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Abstract. In this paper, we propose an implicit iterative method and an explicit iterative method for
solving a general system of variational inequalities with a hierarchical fixed point problem constraint for
an infinite family of nonexpansive mappings. We show that the proposed algorithms converge strongly to

a solution of the general system of variational inequalities, which is a unique solution of the hierarchical
fixed point problem.

1. Introduction

Let X be a smooth Banach space. Let C C X be a nonempty closed convex set. Let T : C — X be a

nonlinear mapping. Use Fix(T) to denote the set of fixed points of T. A mapping T : C — X is called
L-Lipschitz continuous if there exists a constant L > 0 such that

ITu —Tol| < Lllu—0|, VYuveC

If L =1, T is called nonexpansiv. If L € [0,1), T is called contractive.

Let A,B : C — X be two nonlinear mappings. Recall that the general system of variational inequalities
(GSVI) is to find (1, v*) € C X C such that

(Av'+u —=v", jlu—-u)) >0, YueC 1)
Bu+v' —u', jlu-v7))=0, VYueC
In [11], the authors proved the equivalence between the GSVI (1) and the fixed point problem. Ceng et al.
[12] introduced a pair of implicit and explicit iterative methods for solving GSVI (1). It is worth mentioning

that the system of variational inequalities plays an important role in game theory and economics, see e.g.,
[3, 4, 14, 22] and the references therein.
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Note that the GSVI (1) was introduced and studied by Ceng, Wang and Yao [13] in a real Hilbert space.
Problem (1) can be reduced to the following classical variational inequality (VI) of finding u* € C such that

(At ,u—u*y>0, VYueC )

This problem is a fundamental problem in the variational analysis; in particular, in the optimization theory
and mechanics; see e.g., [1, 2, 15, 18-21, 24, 27, 28, 33-35] and the references therein.
In case of Banach space setting and A = B and u* = v*, then the VI is defined as

(Au*, jlu—u*))y >0, VYueC 3)

Aoyama, liduka and Takahashi [5] proposed an iterative scheme to find the approximate solution of (3) and
proved the weak convergence of the sequences generated by the proposed scheme. In [16, 17], Kikkawa and
Takahashi studied an implicit iteration scheme that converges strongly to a solution of the stated problem.
Recently, in [29], Wang, Yu and Guo proposed a new implicit iteration method, which converges strongly
to a common fixed point, for solving some variational inequality in a Banach space. Buong and Phong [10]
introduced two new implicit iterative algorithms, which converge strongly in Banach spaces.

The purpose of this paper is to find a solution of a general system of variational inequalities (GSVI) with
a hierarchical fixed point problem (HFPP) constraint for an infinite family of nonexpansive mappings in a
real strictly convex and 2-uniformly smooth Banach space X. We propose an implicit iterative method and
an explicit iterative method. We show that the proposed algorithms converge strongly to a solution of the
GSVI, which is a unique solution of the HFPP. Our results improve and extend the corresponding results
in the literature.

2. Preliminaries and Algorithms

Let X be a real Banach space with its dual space X*. Let U := {u € X : [[u]| = 1} be the unit sphere. A
Banach space X is said to be strictly convex if for u, v € U with u # v, we have ||(1 - 0)u + 69|l < 1, Yo € (0,1).
X is said to be uniformly convex if for each € € (0,2], there exists 6 > 0 such that forall u,v € U, |lu — v|| > €
implies ||u + v]|//2 > 1 = 0. Define a function p : [0, 00) — [0, o0) as follows:

1
p(1) = sup{z(lu +oll +[lu —ol) =1+ u,0 € X, Jlull =1, [[ol| = 7}.

X is said to be uniformly smooth if lim,o p(7)/7 = 0. Let 1 < g < 2. X is said to be g-uniformly smooth if
there exists a constant ¢ > 0 such that p(t) < ¢7 for all T > 0. The normalized duality mapping ] : X — 2%
is defined as

Jw) = {p € X": (u, @) = lul® = llpl’}, Vu € X, 4)

where (-, -) denotes the generalized duality pairing. It is known that | is single-valued if and only if X is
smooth. In the sequel, we shall denote the single-valued normalized duality mapping by ;.
Recall that a mapping S : X — X is said to be

(i) accretive if for each u,v € X, there exists j(u — v) € J(u — v) such that
(S(u) = S(), j(u—0))=0.
(if) O-strongly accretive if for each u, v € X, there exist j(u — v) € J(u —v) and 6 € (0, 1) such that
(S(u) — S(v), j(u —v)) = Ollu — |*.
(iif) v-inverse-strongly accretive if for each u, v € X, there exist j(u —v) € J(u —v) and v € (0, 1) such that

(S(u) = S(v), j(u — v)) = VIIS(u) - S(@)I*.
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(iv) C-strictly pseudocontractive [8] if for each u, v € X, there exist j(u —v) € J(u —v) and C € (0, 1) such that
(S(u) = S(v), j(u =) < llu =0l = Cllu — v = (S(u) = S@))IP.
Lemma 2.1. ([30]) Let 1 < q < 2 and X be a q-uniformly smooth Banach space. Then
Il + o1 < [lull’ + qv, J3()) + 2llxoll’, Yu,veX,

where « is the g-uniformly smooth constant of X and |, is the generalized duality mapping from X into 2% defined by

Ja) =@ € X" : (u, ) = ull’, llpll = lul"™),  VueX.
Let D be a subset of C and let [T be a mapping of C into D. Then 1 is said to be sunny if
[T () + @(u = TT(u))] = (),

whenever I1(u) + @(u — II(1)) € C for u € Cand @ > 0. A mapping II of C into itself is called a retraction if
IT? = [1. If a mapping IT of C into itself is a retraction, then I1(u) = u for each u € R(IT), where R(I) is the
range of I1. A subset D of C is called a sunny nonexpansive retract of C if there exists a sunny nonexpansive
retraction from C onto D.

Lemma 2.2. ([23]) Let C be a nonempty closed convex subset of a smooth Banach space X and D be a nonempty
subset of C and I1 be a retraction of C onto D. Then the following are equivalent

(i) Il is sunny and nonexpansive;
(ii) |II1(u) = @) < (u = v, j(I1(u) - [1(v))), Yu,0 € C;
(iii) (u —I(u), j(v —II(u))) <0,Yu € C,v € D.

Lemma 2.3. ([11]) Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space X. Let I1c
be a sunny nonexpansive retraction from X onto C. Let the mappings A, B : C — X be v-inverse-strongly accretive
and S-inverse-strongly accretive, respectively. For given u*,v* € C, (u*,v*) is a solution of the GSVI (1)) if and only
if u* € GSVI(C, A, B) where GSVI(C, A, B) is the set of fixed points of the mapping G := Ilc(I — ®A)I1c(I — oB) and
v =Ic(u* — pBu”).

Proposition 2.4. ([11]) Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space X. Let
the mapping A : C — X be v-inverse-strongly accretive. Then,

(I — @A)u — (I — @A)0|* < |lu — v|* + 20(k2@ — v)||Au — Av|?,
In particular, if 0 < @ < 5, then I — ®A is nonexpansive.

