 2000 by B. Y. Chen, ([10]). Twisted products
M Xy M, are natural generalizations of warped products, namely, the function may depend on both factors,
when f depends only on M; the twisted product becomes a warped product, ([7]). For a survey on geometry
of warped product submanifolds in various ambient manifolds see [11]. During the last few years a broad
scientific production has appeared on warped product submanifolds and in [11]. B. Y Chen has divided
more than 100 published papers into 16 categories of warped product submanifolds. The length of the
second fundamental form and the mean curvature in certain submanifolds of a Riemannian manifold are
both interesting and important features in submanifold theory. In this paper, we consider these problems
in twisted CR-submanifolds in locally conformal Kahler space forms.

In §1, we recall a twisted product manifold and give the Riemannian curvature tensor, the Ricci tensor
and the scalar curvature. In §2 and §3, we consider a locally conformal Kadhler manifold with a constant
holomorphic sectional curvature (an l.c.K.-space forms) and its CR-submanifolds. In §4, we define two
kinds of twisted product CR-submanifolds in a locally conformal Kidhler manifold and give some essential
properties of these submanifolds. In §5, we consider the length of the second fundamental form and the
mean curvature of the above submanifolds in an l.c.K.-space forms (See Theorems 5.1, 5.2 and 5.3).
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1. Twisted Product manifolds

Let (M1, 91) and (M3, g2) be Riemannian manifolds and M be a (topological) product manifold of M; and
M,. We define a Riemannian metric g of M as

g, V) = ¢ g1(mU, 1 V) + go(mau U, m2.V) (1)

for any U, V € TM, where, f denotes a positive differentiable function on M, TM the tangent bundle of M,
71 (resp. T2) a projection operator of M to M (resp. M) and 711, (resp. 7p.) the differential of 711 (resp. 7).
Then, the manifold M is called a twisted product manifold with an associated function or a warping function f,
and we write it M = My Xy M ([10]). In particular, if the associated function f is in My, then the manifold
M is a warped product ([16]).

Let M = M; Xy M3 be a twisted product manifold with the associated function f and let dimM; = ny,
dimM, = ny and dimM = n = n; + n,. Moreover, let (x!,x2,...,x™), (x"*1, .., x"*"2) be local coordinate
systems of M and My, respectively. Then (x!,x2,...,x™) is a local coordinate system of M.

Using the above local coordinate systems, we can write

(i O\_{eqi O 5
R R ®

where theindices (j, i, ..., h), (d,¢c, ...,a) and (v, 4, ..., A) vary in theranges (1,2, ..., m), (m1 +1,m +2, ..., m1 +12)
and (1,2, ..., n1 + np = n), respectively.
Then, by the straightforward calculation, the covariant differentiation ViU with respect to g is given by

VyX = ViyX + f2{(Ylog f)X + (Xlog f)Y}
—f{a1log f + e/ Az log flgi(Y, X), 3)
VXZ = sz = fZ(Z logf)X, Vzw = szw

forany ¥, X € TM; and Z, W € TM,, where Vi (resp. V) denotes the covariant differentiation with respect
to g1 (resp. g2) and we put A1 log f = g1770;log 0 (resp. Az log f = 9,9, log fo. ).

We have from the above equation, the Riemannian curvature tensor wa,A, the Ricci tensor p,, and the
scalar curvature 7 with respect to g are respectively given by

Riji" = RYi" + (2 = 2 £21(9i log f){(dx log £)5;" — (9;log )0k}
—(01"1og /){(Fklog fgiji — (9j10g gk}l
+f2{(V1k8,- log f)(s]‘h - (V1]'(9i log f)(Skh
—(Vidi" log f)guji + (V1jor" log fgu} + F4(IIV1 log fII?
+ef’[[V21og fIP) (91" — guid;"),
Ry = f2e/*[2(9," 1og f){(9;10g f)gawi — (9 10g f)gni}
+(0j02" log f)giki — (9xd2" log f)gujil,
Rkjbh = 2f2(3b log H{(k 10gf)(5]-h — (9] logf)ékh}
+f2{(8k8b log f)éjh — (8]»8;, log f)5kh},
Rii" = —f2(9) log £){(d;log o — (91" log f)gui)
— {9k log £)5{" — (Ipr" 10g f)gki},
Risi® = f2e/*{(2 + f2)(0) log £)(92" 10g f) + (Vard2" log )} ki,
R = =fH(2 + f2)(0y 10g f)(, 10g f) + Vayda log f104",
Rip" =0, Rip" =0, Ruw"=0, Rua"=R%w",
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pji = plji — (m1 = 2)fA{(2 - f2)(9;log f)(9;ilog f) — V1,0;10g f}

