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Painlevé σ-Equations s1, s2, s4 and Their Value Distribution
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Abstract. Local solutions of Painlevé equations P1, P2, P4, as well as of the equations S1, S2, S4 satisfied
by their Hamiltonians, can be extended to functions meromorphic in C. This way they become a point of
interest for value distribution theory. Distribution of values of solutions of P1, P2 and P4 is already well
described. In the paper we discuss mostly S1, S2 and S4 in this context. In particular, we pay attention to
deficient, asymptotic and ramified values of solutions of these equations.

1. Introduction

Value distribution and growth properties of meromorphic solutions of the main Painlevé equations are
quite well recognized. The Painlevé σ-equations are the second order differential equations fulfilled by the
Hamiltonians of Painlevé equations [6, 19]. In this paper we concentrate on the equations S1,S2, and S4
related to the first, second and fourth Painlevé equations, and compare their properties with those of P1,P2
and P4.

One of the prominent features of the Painlevé equations is the possibility to represent them as a Hamil-
tonian system

dq
dz

=
∂H
∂p
,

dp
dz

= −
∂H
∂q

with polynomial or rational Hamiltonians [15, 18]. The first Painlevé equation

P1 : f ′′ = 6 f 2 + z

can be represented as a Hamiltonian system with the Hamiltonian

H1(p, q, z) =
1
2

p2
− 2q3

− zq

and q′ = p

p′ = 6q2 + z
, (1)
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where q fulfills P1. If we put

σ1(z) := H1(p, q, z), (2)

then {
q = −σ′1
p = −σ′′1

,

and the function σ1 fulfills the second order equation

S1 : (σ′′)2 + 4(σ′)3 + 2zσ′ − 2σ = 0.

Conversely, if σ solves S1, then q = −σ′, p = −σ′′ solve (1).
The second Painlevé equation

P2(α) : f ′′ = 2 f 3 + z f + α,

where α is a fixed complex parameter, can be represented with the Hamiltonian

H2(p, q, z) :=
1
2

p2
− (q2 +

1
2

z)p − (α +
1
2

)q.

Here 
q′ = p − q2

−
1
2

z

p′ = 2qp + α +
1
2

.

Then q satisfies P2 and p satisfies the equation

f f ′′ =
1
2

( f ′)2 + 2 f 3
− z f 2

−
1
2

(α +
1
2

)2,

known as P34. The function defined as

σ2(z) := H2(p, q, z). (3)

is then a solution of the equation

S2(α) : (σ′′)2 + 4(σ′)3 + 2σ′(zσ′ − σ) =
1
4

(α +
1
2

)2,

where α is a complex parameter. Conversely, if σ is a solution of S2, thenq =
4σ′′ + 2α + 1

8σ′
,

p = −2σ′,

are solutions of P2 and P34, respectively [19].
The fourth Painlevé equation is

P4(α, β) : f ′′ =
f ′2

2 f
+

3 f 3

2
+ 4z f 2 + 2(z2

− α) f +
β

f
,

where α, β are arbitrary complex parameters. If we represent P4 as a Hamiltonian system with the
Hamiltonian

H4(p, q, z) := 2qp2
− (q2 + 2zq + 2θ0)p + θ∞q,
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we getq′ = 4qp − q2
− 2zq − 2θ0,

p′ = −2p2 + 2qp + 2zp − θ∞
.

Thus, eliminating p in the system we obtain that q satisfies P4(α, β) with α = 1− θ0 + 2θ∞, β = −2θ2
0, and by

eliminating q we obtain, that −2p satisfies P4(α, β) with α = 2θ0 − θ∞ − 1, β = −2θ2
∞. The function

σ4(z) := H4(p, q, z) (4)

satisfies the equation

S4(θ0, θ∞) : (σ′′)2
− 4(zσ′ − σ)2 + 4σ′(σ′ + 2θ0)(σ′ + 2θ∞) = 0,

and conversely, if σ is a solution of S4, then

q =
σ′′ − 2zσ′ + 2σ

2(σ′ + 2θ∞)
, p =

σ′′ + 2zσ′ − 2σ
4(σ′ + 2θ0)

are solutions of the Hamiltonian system for P4 [19].