Lemma 2.5. ([11]) Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space X. Let I1c
be a sunny nonexpansive retraction from X onto C. Let the mappings A, B : C — X be v-inverse-strongly accretive
and S-inverse-strongly accretive, respectively. Let the mapping G : C — C be defined as G := I1c(I — @A)I1c(I - oB).
f0<@< 5and0<p< %, then G : C — C is nonexpansive.

Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space X. Let [1c be a
sunny nonexpansive retraction from X onto C. Let Z¢ be the set of all contractive self-mappings on C. Let
the mappings A, B : C — X be v-inverse-strongly accretive and S-inverse-strongly accretive, respectively.
Let f € Ec with coefficient p € (0,1) and F : C — X be 0-strongly accretive and C-strictly pseudocontractive
with 6 + C > 1. Assume that @ € (0, 3] and ¢ € (0, %] where « is the 2-uniformly smooth constant of X (see
Lemma 2.1). Very recently, in order to solve GSVI (1), Ceng et al. [12] proved the following result.

Algorithm 2.6. ([12]) Let 0; € [0,1), Vt € (0, 1) such that lim;_+ 0;/t = 0. Define the net {x} by

x = tf(x) + (1= BT — 0,F) (I — @A)Ic( - oB)x;, Yt € (0,1).
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It was proven in [12] that the net {x;} converges as t — 0* strongly to the unique solution p* € GSVI(C, A, B)
to the follow VI:

({d= ' jx=p)) =20, VxeGSVI(CA,B). (5)
Recently, Buong and Anh [9] proposed the following implicit iteration method:

xp=Tx, T':=TyTy---T;, t€(0,1), (6)
where (T!} | are defined by

Thx:=(1-8)x+ 8Ty, i=1,..,N, Thy := (I — @;0F)y. (7)

Takahashi [26] introduced a W-mapping, generated by Ty, Tk-1, ..., T1 and real numbers v, v¢_1,...,v1 as
follows:

Ui =1,
U = viTiUgper + (1 = vi)l,
U -1 = Vie1 Tia Upp + (1 = ve)l,

Uiz = voTolUys + (1 =),
Wi = Uk,l = V1T1uk,2 + (1 - Vl)l.

o)

Kikkawa and Takahashi [16] proved strong convergence of a sequence {xt};7,, defined by the following
implicititerative scheme: x; = 1 f (x¢) +(1—1) Wixg. In[9], they considered the following strongly convergent
implicit method:

1 1
Six=(1- %)Ux + Ef(x), and Ux= I}im Wix = ]}im U 1x. )

Note that the method (9) contains the limit mapping U, and hence, it is quite difficult to realize.
In [10], Buong and Phuong introducd a mapping Vj, defined by

V=V, Vi=TT*" . T, T=Q1-vw)I+vT,i=12 .k (10)
Buong and Phuong presented the following iterations

x = Vil —orF)xy, Vk2>1, (11)
and

X = 4l — opF)x + (I — ) Vixy, VYk=>1, (12)

where @, and i are the positive parameters, satisfying some additional conditions. The authors [10] proved
the strong convergence theorems for the methods (11) and (12).
We will make use of the following well known results.

Lemma 2.7. Let X be a real Banach space. Then for all u,v € X,

(i) |l +olP* < [JulP® + 2, j(u + ));
(ii) llu+ ol = |lull® + 2(v, j(u)).

Lemma 2.8. ([6, 7]) Let X be a uniformly convex Banach space or a reflexive Banach space satisfying Opial’s
condition, let C be a nonempty closed convex subset of X, and let T : C — C be a nonexpansive mapping with
Fix(T) # 0. Then the mapping I — T is demiclosed on C, where I is the identity mapping; that is, if {x;} is a sequence
of C such that x;, — xand (I — T)xx — y, then I - T)x = y.
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Let LIM be a continuous linear functional on [* and (a1,a,...) € [®. We write LIM;a; instead of
LIM((ay, a3, ...)). LIM is called a Banach limit if LIM satisfies |LIM|| = LIM1 = 1 and LIMay; = LIMyay for
all (a1,az,...) € I*. It is well known that for the Banach limit LIM, the following hold:

(i) forall k > 1, ax < ¢ implies LIMya; < LIMjcy;
(ii) LIMgar+n = LIMga, for any fixed positive integer N;
(iii) liminfi_,e a; < LIMay < limsup,_, . ax for all (aq,a, ...) € I*.

Lemma 2.9. ([32]) Let (a1,az,...) € I°. If LIMyay = 0, then there exists a subsequence {ay,} of {ax} such that ar, — 0
asi — oo,

Lemma 2.10. ([11]) Let C be a nonempty closed convex subset of a real smooth Banach space X. Assume that the
mapping F : C — X is accretive and weakly continuous along segments (that is, F(x + ty) — F(x) as t — 0). Then
the variational inequality

findx" e C: (F(x),j(x—x"))=0, VxeC,
is equivalent to the dual variational inequality

findx"eC: (F(x),j(x—x"))=0, VxeC
Lemma 2.11. ([11]) Let C be a nonempty closed convex subset of a real smooth Banach space X, and let F: C — X
be a mapping.

(i) If F is C-strictly pseudocontractive, then F is Lipschitz continuous with constant 1 + %
(ii) If F is 0-strongly accretive and C-strictly pseudocontractive with 6 + C > 1, then I — F is Lipschitzian with

constant ,/% € (0,1].
(iii) If F is 5-strongly accretive and C-strictly pseudocontractive with 6+ C > 1, then for any fixed number @ € [0, 1),
I — @F is Lipschitzian with constant 1 — ®(1 — /%) € (0,1].

3. Implicit Iterative Methods

In this section, we propose implicit iterative algorithms for solving a general system of variational
inequalities (GSVI) with a hierarchical fixed point problem (HFPP) constraint for an infinite family of
nonexpansive mappings, and derive the strong convergence of the sequences generated by the proposed
algorithms to a unique solution of the HFPP.

The following lemmas and proposition will be used to prove our main results in the sequel.

Lemma 3.1. ([10]) Let C be a nonempty closed convex subset of a strictly convex Banach space X and let {Tj}_, k > 1,

be k nonexpansive self-mappings on C such that the set of common fixed points F := (', Fix(T;) # 0. Let a, b and
vi, 1=1,2,..,k, be real numbers such that 0 < a <v; <b <1, and let V be a mapping, defined by (10) for all k > 1.
Then, Fix(Vy) = F.

Lemma 3.2. ([10]) Let C be a nonempty closed convex subset of a Banach space X and let {T;}:, be an infinite family
of nonexpansive self-mappings on C such that the set of common fixed points F := (2 Fix(T;) # 0. Let Vi be a
mapping, defined by (10). Then, for each x € Cand i > 1, limy_, V, x exists.

Remark 3.3. (i) We can define the mappings
Vix:= ;}EEL Vixand Vx:= Vix = ]}Lr?o Vix, Vx € C. (13)
(ii) It can be readily seen from the proof of Lemma 3.2 that if D is a nonempty and bounded subset of C, then the
following holds:
limsup [[Vix - Vixl|=0, Vi>1.