— 212 = 2f% + n1 f2)||Vy log fII> + V01! log f

+(2 + m f2)ef* V2 log fIP + e (V22 log flgui 5)
Pja = —(m1 = 1)f*{2(d;log f)(d. log f) + d;d, log f},
Pt = P2 — 1 FAQ + F2)(@p log 1)@ log f) + Vayde log f,

and
=l 4 — (g = 1) e (4 - 212 + n fA)IV1 log f1P (6)

+2Vy01' log f) — my 214 + f2 + ny f2)|[Va log fI* + 2V2.0:° log £},

whereR!;" (resp. R%"), p'ji (resp. p?,) and 7! (resp. 7%) mean the curvature tensor, the Ricci tensor and
the scalar curvature with respect to g (resp. g2).

2. Locally conformal Kaehler manifolds

A Hermitian manifold M with structure (J, §) is called a locally conformal Kaehler (an l.c.K.) manifold if
each point x € M has an open neighbourhood U with a positive differentiable function p : U — R such that
J* = e gy is a Kaehlerian metric on U, that is, V*] = 0, where ] is the almost complex structure, § is the
Hermitian metric, V* is the covariant differentiation with respect to §* and R is a real number space ([17]).
Then, we know ([12])

Proposition 2.1. A Hermitian manifold M with structure (], §) is an l.c.K.-manifold if and only if there exists a
global 1-form o which is called Lee form satisfying

da=0 (a:closed), (7)
(Vv DU = —(a#, )]V + GV, W) + GV, U)a* - G(B*, UV ®)

for any V,U € TM, where ¥V denotes the covariant differentiation with respect to g, o is the dual vector field of a, the
1—form B is defined by p(X) = —a(JX), B* is the dual vector field of p and TM indicates the tangent bundle of M.

Anl.c.K.-manifold M(J, §, @) is called an I.c.K.-space form if it has a constant holomorphic sectional curvature.
We know that the Riemannian curvature tensor R with respect to § of an l.c. K.-space form with the constant
holomorphic sectional curvature c is given by ([12]):

4R(X, Y, Z, W) = c{g(X, W)§(Y, Z) — §(X, 2)§(Y, W) + GJ X, W)i(JY, Z) )
-gUX, 2)§(JY, W) = 24(JX, Y)§(JZ, W)} + 3{P(X, W)4(Y, Z)
—P(X, 2)§(Y, W) + §(X, W)P(Y, Z) = §(X, Z)P(Y, W)}
-DX, W)§(JY, Z) + P(X, Z)§(JY, W) — G(JX, W)P(Y, Z)
+§(JX, Z)P(Y, W) + 2{P(X, V)§(JZ, W) + §(J X, Y)P(Z, W)}
for any X, Y, Z, W € TM, where P and P are respectively defined by

POX,Y) = ~(Txa)Y -~ a(¥a() + 3 1@ P X Y) (10)
and
P(X,Y) =P(JX,Y) (11)

for any X, Y € TM, where || a || is the length of the Lee form a.

Remark 2.2. To get (9), we have to assume that the symmetric (0,2)-tensor P is hybrid or, equivalently P is skew-
symmetric. This means that the Ricci tensor Ry is hybrid ([12]).
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3. CR-submanifolds in an l.c.K.-manifold.

In general, for a Riemannian manifold M, g) and its Riemannian submanifold, we know the Gauss and
Weingarten formulas

VxY = VxY +0(X,Y), (12)
Vxé = —AgX + Vi (13)

forany X, Y € TM and & € T*M, where o is the second fundamental form and A; is the shape operator with
respect to & ([7]). The second fundamental form o and the shape operator A are related by

J(AgY, X) = g(a(Y, X), €)

forany ¥, X € TMand & € T*M.
Moreover, we know the Gauss equation is given by

R(X,Y,Z,W) = R(X,Y,Z, W) + §(o(X, W), a(Y, Z)) (14)
—§(0(X,2),0(Y, W)),

for any X, Y, Z, W € TM, where R is the curvature tensor with respect to g ([8]).