2. Value distribution and σ-equations

We apply the following notations standard in value distribution theory [10, 14]. By N(r, f ) and N(r, f )
we denote Nevanlinna’s integrated functions counting poles of a meromorphic function f . Then

N(r, a, f ) := N(r,
1

f − a
), N(r, a, f ) := N(r,

1
f − a

)

count a-points with, and without multiplicity, respectively. We also put N1(r, a, f ) = N(r, a, f ) − N(r, a, f ).
Next,

m(r, f ) = m(r,∞, f ) and m(r, a, f ) := m(r,
1

f − a
)

denote mean proximity functions, T(r, f ) the characteristic function.
We define δ(a, f ), the deficiency of f at a value a ∈ C, by the formula

δ(a, f ) = lim inf
r→∞

m(r, a, f )
T(r, f )

= 1 − lim sup
r→∞

N(r, a, f )
T(r, f )

and ϑ(a, f ), the index of multiplicity of a value a, by the formula

ϑ(a, f ) = lim inf
r→∞

N1(r, a, f )
T(r, f )

.

If δ(a, f ) > 0, then we say that the value a is deficient (in the sense of Nevanlinna), and if ϑ(a, f ) > 0 we
call a a ramified value of f . Let us remind that it follows from the first and the second main theorems
of Nevanlinna that the set of deficient values of a meromorphic function f is at most countable and the
following relations are true:

0 ≤ δ(a, f ) + ϑ(a, f ) ≤ 1,∑
a∈C

(δ(a, f ) + ϑ(a, f )) ≤ 2.

The order and the lower order of a meromorphic function f are defined by

%( f ) := lim sup
r→∞

log T(r, f )
log r

, µ( f ) := lim inf
r→∞

log T(r, f )
log r

.

If %( f ) = µ( f ) then f is called a function of regular growth.
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2.1. Main results
Since 1913–14 and the papers of Boutroux it has been known that the solutions of P1 are transcendental

meromorphic functions of regular growth, of finite growth order %( f ) = 5/2. The rigorous proofs were given
by Steinmetz in 2002 [29] and, independently, by Shimomura in 2001 [23] and in 2003 [24]. Thus P1 does not
admit rational solutions. Moreover, the solutions do not have values deficient in the sense of Nevanlinna
[22] or even in the sense of Petrenko [3].

The following result holds for solutions of S1.

Theorem 2.1. The solutions of S1 are transcendental meromorphic functions of finite order %(σ) = 5
2 . Moreover,

m(r, σ) = O(log r) (r→∞)

and for all a ∈ C,

m(r, a, σ) = O(log r) (r→∞).

Thus for all a ∈ C, the deficiency δ(a, σ) = 0 and no value is deficient.

Theorem 2.1 means, in particular, that S1 does not admit entire solutions.
Solutions of P2 and P4 are meromorphic functions, for recent proofs see: Hinkkanen and Laine in [11]

or Steinmetz in [28]. Steinmetz in [29] and Shimomura in [23, 24] also proved that solutions of P2 are of
order %( f ) ≤ 3 and solutions of P4, of %( f ) ≤ 4, while the respective lower bounds for the order of growth
of transcendental solutions %( f ) ≥ 3/2 and %( f ) ≥ 2 were shown by Hinkkanen and Laine in [12] and
independently, by Shimomura in [25] and by Steinmetz in [30] (for an overview see also: [32]). It follows
from the relationship with P2 that the solutions of P34 are also meromorphic and of finite order of growth
%( f ) ≤ 3 [2]. Apart from solutions of order 3, equation P2 may admit rational solutions and solutions of
order 3/2 for some values of the parameter of the equation, hence the same applies to solutions of P34.
The estimates of deficiencies for transcendental solutions of P2 were given by Schubart in 1956 [21] and by
Schubart and Wittich in 1957 [22]. For a solution f of P2(α) with α , 0,we have δ(a, f ) = 0 for every value a.
In case of P2(0), the same holds both for all non-zero values and for the value zero, which has been recently
shown by Steinmetz [31]. Estimates of deficiencies for P34 were shown by Filipuk and Ciechanowicz in [1].
Now we can formulate the result concerning the σ-function of P2.

Theorem 2.2. The solutions of S2(α) for any fixed α ∈ C are meromorphic functions of finite order %(σ) ≤ 3 fulfilling
the condition

m(r, σ) = O(log r) (r→∞).

If α , − 1
2 , then the condition

m(r, a, σ) = O(log r) (r→∞)

holds for all complex values a. If α = − 1
2 then

m(r, a, σ) = O(log r) (r→∞)

holds for all a , 0. Thus for a transcendental solution σ we have δ(a, σ) = 0 for all a ∈ C if α , − 1
2 , and for all

a ∈ C \ {0} if α = − 1
2 .