= xeD
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Lemma 3.4. ([10]) Let C be a nonempty closed convex subset of a strictly convex Banach space X and let {T;}?°, be an
infinite family of nonexpansive self-mappings on C such that the set of common fixed points F := (24 Fix(T;) # 0.
Then, Fix(V) = F.

Inspired by Lemma 3.4, we present the following proposition.

Proposition 3.5. Let C be a nonempty closed convex subset of a real strictly convex and 2-uniformly smooth Banach
space X. Let I be a sunny nonexpansive retraction from X onto C. Let the mappings A, B : C — X be v-inverse-
strongly accretive and S-inverse-strongly accretive, respectively. Let the mapping G : C — C C X be defined as
G := Ilc(I — @A) (I — gB) where 0 < @ < Z and 0 < ¢ < %. Let {T;}2, be an infinite family of nonexpansive
self-mappings on C such that F := (2, Fix(T;) N GSVI(C, A, B) # 0. Then, Fix(V o G) = F.

Proof. Letp € F. Then it is obvious that Gp = p and V,p = p for all integers i,k > 1 with k > i. So, we have
Vi _Gp = p for all integer i > 1. In particular, we have (V o G)p = VL, Gp and hence F C Fix(V o G). Next, we
prove that Fix(V o G) € . Now, let x € Fix(V o G) and y € . Then,
IVkGx — ViGyll = [V, Gx = VIGyll = [I(1 —v1)(ViGx — ViGy) + v1i(T1ViGx — T1 VEGy)ll
< (1 =w)IIViGx = ViGyll + nIIViGx — ViGyll
= [ViGx - ViGyll < |IVi''Gx — V7 Gyll < IVEGx - ViGyl|
< NIGx = Gyl < llx = I,
which together with ||[(V o G)x — (V o G)yl| = ||x — y|| implies that
VG = VGl = IV Gx = VI Gyll = 1IGx = yll.
Therefore, we have

(1 = v)(VE'Gx = VE'Gy) + vi(TiVE Gx = TV Gyl = IVE Gx = V' Gyl = 1IGx - yll,

for every i > 1. Since X is strictly convex, 0 <v; < 1, and y € ¥, we have Gx — y = T;Vi{'1Gx — T;Vi{'Gy =
T,ViH1Gx — y and Gx — y = Vi{1Gx — Vi{1Gy = Vi}1Gx — y, and hance, Gx = T;Vi{'Gx and Gx = Vi{!Gx for
every i > 1. Consequently, for every i > 1, we have Gx = T;Gx. In particular, when i = 1, we have that
Gx = T;V2,Gx and Gx = V2 Gx. So, it follows that x = (V o G)x = (1 — v1)V2,Gx + v, T1V2,Gx = Gx, which
together with Gx = T;Gx, Vi > 1, implies that for every i > 1, we have x = Tix. [t means thatx € ¥. O

Lemma 3.6. ([25]) Let {x,} and {z,} be bounded sequences in a Banach space X and let {vi} be a sequence in
[0,1] such that 0 < liminfi_,. vy < limsup, . vi < 1. Suppose that x4y = vixx + (1 — vi)zi, Yk > 1, and
limsup,_, . (I1zk+1 = zkll = IXk+1 — ll) < 0. Then limg oo [1zx — x4l| = 0.

Lemma 3.7. ([31]) Let {ax} be a sequence of nonnegative real numbers satisfying
Ape1 < (1 — Sk)ak + el + 6, Vk=>1,

where {S¢}, (i} and {6} satisfy the conditions:

(i) {9¢} € [0,1], Yoy S = oo, or equivalently, [T;2,(1 — 9) =0;
(ii) limsup,_, . 1 <0;
(lll) {6k} C [O, OO), Z;O:l 6k < 00,

Then limy_, ar = 0.

Throughout this paper, we use Z¢ to denote the set of all contractive self-mappings on C. Now, we are
in a position to prove the following main results.
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Theorem 3.8. Let C be a nonempty closed convex subset of a real strictly convex and 2-uniformly smooth Banach
space X. Let I be a sunny nonexpansive retraction from X onto C. Let the mappings A, B : C — X be v-inverse-
strongly accretive and S-inverse-strongly accretive, respectively. Let f € Ec with coefficient p € (0,1), and F : C — X
be 6- strongly accretive and C-strictly pseudocontractive with 6 + C > 1. Assume that @ € (0, 3] and o € (0 51
where x is the 2-uniformly smooth constant of X. Let {T;};2, be an infinite family of nonexpansive self-mappings on
C. Let {Vi}}2, be defined by (10). Let {x};>, be generated in the implicit manner

Xk = ka(xk) + (1 - Lk)nc(l - chF)anc(I - (DA)Hc(I - QB)Xk, Yk > 1, (14)

where {oly?, < [0,1) and {y}2, € (0,1) such that limy e 1 = 0, limgeo @k/tx = 0. Then F := Nigq Fix(T7) N
GSVI(C, A, B) # 0 if and only if {xi};?, is bounded, and in this case, {x};>, converges as k — oo strongly to an
element of . In addition, if we define Q : Ec — F by

Q(f) :=s— ]}i_)r?oxk, VfeZc,
then Q(f) solves the following VI
(I =HQUN, JQ) —x) <0, VfeEcxeT. (15)

In particular, if f = u € C is a constant, then the above mapping Q : Ec — F reduces to the sunny nonexpansive
retraction of Reich from C onto T,

Q) —u, j(Qu) —x) <0, YueCxe¥.

s

Proof. Let the mapping G : C — Cbe defined as G := I1c(I - @A)[1c(I — oB) where 0 < @ < 5 and 0 < g < %
In terms of Lemma 2.5 we know that G is a nonexpansive mapping on C. Then, the implicit iterative scheme
(14) can be rewritten as

Xk = ka(xk) + (1 = y)Ic(I — ok F)ViGxy, Vk=>1. (16)

Consider the mapping Uix = 4 f(x) + (1 — y)1c(I — @kF)ViGx, ¥Yx € C. From Lemma 2.11, it follows that for
eachx,y € C,

IUkx = Uiyl = lue(f(x) = f() + (1 = w)[Tc(I — @xF)ViGx — Ic(I — @xF) Vi Gyl
< ullf ) = fFWIl + (1 = eI — @xF)ViGx — Ic(I — ok F) Vi Gyl
< upllx =yl + (1 = wll(I — @k F)ViGx — (I = @xF) Vi Gyl
< upllx = yll + (1 = w)( — @)V Gx — Vi Gyl
< gepllx = yll + (1 = w)llx = yll
=1 - ul=p)llx - yll,

where 1 =1 — ,/ € [0,1). So, Uy : C — C is contraction. Therefore, the Banach contraction principle

guarantees that Uy has a unique fixed point in C, satisfying (16).
Next, we show that ¥ # 0 if and only if {x;};?, is bounded. Indeed, assume ¥ # 0. Take an arbitrarily
given p € . Then we get Vip = p and Gp = p. So, it follows from (16) that for each k > 1,

llxe — pll < Lk||f(xk) =pll + (1 = wlllc( — @kF)ViGxy — pl|
w(lf k) = @I+ Nf ) = pll) + (1 = )T = @cF)ViGxy — He(I = ogF)pll + [TTc(I — @cF)p — pll]
w(pll = pll + 11 () = pll) + A = [l = @kF)ViGxy — (I = @ F)pll + (I — @xF)p — pll]
w(pllxe = pll + 11 f () = pll) + 1 = ) [(1 = @k D)|VkGxx — pll + @kl[F(p)ll]
w(pllxe = pll + 11f(p) = pll) + (1 = ) [(1 = @x7)llxx — pll + @klIF(p)II]
(P”xk =pll+lf () — pll) + (1 = wlllxk — pll + @kllF(P)II]
— (1= p)llxx = pll + wll f(p) — pll + (1 = )axl[F(p)ll
||f(P) pll+ (1 = w1 = p)llxx = pll + @xllF(p)Il,