A submanifold M in an almost Hermitian manifold M is called a CR-submanifold if there exists a
differentiable distribution D : x — D, C T,M on M satisfying the following conditions:

(i) O is holomorphic, i.e., [Dy = D, for each x € M and

(ii) the complementary orthogonal distribution D* : x — D c TM is totally real, i.e., JDy C Ty M for
each x € M, where T,M (resp. Ty M) denotes the tangent (resp. normal) vector space at x of M ([1],[2], [6]).

If dim Dy = 0 (resp. dim D, = 0) for each x € M, then the CR-submanifold is holomorphic (resp. totally
real). A CR-submanifold M is said to be anti-holomorphic if Dy = Ty M for any x € M.

In [13], is proved the following

Proposition 3.1. In a CR-submanifold M in an l.c.K.-manifold M, we have
(i) the distribution D* is integrable,
(ii) the distribution D is integrable if and only if

o (X, JY) = o(Y, JX) + 23X, Y)o#, ]Z) = 0 (15)
forany X,Y € Dand Z € D*.

A CR-submanifold is said to be proper if it is neither holomorphic nor totally real.

A CR-submanifold is said to be mixed geodesic if the second fundamental form o satisfies o(D, D) = {0},
and to be D (resp.D+)-geodesic if the second fundamental form ¢ satisfies 6(D, D) = {0} (resp. o(D+, D*) =
{0}).

In a CR-submanifold M of an almost Hermitian manifold M, we denote by v the complementary orthog-
onal subbundle of JD* in the normal bundle T-M. Then we have the following direct sum decomposition

T*M=]D &, JO+ 1v. (16)
For the next section, we define a twisted submanifold in a Riemannian manifold.

Definition 3.2. Let M be a Riemannian manifold with a metric tensor §. A submanifold M is said to be a twisted
product submanifold of M if it satisfies the following conditions:

(i) M is a Riemannian submanifold of M,

(ii) M is a twisted product manifold of two submanifolds My and My of M,

(iii) for a certain Riemannian metric g1 (resp. go) of My (resp. M»),

g(U V) = e g1 (.U, 11, V) + ga(1i2.U, 112, V) (17)

is an induced metric of § for any U,V € TM and a positive differentiable function f on M, where 11 (resp. Ttp) is the
projection operator of M to My ( resp. M), and 1. (resp. Tip.) is the differential of 11y (resp. 1)
(iv) the submanifolds My and M, are orthogonal, that is, §(X, Z) = 0 for any X € TM; and Z € TM,.
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4. Twisted product CR-submanifolds in a locally conformal Kaehler manifold.

In this section, we consider a special twisted product submanifold in an 1.c.K.-manifold.

Definition 4.1. A submanifold M in an L.c.K.-manifold M is said to be a first (resp. second ) kind twisted product
CR-submanifold in M if it satisfies

(i) M is a product manifold of a holomorphic submanifold M+ and a totally real submanifold M,

(ii) for a certain Riemannian metric tensor gy (resp. g») on M+ (resp. M) and a positive differentiable function
fonM,

gV, U) = e gi(m.V, ) + g2(n.V, 1) (18)
(resp.)
gV, U) = g1(n.V, .U) + efzgz(r]*V, n.U) (19)

is a induced metric of §, that is, §(V, U) = g(i.V,i.U), for any V,U € TM, where 1 (resp. 1) is a projection operator
of M to M+ (resp. M) and i is an identity map of M to M.

Remark 4.2. We write D (resp. D*) instead of TM+ (resp. TM ).

Remark 4.3. In our submanifold, since the holomorphic distribution D is integrable, we have to assume that the
second fundamental form o satisfies (15).

Remark 4.4. Warped product and doubly warped product CR-submanifolds in an l.c.K.-manifold, can be found in
[31, [4] and [5].

In a CR-submanifold M of an l.c. K.-manifold M, let dim D = 2p, dim D+ = g, dimM = n, dimv = 2s and
dimM = m.

Now we recall an adapted frame on M. We take a following local orthonormal frame on M,

@) {e1, ez, ..., €p,€"1,€%, ..., €} is an orthonormal frame of D,

(ii) {eap+1, €2p+2, .., €2p+q} is an orthonormal frame of D+,

(iii) {en+ge1, Cnrgras s, € g1, € g2, <+, € u1qes) i an orthonormal frame of v. We call such a frame
{e1, €2, ..., € niq4s} an adapted frame of M.

First of all, we consider the first kind twisted product CR-submanifold M in an 1.c. K.-manifold M. Then,
by the definition, the induced metric g on M is defined by (18).