IA I/\ I/\ I/\ I/\

‘-,-\.\
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which implies that

Wk
Lk

[E()Il
1-p°

1
Il = pll < Tp“f(P) —pll+
Because limy_,., @/t = 0, we deduce that

. 1
lim sup [lxl < llpll + mllf(iﬂ) —pll < eo.

k—oo

This shows that {x(};? | is bounded.

Conversely, assume {xi},?, is bounded. Then {f(x¢)}, {Gxi}, {ViGxi} and {F(VGx)} are bounded. In terms
of (16),

L
X — ViGxy = Tklk( F) = x3) + Te(I = ocF)ViGay — ViGxy, 17)
we obtain

L
Il — ViGxell < —=

I1f (xx) = xxll + ITTc(I — @k F) Vi Gy — VG|

11—
L
< T R) = 3l + I~ ) VicGa — VGl
L
=1 _kLk I1£(xe) = xill + DIF(ViGo)ll,

which together with limy_,« tx = 0, yields

Iym Ixe — ViGxll = 0. (18)

Furthermore, from Remark 3.3 (ii), we deduce that if D is a nonempty and bounded subset of C, then, for
& > 0, there exists ky > i such that for all k > kg

sup [[Vix — Vix| < e. (19)
xeD

Taking D = {Gx : k > 1} and setting i = 1, from (19) we have

IVikGxy — VGxyll < sup [|ViGx — VGxl| < ¢,

xeD
which immediately imply that

%im IViGxx — VGxi|| = 0. (20)

Noticing that ||xx — VGxil| < |lxx — ViGxll + [|[ViGxx — VGxill, from (18) and (20) we get

Lim [lxe = (Vo G)xill = 0. (21)

Now, define g : C — [0, o) by
g(x) = LIMy|lxx — x|>, VxeC,
where LIM is a Banach limit on [®°. Let

K={xeC:g(x) = miélLIMkak -yl
yE
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It is clear that the nonexpansivity of Vi implies the one of V, which together with the one of G, leads to the
one of VG. Also, it is easily seen that K is a nonempty closed convex bounded subset of C. Since (note that
llxe = VGxill — 0)
g(VGx) = LIMy]lxx — VGxl?
= LIMy||VGxy — VGxl?
< LIMillxx = xII? = g(x),
it follows that (V o G)(K) C K; that is, K is invariant under V o G. Since a uniformly smooth Banach space

has the fixed point property for nonexpansive mappings, V o G has a fixed point, say z, in K. By Proposition
3.5, we getz € (Fix)(V o G) = . Since z is also a minimizer of g over C, it follows that for f € (0,1) and x € C,

g FEHIED =9 g Nl =2) e =P ~ oy lP

The uniform smoothness of X implies that the duality map j(-) is norm-to-norm uniformly continuous on
bounded sets of X. Letting t — 0, we find that the two limits above can be interchanged and obtain

LIM(x =z, j(xy —2)) <0, VxeC (22)
Since xx — z = 4 (f(xx) — z) + (1 — ) (I1c( — @F) Vi Gxy — z), we have

Il = 2l = u f (k) = z, jxx = 2)) + (1 =y eI — @kF)ViGay — z, j(x — 2))
< ulf(x) = 2, j(ox — 2)) + (1 = )l Tc(I = @kF) Vi G — 2l — zl|
<l f () — 2, j(o — 2)) + (1 = ) (eI = @kF) Vi Gy — T (I — @xF)zll + (I — @xF)z — zl|)llxx — zl|
< u{f () =z, j0ox — 2)) + (1 = (I = @k F)ViGoxy — (I = @k F)zll + I(I = @k F)z — zl|)||xx — zl]
< ulf(x) =z, j0 = 2)) + (1 = ) (1 = DIV Gy — zl| + @l F(2)I)llxx — |
< uf () =z, 0k = 2)) + (1 = w)(llxx — zll + @klIF @) IDIlxx — zll
< il f(xx) = z, jlx — 2)) + (1 = )l — zI* + @lIF@)Ixe — .

Hence,

e =21 < <fx) = 2, xk = 2)) + PGl = 2]
‘ o (23)
= () =, (i = 2)) + € = 2, = 2) + TEE@lke = 2l

So by (22), forx € C,

LIM|lxy — z||> < LIMy(f (i) — x, j(xx — 2)) + LIMydx — z, j(x — 2))
< LIMi(f (xx) — x, j(oxx — 2))
< LIM||f (xk) — xlllloek — 2zl

In particular,

LIM i — 21> < LIMgl f () = f @)l = 211 < pllx — 21
thus,

LIMllx — zI* = 0,

and there exists a subsequence which is denoted by {xy,} such that x;, — zasi — co.
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Now, assume that there exists another subsequence {x;,} of {x;} such that x;, — z € Fix(V o G) = ¥ (due
to (21) and Proposition 3.5). It follows from (23) that

Iz -zl < (f(2) -z, j(Z - 2)). (24)
Interchange z and z to obtain
lz - zI* < {f(2) - Z, j(z — 2)). (25)

Adding up (24) and (25) yields
2z -zl < (f(2) - f(2), jZ—2)) +{Z — 2, j(Z - 2))
<1 +p)lz-zIP

Since p € (0, 1), this implies that Z = z. Therefore, xx — z as k — oo.
Define Q : Ec — ¥ by
Q(f) :=s— ]}im X- (26)

Since xx = y f(xx) + (1 — w)[1c(I — @kF)ViGxy, we have

(I - f)xk = - Lk (xk — ViGxy + Vi Gxy — Hc(I - (DkF)Vkak). (27)

Lk

Hence, forp € F,

. 1- . 1- .
(L= Py (v = p)) = === (xk = VGt ok = ) = — (Vi = TTe(l = xF)Vi G (v = )
< — VG — He(l - oF) VGl —
Lk
1— 4 (28)
< m IVikGxy — (I — @kF) Vi Gallllxe — pll
[0
= L FWGK )l = pll
Because @/ — 0 and xx — Q(f) as k — oo, taking the limit as k — oo in (28), we obtain that
(= ), j(Q(f) —p)) < 0. (29)
If f(x) =u (Yx e (C)is a constant, then
Q) —u, j(Qu) —p)) < 0. (30)

Hence, Q reduces to the sunny nonexpansive retraction from Cto . O

Theorem 3.9. Let C be a nonempty closed convex subset of a real strictly convex and 2-uniformly smooth Banach
space X with weakly sequentially continuous duality mapping j. Let I1c be a sunny nonexpansive retraction from X
onto C. Let the mappings A, B : C — X be v-inverse-strongly accretive and 9-inverse-strongly accretive, respectively.
Let F : C — X be 6-strongly accretive and C-strictly pseudocontractive with 6 + C > 1. Assume that 0 < @ < 5
and 0 < o < 5 where « is the 2-uniformly smooth constant of X. Let {T;}>, be an infinite family of nonexpansive
self-mappings on C such that ¥ := (2, Fix(T;) N GSVI(C, A, B) # 0. Let {V}2, be defined by (10). Let {xy};2, be
generated in the implicit manner

x¢ = (I — aF)Ville( — @A) Ic(I - oB)x, Yk > 1, (1)

where {@}? | € (0,1) such that limy, @k = 0. Then {xi};?, converges in norm, as k — oo, to the unique solution
of the following V1

find¥e ¥ : (F(%),j(x—-%)<0, VYxeF. (32)
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Proof. Let the mapping G : C — Cbe defined as G := I1c(I - @A)IIc(I— oB) where 0 < @ < % and 0 < o < 5.
Note that G is a nonexpansive mapping on C. Then, the implicit iterative scheme (31) can be rewritten as

xx = Ic(I — okF)ViGxy, Vk=>1. (33)

Consider the mapping Uyx = I1c(I — @k F)ViGx, Vx € C. By Proposition 2.4 and Lemma 8, we know that
IIc(I = @A) and I1c(I — pB) are nonexpansive, and I — @kF is contractive with coefficient 1 — (1 — /%)
Hence,

IUix = Uiyl < (I = @kF)ViGx = (I = ok F)ViGyll < (1 = a1)llx = yll,

forallx,y € C, wheret=1- , /% This means that U, is a contraction. Therefore, the Banach contraction

principle guarantees that Uy has a unique fixed point in C, which we denote by x;. This shows that the
implicit scheme (33) is well defined.

Now, we show that {x,},?, isbounded. As a matter of fact, take an arbitrarily givenp € F. Then Vip = p
and Gp = p. So, it follows from (33) and Lemma 2.11 that

llxx = pll = I111c(I = @kF)ViGxy — (I — @xF)p + Ic(I — @k F)p — pl|
< Wc(I = @xF)ViGxy — (I — axF)pll + IIc(I — @cF)p = pll
< |I(I = @kF)ViGxy — (I = ok F)pll + [I(I = @cF)p - pll
< (1 = ax)lIViGxy — pll + axlIF(p)|l
< (1= @kD)lxk = pll + @cllFP)II,

where 7t =1 — /% Thus, it immediately follows that

1
Il = pll < ZIE@I

Therefore, {xk}]‘:‘;1 is bounded and so are the sequences {ka};‘;l, {Vkak}]‘;‘;1 and {F (Vkak)}]‘:‘;l. Furthermore,

by the nonexpansivity of V; and G, we know that VG : C — C is nonexpansive. Thus,

llxe = ViGall = (I = @kF) ViGay = ViGill < @rllF(ViGxi) — 0
as k — co. That is,

lim [lxi = ViGxill = 0. (34)
Repeating the same arguments as those of (20) in the proof of Theorem 3.8, we have

%1_1)1010 [IViGxx — VGxy|| = 0.
Noticing that [|xx — VGxil| < |lxx = ViGxll + [|[ViGxx — VGxyll, from (34) we get

Lim i = (Vo Gl = 0. 35)
We can rewrite (33) as

xx = Ic(I — @kF)ViGxx — (I — @kF)ViGxy + (I — @k F) Vi Gxk.
for any p € ¥ C C, by Lemma 2.2(iii), we have

(xp = (I = @k F)VieGx, j(xi — p)) = (T — @cF) VG — (I — @k F) VieGx, j(Ic(I — @kF) VG — p)) < 0.
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According to this fact, we deduce that

llx = plIP = (i = p, (e = p))
= (xx — (I = &cF)VkGxy, j(xk — p)) + (I — @kF)ViGxy — p, j(xx — p))
<A = &k F)ViGxx — p, j(xk = p))
= (I = &kF)ViGxy — (I = @kF)p, j(xk — p)) — ox(F(p), j(xk — p))
< (1 = & 0)IViGxy = pllllxk — pll = @(F(p), j(xx — p))
< (1= @1)llxe = pI* = @K(Ep), j(xi — p))-

It turns out that
1 .
ke = pI* < —(F(p), jp = x0)),  ¥peF. (36)

Since X is reflexive and {x},?, is bounded, there exists a subsequence {x;,} of {x;} such that x;, = ¥ € C.
Noticing (35), we can use Lemma 2.8 to get ¥ € Fix(V o G) = ¥. Therefore, we can substitute % for p in (36)

to get
N 1o e
[l = I < —(F®),j¥—x), Vpef, (37)
which together with the weakly sequential continuity of j implies that
lim ||x, — %|| = 0.
We also show that % solves the VI (32). From (33), we have

X = HC(I - chF)Vkak - (I - chF)Vkak + (I - chF)Vkak
= Xk = nc(l — chF)Vkak — (I — (DkF)VkGXk — ((I - chF)xk — (I — (DkF)VkGXk) + X — chF(xk)

1
= F(xk) = (D—k[l‘lc(l - chP)Vkak - (I - chF)Vkak - ((I - chF)xk - (I - chF)Vkak)].

For any z € ¥, utilizing the nonexpansivity of V;G, we obtain that
Xk = ViGxy, j(ux = 2)) = (I = ViG)xx — (I = ViG)z, j(xx — 2)) 2 0,
and hence,

(Fx), jori - 2)) < —(Dik«f — )i — (I — xF)ViGxg, jxi — 2))

= —(Dik(xk — ViGxy, j(xx — 2)) + (F(xx) — F(ViGxy), j(xk — 2))
< (F(xx) = F(ViGxy), j(xi — 2))-
Therefore,
(F(xi), joxx = 2)) < (F(xx) = F(VieGy), j(x = 2))- (38)
Since F is 0-strongly accretive, we have
0 < 8l — 2l < (F(xi) = F(2), j(xx = 2))-
It follows that

(F(2), jxx = 2) < (F(xp), j(xk = 2))- (39)
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Combining (38) and (39), we get
(F(z2), j(o = z) < (F(xx) — F(ViGx), j(xx — 2))- (40)

Now, replacing k in (40) with k; and i — oo, noticing that x;, — % and x, — V,Gxy, — 0 (due to (34)) asi — oo,
we derive

(F(z),j(x—2z))<0, VYzeF,
which is equivalent to its dual variational inequality (due to Lemma 2.10)
(F(x),j(x-2)<0, VYVzefF. (41)

That is, ¥ € ¥ is a solution of VI (32). Now, we show that the solution set of VI (32) is a singleton. As a
matter of fact, we assume that ¥ € ¥ is another solution of VI (32). Then, we have

(F(%), j(x - %)) < 0.
From (41), we have

(F(®), j(x - %)) < 0.
So,

(F(%), j(x — %)) + (F(%), j(x — X)) < 0.