Then we have

VyX = Viy X + f2{(Ylog )X + (Xlog )Y}
—fHa1log f +ef g log flgi(¥, X), (20)
VXZ = sz = fZ(Z logf)X, Vzw = szw

forany Y, X € D and Z, W € D*. Then we easily have, from (8) and (20)

Proposition 4.5. For a proper first kind twisted product CR-submanifold M = M+ X¢ M, in an l.c.K.-manifold M,
we have
(1) §(o(X,JY),]2) = §(a*, 2)§(X, Y) = g, J2)§(X, ]Y)
~f4(Zlog HFX,Y),
(2) g(o(X,Y),JZ) = §(@*, J2)§(X, Y) and §(o*, Z) = f*(Z1og f),
(3) §(0(JX, 2), JW) = =(a¥, X)3(Z, W)
forany Y, X € Dand Z, W € D*.

By virtue of (2) in the above proposition, we can easily see
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Proposition 4.6. There does not exist a proper first kind of twisted product CR-submanifold in an l.c.K.-manifold
whose the Lee vector field a¥ is normal to D*.

Next, we consider the second kind twisted product CR-submanifold M = M, Xy M+ in an l.c.K.-manifold
M. Then, (19) means

Y L Y 0) 21
m=( "% )=, . e

In a similar way to a first kind case, we obtain

VzW = VoW + f2{(Zlog /)W + (Wlog f)Z}

~F292(Z, W)l(a2 1og f) + e (1 1og f)}, (22)
sz = VXZ = fZ(X logf)Z, VyX = vlyX

forany , X € D, Z, W € D*.
Using (21) and (22), we obtain

Ryji" = R,%jih/ Ryj" =0, Ryi" =0,
Ryii" = — {2 + fA)(9;log f)(d;log f) + (V1jd; log f)}o",
Rep" = f2e*{(2 + f2)(0;1og f)(01"1og f) + (V1i01" 1og f)} g2,
Raip" = —f*(dilog f){(ds 1og f)5" — (92" 10g f)G2av}
—£2{(949:10g £)0p" — 9i02")goan},
Rui® = 2f%(9; log f){(dalog £)o." — . log )64}
+f2{(dadilog f)o." — (:9;1og f)op"},
Raa" = f2ef!"[2(d1" log /){(9. 1og f)gam — (9a10g f)gacs
+(9:01")gaap — 2401 10g £)92ch],
Ria" = R%,* + (2 = f2)f*[(9p log )){(ds1og f)6." — (9. log )64}
—(92" log f){(dalog f)gacy — Ic 10g f)gaanl]
+fH{(Vaady log £)0" — (Vacdy 10g )04 — (V2402 10g f)och
+(Vac02"10g f)garal + f4(IV2 log fII?
+e/"|IV1 10g fI(g2000d" = Gandc")-

pji = p'ji = naf*{(2 + f*)(9;log f)(ilog f) + V1;0;10g f},

pja = —(nz — 1){2(0; log f)(d, log f) + dad;log f},

Pea = P7ea — (12 = 2) f2{(2 = f2)(9y log f)(da log f) — Va0, log f) (24)
—fz{(Z - 2f2 + n2f2)||V2 IOg f”z + Vzeaze Ing
+(2 + 2 f2)e’*|IV1 log fIP + e (V1,V1' 1og £)}gabe,

(23)

and
t=e 241 = (ny = 1) e {4 - 22 + ny f2)|IVa log fI12 (25)

+2V26828 log f} - nzfz{(4 + f2 + lefz)”Vl log f”2 + 2V1[811 log f}
Now, by virtue of (8) and (23), we obtain

Proposition 4.7. For the second kind twisted product CR-submanifold in an l.c.K.-manifold M, we have
(1) go(Y,]X),JZ) = §(a*, 2)§(X, ) + g(a¥, J2)§(X, ]Y),
(2) §(0(X,Y),JZ) = =g(a, J2)§(X, Y) and §(a*,Z) = 0,
(3) §(0(JX, Z), JW) = {-(a*, X) + f*Xlog f}5(Z, W)

forany Y, X € Dand Z, W € D*.
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5. The length of the second fundamental form and the mean curvature.

In this section, we consider the length of the second fundamental form and the mean curvature of two
kind twisted product CR-submanifolds in an L.c.K.-space form.

Let M(c) and {ej, ey, ..., e} be an Lc.K.-space form with the constant holomorphic sectional curvature ¢
and an adapted frame of M(c), respectively.