It follows that 6||% — &||> < 0. Therefore, ¥ = %. In summary, we have shown that each (strong) cluster point

of the sequence {x;};? | (as k — o0) equals to ¥. Therefore, xy — ¥ as k — co. This completes the proof. [

4. Explicit Iterative Methods

In this section, we propose explicit iterative algorithms for solving a general system of variational
inequalities (GSVI) with a hierarchical fixed point problem (HFPP) constraint for an infinite family of
nonexpansive mappings, and derive the strong convergence of the sequences generated by the proposed
algorithms to a unique solution of the HFPP.

Algorithm 4.1. Let C be a nonempty closed convex subset of a real strictly convex and 2-uniformly smooth Banach
space X. Let I be a sunny nonexpansive retraction from X onto C. Let the mappings A, B : C — X be v-inverse-
strongly accretive and S-inverse-strongly accretive, respectively. Let f € Ec with coefficient p € (0,1), and let
F: C — X be 6-strongly accretive and C-strictly pseudocontractive with 6 + C > 1. Assume that @ € (0, ;] and

0 € (0, 5] where « is the 2-uniformly smooth constant of X. Let {T;}, be an infinite family of nonexpansive self-
mappings on C such that ¥ := (2, Fix(T;) N GSVI(C, A, B) # 0. Let {Vi};2, be defined by (10). For an arbitrarily
given z1 € C, let the sequence {z};? | be generated iteratively by

zk+1 = Ok f(z) + (1= S — @cF)Villc(I — @A) Ic(I — 0B)z, Yk =1, (42)
where {@x 2, € [0,1) and {9¢}2, € (0,1) and @, ¢ are two positive numbers.

Theorem 4.2. Assume that

(l) limk_m Sk =0and 2120:1 Sk = 00,
(ll) limk_m CDk/Sk = 0,'
(iii) Yopeq [9%41 — Ol < 00 o7 imyyeo Oi/ g1 = 1;
(1v) Yopeq |@ks1 — @kl < 00 0or imyye0 [@p1 — @kl/Sps1 = 1.
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Then the sequence {zi}}” | generated by scheme (42) converges strongly to X € ¥, where X = Q(f) is given in (26),
provided limy,_c0o(Y ., Vir1)/tn = 0.

Proof. Let the mapping G : C — Cbe defined as G := I1c(I - @A)[1c(I — oB) where 0 < @ < 5 and 0 < g < 3

.
In terms of Lemma 2.5 we know that G is a nonexpansive mapping on C. Then the scheme (42) is rewritten

as
Zkw1 = O f(zk) + (1 = )1 — o F) Vi Gz, Vk=1. (43)

It can be readily seen that [1c(I — @xF) and Vj both are nonexpansive mappings on C. Take an arbitrarily
given p € . Then we have Gp = p and Vip = p for all k > 1. Thus, we deduce that

llzkr1 = pll = I19x(f(zk) — p) + (1 = Sp)(Ic(I — @k F)ViGzy — p)l
< Sllf zx) = pll + (1 = SN Tc(I — @F)ViGzg — pli
< (1 =9I = @xF)ViGzy — (I = axF)pll + (I — @cF)p - pll)
+ llf ) — @I+ NI f (p) —pll)
< Seplizk = pll + Sl f(p) = pll) + (1 = Sx)(llzx = pll + (T = @xF)p — pll)
< (1= 3% = p)llzx = pll + Sl f(p) = pll + @cllE@)Il-

Because limy_,. @/ 9% = 0, we may assume without loss of generality that @y < 9 for all k > 1. Hence, from
(44), we get

lzksr = pll < 1 = 9 = p)llzk — pll + S (lf () — pll + IFE@ID), Yk >1.

By induction, we conclude that

lf () — pll + IF()II
I-p
Therefore, {z;} is bounded, so are the sequences {f(zx)}, Gz}, {V Gz} and {F(VGz)}. Also, from (43), we
have
1zk+1 — ViGzill < ¢l f(zi) — ViGzill + (1 = )T — @k F)ViGzi — Vi Gzl
< Sillf (zx) = ViGzell + (1 = Sl — @k F) Vi Gzi — ViGzil|
= Hllf (zx) = ViGzill + (1 = Sp) @il IF(Vi Gzl
< llf (zx) = ViGzill + orllF(ViGzi)ll,

(44)

llzi — pll < max{|lz; - pll, b Vkx=1. (45)

which together with 9y — 0 and @y — 0, implies that
%1_{{)10 1zxs1 — ViGzil| = 0. (46)

Now, we note that
IHIc(I — @kF)ViGzi1 — Hc(I = @1 F) Vi1 Gzgall £ e — @k F)ViGzi—1 — Hc(I — @kF) Vie1 Gzl
+ (I = @kF)Vi1Gziq — He(I = @1 F) Viea Gzi |l
< |IVkGzg-1 = Vi1 Gziall + ok — @k-1IIF (Vie1 Gz-1) ||
< VllGzko1 = TiGzgall + lok — @p—1IIF (Vi1 Gzg—1)Il.
Simple calculation shows that
Zke1 — 2k = I f(zk) + (1 = ) c(I = @k F)ViGz — -1 f(zk-1) — (1 = 1)1l = @-1F) Vi—1Gzp
= (O — D=1)(f(zk—1) — Hc(I = @k-1F) Vi1 Gzg—r) + Si(f(zk) — f(zk-1))
+ (1 = )1 — @k F)ViGzy — (I — @k F) Vi Gzr_1)
+ (1 =) — @okF)ViGzr1 — Hc(I — @1 F)Vi1Gzr_1),
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which together with the last inequality, implies that

lzk+1 — zll < 19 = Si-alll f(zx-1) — (I — @k-1F) Vi1 Gzp-1ll + Sl f (zk) — f(zx-1)l

+ (1 = Sl = oxF)ViGzi — (I — @ F) ViGzill

+ (1 = Sl — @xF)ViGzi-q — (I = @1 F)Vie1Gzpl|
< 8% = il f (xx—1) = M = @1 F) Vie1 Gzl + Sipllzi — zell

+ (1 = 9)llzk = zk=1ll + I[Tc — @k F) Vi Gzk-1 — (I — @k-1F) Vi1 Gzg—1 ||
< 19k = Sk-1lllf (zk-1) — I = @1 F) Vi1 Gzpa || + Sxpllzie — zi—1 |l

+ (1 = I)llzk — zk-1ll + viellGzr-1 — Tk Gzl + |0k — @1 lIIF(Vi-1 Gzl
< Bk = Sral(lf @Dl + Vi1 Gziall + [IF(Vic1 Gzi-)I) + Skpllzie — zi-1 |l

+ (1 =)z — zk=1ll + vi(IGzg—1ll + I Tk Gzg-1ll) + |@k — @k-1IF(Vi—1GzZg—1)
< Ok = S IM + Sepllzi — z—1ll + (1 = Sp)llzk — zk—1ll + viM + |0k — @1 |M
= (1= 3% = p)llzk = zk-1ll + M(I9x = -1l + @k — @p-1]) + viM,

where sup, {Ilf(zo)ll + IViGzill + [IF(VikGzi)ll + |Gzkl| + | Tie+1Gzill} < M for some M > 0. So, utilizing Lemma
3.7, we obtain that

Lim [[zie1 = zidl = 0.
This together with (46) implies that

%im llzx = ViGzil| = 0.

From (19) in the proof of Theorem 3.8, we deduce that for any nonempty and bounded subset D of C,

lim sup [|Vix — Vx| = 0.

k—c vep
Taking D = {Gz; : k > 1}, we have

IVkGzi — VGzil| < sup [Vix — VIl and  ||V,,Gzx — VGzill < sup |[Vux = Vx|,  Vk,n > 1.

xeD xeD
So, it follows that
I}im IViGziy — VGzi| =0 and 1im ||V,,Gzy — VGz|| =0, Vk>1. (47)
—00 n—oo

Noticing that ||z — VGzil| < ||z — ViGzill + Vi Gz — VGzill, we get

Iym llze = (V 0 G)zil| = 0. (48)

Let us show that

lim sup(% — f(%), j(¥ — z)) < 0, (49)

k—o0

where ¥ = Q(f). Indeed, in terms of (16), we can write
Xn — Zk = Ln(f(xn) = z) + (1 = 1) c(I = @, F)V,Gxyy — 2zg).
Putting

ak(n) = (IVuGzx = zell + @ullF(Vu Gz ID[2lxn — 2zl + 1V Gzic — zill + @ulIF(Vu Gzi)lI],
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and using Lemma 2.7 (i), we obtain

llxn = zel® < (1 = 62 M = @uF)VuGxtn — 2l + 200 f(xn) — 2k, j(tn — 2))
< (1= )2 (I = @uF)V,Gxy — Ic(I = @uF)V, Gzl
+ 1T = @uF)VuGzi — zll)* + 2tn{ f(xn) = X, 00 — 2)) + 2l — 24l
< (1= t)* (s = zill + 1T c(I = @uF)VuGxz — zill)?
+ 20, f(xn) = X, jO0n = i)} + 20l — zil?
< (1= t)*(lxn — zill + IVuGzi — zill + @alF(Vu G2ZI)?
+ 20, f () = X, (X0 — 20)) + 20l — zell?

< (1 - ln)ZHxn - Zk”2 + ak(n) + 21n<f(xn) = Xn, j(xn - Zk)> + 2 lx, — Zk”z-

The last inequality implies that

G = F) 0 = 200 < 31l = 2P + 5. (50)

In terms of (48), we get

. 1 . 1
lim sup =a (1) = lim sup == IV Gzi = zill + @ullF(VaGzolDI2Ibxn = zill + IV Gzic = zill + @ullE(VaGzi)ll]

k—o0 n k—oo n

. 1
< hmsupg(IIVnsz = VGzill + [IVGzi = zill + @ulIF(V,, Gzi) D21 — zll
k—oo n
51
+IVGzi = VGzill + IVGzi — zill + IF(V, Gzi)ll] ®1)

. 1
= limsup>=(IIV Gzi = VGzill + @ullF(Va Gzl 211 — 2l
n

k—o0

+[[ViGzi — VGzil + [IF(V Gzo)lI]-

Since forp € F,

VG = VG2l < ) IVia Gz = ViGa

I=n

< )" @vinllGzi = pl)
I=n

(o]
< 2llze = pll) Sviea,

I=n

we conclude from (51) that

. 1 . 1
lim Supz—ﬂk(”) < lim Supf(”VnGZk = VGzill + @ullF(V Gzi) ) [2l1xn — zll

fk—o00 n k—o00 n

+ IV Gzi — VGzil| + [I[F(Vu Gzi)ll]

. 1 -
< lim sup 5— (2|2, - Pllzvm + @ullF(V,Gze)lD[2l1x, — pll
n

k—oo p—

+ 2|z = pll + [V Gzi = VGzil + [[E(V Gze)ll]

1 v )
< Z(;WH + @n)Mg,
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where supk,n21{2||x,, —pll + 2llzx = pll + IVuGzr — VGzil| + [IF(V,Gzi)ll} £ My for some My > 0. So, it follows
from (50) that

. . Iy 1
lim sup(x, — fxn), 0o = 20)) < M + Z(va + @p)M2. (52)

k—o0 I=n

Since limy—e0(X 5o, Vk+1)/tn = 0 and lim,,—,co @ /1y = 0 (see the assumptions on the parameter sequences of
Theorem 3.8, taking the lim sup as n — oo in (52) and noticing the fact that the two limits are interchangeable
due to the fact that the duality map | is norm-to-norm uniformly continuous on bounded sets of X, we
obtain (49).

Finally, we show that zy — & as k — co. Indeed, we write

zkr1 — X = S(f(z1) — ) + (1 = )T — okF) Vi Gzy — %),
and apply Lemma 2.7 to get
lIzks1 = FIP < (1= )T — @kF)ViGzi — R + 29k(f(zi) — %, j(zrs1 — %))
< (1= 9)*(lc — @kF)VkGzy — (I — akF) Vi G|
+ eI - @ F)ViGE — 1) + 29k(f (26) — %, j(2ks1 — %))
< (1= 80 (llzx = &Il + 1M = @cF)E = 7N + 29 f () — %, j(2ke1 — F))
< (1= ) (Ilzk — &Il + DlIF@I) + 28k f (k) = f(R), j(zrs1 — %)) + 286 f(®) = %, j(2he1 — )
< (1 = 9)llz = FP + @xlIF@N(2llzx = &l + @xlIF@))
+ 29pllzi — Xllllziar — X + 29 f (%) — X, j(zke1 — X))
< (1= 80 llzi — 7P + @l FE)IIQIz — & + IF@))
+ pOilllzi = R + llzks1 = XI%) + 28k f(X) = %, j(zrs1 — ).
It then follows that

1-@2-p)%+ 9 % @
R kil _ 2 k[ Okyirs s = N e e
llzk1 — X117 < = por llzi = 21 + 7= pSk[Sk”F(x)”(z”Zk X[+ [IF@I) + 2(f (%) = %, j(zka — %))]
3 2(1 - p) S e 2= p)d 1 @, . 5
=(1-—= 0% Nz = 2™+ —— oS 20-p) [ S IFGN(2llzx — Xl + [IF®)I)

+ Sllzx — %P + 2(f (%) — &, j(zker — D).
Put S, = 0% ond

1*P8k
~ 1 (o) ~ s 5 o e .
I = 21-p) [ S IE@)IQ2llze — Xl + IFE) + Sllze — %7 + 2(f(X) — %, j(zks1 — D))]-
It follows that
lzksr — %I < (1= Sz — &I + il (53)

Observe that
lim sup(f (%) — %, j(zk+1 — %)) = lim sup((f(X) — &, j(zx — X)) + (f(¥) — X, j(zx41 — X) — j(zx — X)))

k—o0 k—o0

= lim sup(f(%) - %, j(zx — %)) <0

k—o0

due to (49). It is easily seen from conditions (i), (ii) that

S —( ng =o0 and limsupi <0.
k=1 k—o00

Finally, apply Lemma 3.7 to (53) to conclude that zy — fask — co. [
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Algorithm 4.3. Let C be a nonempty closed convex subset of a real strictly convex and 2-uniformly smooth Banach
space X with weakly sequentially continuous duality mapping j. Let I1c be a sunny nonexpansive retraction from X
onto C. Let the mappings A, B : C — X be v-inverse-strongly accretive and S-inverse-strongly accretive, respectively.
Let F : C — X be 6-strongly accretive and C-strictly pseudocontractive with 6 + C > 1. Assume that 0 < @ < 5

and 0 < ¢ < % where « is the 2-uniformly smooth constant of X. Let {T;}, be an infinite family of nonexpanszve
self-mappings on C such that ¥ := (2, Fix(T;) N GSVI(C,A,B) # 0. Let {Vi}}2, be defined by (10). For an
arbitrarily given z; € C, let the sequence {z};? | be generated iteratively by

Zke1 = Sizk + (1= )l = ok F)Villc(I = @A) Ic(I - 0B)zr, Vk>1, (54)
where {@k};2, and {9} | are two sequences in [0, 1] and @, g are two positive numbers.