By virtue of (9), the curvature tensor me in M(c) is written as

4Ryji = 4Rk o = c(B1i0kj — 01j0ki) + 3(0kiPii — Ol
+0;:Pxj — 01iPxi),
4Rpji- = 3(0kiPii — 1jPkir) — OkiPyje + 01iPje — 20iPyee,
4R pjoi+ = c(1i0kj — 01j0ki) — OkiPii + OxiPyij — 01iPx; + 1P,
4R i = c(81i0k; + 01j0ki + 2010 i) + 3(0;Pii + 01iPx))
—6kiP1j — 01jPxi — 2(0icPji + 6iPix),
4Ry i = 3(OkjPr — 0iPyj-) — 01iPiej + 01jPrei + 204 P,
4R kjopra) = 3{0kiPip+a) — 01iPrkepiarls
4Rk 2p+a) = O1i Pk @p+a) — OkjPr2pa)s
4Rk jop+a) = —301iP @p+ay + OkjPrp+ay + 201} 2pa),
4R+ @p+a) = 30kiPiapa) — O1iProp+ay — 20 j2p+a)s (26)
4Rk pra) = 3{0kiPrpray = 01iPr @pra))s
Riap+iyepa) = 0, 2R @psb)@p+a) = OkPpby 2pta)s
Rike@p+bypa) = 0,
4R op+epb)epra) = 3O Pipra) — Ocalicop+n)}s
4R} pro)epsbyp+a) = MO Pr@pra) — OcaPrepin)s
4R oprdyepropb)ep+a) = C(O0dadch — Oavdca) + 3Ok Piop+ayap+a)—
OcaPprayepst) + 0aaPproyepin) — OanPprop+a)ls
4R jopsyepray = ARj @psbyprayic = C0jiOpa
+3{P;iOpa + 0jiPop+v)2p+a)}s
4R jopsbyp+ais = 306aPLjic — 6iiPpby @p+a)

where the indices k, j, ..., iand ¢, b, ...,a run over the range 1,2, ...,p and 1,2, ..., g, respectively. And we write
R(ew, ey, eu,€1) = Rovpua, ete., forany w,v, ..., A €{1,2,...,n.}
Now, the mean curvature vector H and the mean curvature ||H|| are respectively given by ([8])

n

1 1 v
H= - ow IHP = — )" fow,om). (27)

u=1 v,A=1
The length ||o|| of the second fundamental form o is given by
n n m
ol = Y. g om) = Y, Y Goum e (28)
uA=1 w,A=11t=n+1
By virtue of (27), (28) and the Gauss equation, we have
n
4T =4 ) Ry +4n?|HIP - 40|, (29)
v,u=1

where 7 is the scalar curvature with respect to the induced metric g in M.
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By virtue of (26), we can write

Z(Rf(2p+ﬂ)(2p+a)j

P4
=1 a=1

n p
4 Z RW}W =8 Z(R]‘l‘[]‘ + Rji*i*j) +8
vu=1 ji=1 j

q
+Rjprayepea) +4 Z Reprh)epeaeprapt)-
ba=1

So, using (26) and the above equation, we get

n n 2p
4 Y Rowo =c(n® +4p—q) +6(n—=1) ) Py =6 ) . Pji. (30)
wv=1 u=1 j=1
Substitution of (30) into (29) gives us
n 2p
4t =c(r? +4p—g)+6(n=1)) Py —6) P (31)
u=1 j=1

+4n?| H|* - 4]lo]1*.
Thus we have

Proposition 5.1. In a CR-submanifold M in an l.c.K.-space form M(c), the length of the second fundamental form
lloll and the mean curvature ||H|| respectively satisfy the following inequalities

n 2p
4ol > c(n® +4p = ) +6(n 1) ) Py =6 Y Pjj—4r, (32)
u=1 j=1
and
n 2p
An?|H|? > 47 — c(n® + 4p — q) — 6(n — 1) Z Py +6 Z P;;. (33)
pu=1 j=1

In particular, if the above first (resp. second) inequality satisfies equality, then the submanifold is minimal (resp.
totally geodesic).