Theorem 4.4. Assume that the sequences {@y};” | and {9} satisfy the following conditions:
(i) limgeo @k = 0and Y12 @ =
(i) 0 <liminfi_,o 9 < limsup, Sk <1

Then the sequence {z};? | defined by (54) converges strongly to the unique solution X € F of VI (32).

Proof. Let the mapping G : C — Cbe defined as G := I1c(I-@A)I1c(I-¢B), where 0 < @ < % and 0 < o < 5.
In terms of Lemma 2.5 we know that G is a nonexpansive mapping on C. Take an arbitrarily givenp € ¥.
Then Gp =p and Vip = p for allk > 1. By Lemma 2.11, we have

lzkr1 — pll = 19 (zk — p) + (1 = ) (Ic(I — @kF)Vi Gz — p)ll
< Sllzk = pll + (1 = S — @kF) Vi Gzi — pll
= Illzx = pll + (1 = S — @k F)ViGzx — (I — @xF)p + (I — axF)p — pll
< Sillzx = pll + (1 = ST — @xF)ViGzi — (I — @i F)pll + I — @k F)p — pll]
< Sllze = pll + (1 = S = @x1)llzi — pll + @klIF(p)II]
IF(p)Il
T

= (1 -1 = d)a)llze — pll + (1 = )@yt

wheret =1 - /% By induction, we deduce that

IE(p)II
llzx — pll < max{llz1 - pll, ﬂ L, Vk>1

Therefore, {z};7, is bounded. Hence, {Gz}2,, {VikGzl 2, and {F(ViGz)};2, are also bounded. Now, set
g = [c(I — @k F) Vi Gz for all k > 1,then z1 = Sz + (1 — Sk)vk forall k > 1 Hence it follows that
[ok+1 = Okl = (I = @41 F) Vi1 Gziar — el — @k F) ViGzl|
< NI = @r41F) Vi1 Gz — (I = 0k F) Vi Gzl
= IVir1Gzia1 — ViGzi — @1 F(Vi1 Gzia1) + @k F(ViGze)|
< WViks1Gzrar = ViGzill + @kr1[IF(Vir1 Gzl + @kl IF(VieGzy )|
S WWVikt1Gzrsr = Vi1 Gzell + (Vi1 Gz — ViGzill + @1 IF(Vir1 Gzl + @il [F(ViGzi)||
< zkr1 = zell + Vi1l Ter1 Gz — Gzill + @k IF(Vier1 Gzien)Il + @klIF(ViGzi)ll,

which together with vy — 0, @y — 0 and the boundedness of {Gz}, {Ti+1Gzr} and {F(ViGz)} implies that

lim sup(|[vie1 — Okl = llzier1 — zll) < 0.

k—o0

So, by Lemma 3.6 we get

lim |[ox —z¢|]| = 0
k— 00
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Consequently,

lim [|zx41 — z¢ll = lim (1 = Sg)llog — || = 0.
k—oo k—o0

At the same time, we note that
lox = VkGzill = I1c(I — @kF)ViGzy — Vi Gzl
< I = @k F) Vi Gz — Vi Gzl
= oi|[F(ViGzp)|| » 0 ask — co.

It follows from ||vx — zx|| — O that

%im ||Zk - VkGZkH =0.

Repeating the same arguments as those of (20) in the proof of Theorem 3.8, we have

%im ||VkGZk - VGZk” =0.

Noticing that ||z — VGzil| < ||lzx = ViGzill + Vi Gz — VGzill, we get
%im llze = (V 0 G)zl| = 0. (55)

It is clear that, V is a nonexpansive self-mapping on C because V} is a nonexpansive self-mapping on C
for all k > 1. Taking into account vy = Ilc(I — @xF)ViGz for all k > 1, from Lemma 2.5 and (55) we have
llox = VGuill < llox — zill + [z = VGzill + [V Gz — VG|
< ok = zill + llzk = VGzill + llzk = il (56)
= 2llox — zill + llzx = VGzll = 0 ask — co.

Next, we show that

lim sup(F (%), j(¥ — vx)) < 0, (57)

k—oo

where % € ¥ is the unique solution of VI (32).
To see this, we choose a subsequence {vy,} of {vx} such that

lim sup(F(%), j(X — vx)) = Um(F(%), j(¥ — vg,))-
k— o0 1—00
We may also assume that vy, — z € C. Note that z € Fix(V o G) = ¥ in terms of Propositions 2.4 and 3.5 and
(56). Therefore, it follows from VI (32) and the weakly sequential continuity of | that
lim sup(F(®), j(% — o)) = Hm(E®), j(% - o)) = (F®), j(% - 2)) < 0.
koo i
Since vy = I1c(I — @ F)VGz; for all k > 1, according to Lemma 2.2 (iii), we have
(I — @xF)Vi Gz — I1c(I — @k F) Vi Gz, ](f — )y <0. (58)
From (58), we have
llog — %I? = (I - @cF)ViGz — X, j(o — %))
=(Ilc(I — LDkF)VkGZk — (I — LDkF)VkGZk, j(vk — )?)> +{(I — okF)V Gz — %, j(Z)k — f))
<A(I = &kF)ViGzy — %, j(v — X))
= — &cF)ViGzk — (I — @kF)X, j(vx — %)) + (I — @kF)X — X, j(v — X))
< (1 = @x0)lizk — ok — Xl + @k(F(X), j(X — vr))
L (L)

1 .
< C22 s+ e~ P + 0dF @), 6 - 0.
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It follows that

llox = FP < (1 = @k7)llze = &I + 201(F(F), (% — v0))

2 N e (59)
< (1= @x)llzk — &I° + 20k (F(%), j(& — 0r))-
Finally, we prove that z; — ¥ as k — 0. Indeed, from (54) and (59), we find that
llzk1 — &> < Sillzx — I + (1 = Sp)llox — &I
< Opllzk = &I + (1 = 9 — @0)llzi — &P + 2@4(1 — Sp)(F(X), j(X — i) (60)

= [1 - @41 = 99yt~ 7 + @1 = S0P, (% - 00).

We apply Lemma 3.7 to the relation (60) and conclude that zx — % as k — co. This completes the proof. 0O
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