Now, we assume that our submanifold M is the first kind twisted product CR-submanifold in an 1.c.K.-space
form M(c). Since we know ([14])

q
ol = 2(pllach,. 1P + gllad I} +2p ) " (3(a, eapsa) (34)

a=1

q
~ferpralog AP+ Y F(0(eapses apet), €,

¢,ba=1

+ i i{ﬁ(U(eAreH)fef)}Z’

r=n+q+1 p,A=1
the mean curvature ||H|| satisfies
2p

4T =c(n +4p—q)+6(n=1)) Py —6) P (35)
u=1 j=1
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+4n?||HI? - 4121plla . I + qllal P}

q q
+2p Y 150, e2p0) = fPlexpralog AP+ Y AG(0(erpscs eapi0), €y
a=1

c,ba=1
£ ), Y tdter e e,

r=n+q+1 p,A=1
where ||0¢§)L || (resp. IIaﬁDII) denotes the length of afin D+ (resp. D)-part. Thus we have

Theorem 5.2. In the first kind twisted product CR-submanifold in the l.c.K.-space form M(c), the mean curvature
||H|| satisfies the inequality

n 2p
An?|HI? > 41 — c(n® + 4p — q) — 6(n — 1) Z Py +6 Z P;; (36)
u=1 j=1

q
+H2{pllatpel? + gllatplP) + 2p0 Y (50, expra) — F2(eapralog I
=1

a

In particular, the equality case is the second fundamental form satisfies 6(TM, TM) C JD* and o(D+,D*) C v.
Moreover if the submanifold is anti-holomorphic, then it is D*-geodesic.

In our case, by virtue of (6), the scalar curvature 7 is written as
t=e T+ 2= 2Qp - 1) e {2 - £+ pA)IV: log fIP (37)

+Vy0i'log f} = 2p A4 + 2 + 2pf)|IV2 log fI? + 2V4.02¢ log f},

where 7! (resp. 7%) means the scalar curvature with respect to g; (resp. g»). Thus, we have from Theorem
5.1,

Theorem 5.3. In the first kind twisted product CR-submanifold in the l.c.K.-space form M(c), the mean curvature
||H|| satisfies the inequality

n?|H|* = P+ Q, (38)

where we put

P=ef7l+72- 2(2p - 1)fze_f2VU8lllogf (39)
c(n® +4p — 3n-1) v
_4pfzv26828 108f - ( 4p q) - ( 5 ) P‘U.[,L
u=1

2p
3
+3 2 Pjj + 2{plla* el + gllatolf)
j=1

+zp{zq] g, ep10) = fA(erpralog f))?

and .
Q=-22p-1)fe 2~ £ +pfIVilog f)I?
~2pf* @4+ f* + 2pf?)|IV2 log I
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As a corollary of Theorem 5.1, we can easily obtain

Corollary 5.4. In the first kind proper twisted product CR-submanifold in the I.c.K.-space form M(c), the mean
curvature |H|| satisfies the inequality

n 2p
4n?|HIP > 41 — c(n® + 4p — q) — 6(n — 1) Z Puu+6 2 Pj;. (40)
pu=1 j=1

Proof. In fact, if the above inequality satisfies equality, then by Proposition 4.2 follows that the submanifold
is not proper. [

Next, we assume that M is the second kind twisted product CR-submanifold in the l.c.K.-space form M(c).
Then, using Proposition 4.3, the length ||o||? satisfies ([14])

2p
ol = 2pllat,,. I + 2qllla, | = £2 )" Ga*, e)(eilog )

i=1

9

2p
+f*Y Aeilog Aeilog P + Y 15(0apsaiapsiy € opa)l
i=1

c,ba=1
i i Z {g(our eVl

r=n+q+1 p,A=1

By virtue of the above equation and (31), the mean curvature ||H|| satisfies

n 2p
4T =c(n +4p—q)+6(n=1)) Py —6) P (41)
p=1 j=1

2p
+4n?|[HIP - 412plla,,, I? + 2qlllaby | — £2 )" 5(a*, e)(eilog f)

i=1
q

2p
+f*Y Meilog e ilog PN+ Y 13(0apsaiapsty € o)l
i=1

c,ba=1
* i Z (70, )],

r=n+q+1 u,A=1

Thus we have

Theorem 5.5. In the second kind twisted product CR-submanifold in the l.c.K.-space form M(c), the mean curvature
||H]|| satisfies the inequality

n 2p
4P||HIP 2 47 = c(n® +4p =) = 6(n1 = 1) Y Py +6 Y Py, (42)
=1 j=1

2p 2p
+8{pllat,y. IP + gllay | = 2 ) gl e)(eilog f) +qf* ) _(eilog £)*(e'slog f)P).
i=1

i=1
In particular, the equality case is the second fundamental form satisfies o(TM, TM)
L vand o(DY, DY) L D
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