It should be mentioned that in [31] Steinmetz proved that δ(0, f ) = 0 for transcendental solutions of P2(0),
which means that zero is not a deficient value of a solution of P2(α), regardless of the choice of parameter
α. It seems plausible that the same is true both for solutions of P34 and S2.

Apart from solutions of order 4, equation P4 may admit rational solutions and solutions of order 2
for some values of the parameters. The estimates of deficiencies for transcendental solutions of P4 were
originally given by Steinmetz in 1982 [27]. The following result concerns the σ-form of P4.
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Theorem 2.3. The solutions of S4(θ0, θ∞) are meromorphic functions of finite order %(σ) ≤ 4 fulfilling the condition

m(r, σ) = O(log r) and m(r, a, σ) = O(log r) (r→∞)

for all values a ∈ C \ {0}. Thus if σ is a transcendental solution of S4(θ0, θ∞), then for all non-zero values δ(a, σ) = 0.

Zero may actually be a deficient value in case of certain solutions of S4, which the following example
shows.

Example 2.4. If we consider S4(1, 0) or S4(0, 1) we get the equation

(σ′′)2
− 4(zσ′ − σ)2 + 4σ′2(σ′ + 1) = 0.

This equation is satisfied by solutions of the Riccati equation

σ′ = −(σ2 + 2zσ).

An example of such a solution is σ0(z) =
(
ez2

∫ z

0 e−t2 dt
)−1

.Here the order %(σ0) = 2. Therefore, similarly as in the case
of P4, solutions of S4 of order 2 are possible. Let us also notice that δ(0, σ0) = 1 [14, 27].

The quantity

β(a, f ) = lim inf
r→∞

L(r, a, f )
T(r, f )

is called deviation of a meromorphic function with respect to a ∈ C, where

L(r, a, f ) :=


max
|z|=r

log+
| f (z)| for a = ∞,

max
|z|=r

log+
∣∣∣∣ 1

f (z)−a

∣∣∣∣ for a , ∞.

If β(a, f ) > 0 we say, that a is deficient in the sense of Petrenko. For all a ∈ C the inequality

δ(a, f ) ≤ β(a, f )

follows easily from the respective definitions. Thus for each value deficient in the sense of Nevanlinna also
β(a, f ) > 0. For meromorphic functions of finite lower order we have upper bounds of deviations similar to
the deficiency relations following from the first and second main theorems of Nevanlinna. Namely, it was
proved by Petrenko in [20] that for a function f of finite lower order µ,

β(a, f ) ≤ B(µ) :=
{ πµ

sinπµ if µ ≤ 0.5 ,
πµ if µ > 0.5

and the set of deficient values in this sense is at most countable. Marchenko and Shcherba in [17] proved
that ∑

a∈C

β(a, f ) ≤ 2B(µ).

Both estimates are sharp. In general, the sets of deficient values in the sense of Nevanlinna and in the sense
of Petrenko may differ even in case of functions of finite order and of regular growth.

A value a ∈ C is an asymptotic value of a meromorphic function f if there exists a continuous curve Γ ⊂ C,

Γ : z = z(t), 0 ≤ t < ∞, z(t)→∞ for t→∞,
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such that

lim
z→∞,z∈Γ

f (z) = lim
t→∞

f (z(t)) = a.

We call such a pair {a,Γ} an asymptotic spot of f . Two asymptotic spots {a1,Γ1} and {a2,Γ2} are considered
equal if a1 = a2 = a and there exists a sequence of continuous curves γk with one end of each γk belonging
to Γ1 and the other to Γ2, and

lim
k→∞

min
z∈γk
|z| = ∞, lim

z→∞,z∈
⋃

k γk

f (z) = a.

By the Denjoy-Carleman-Ahlfors theorem [8], an entire function of finite lower order λ cannot have more
than max{[2λ], 1} different asymptotic spots. Similar estimates have been formulated with respect to
asymptotic functions, in attempt to prove so-called Denjoy conjecture (see: [7, 26]). The number of
asymptotic values of an entire function of infinite lower order or a meromorphic function even of finite
order may be infinite.

Among asymptotic values we can distinguish those, for which the function moves along the curve
towards the value a with a fixed higher speed, for instance comparable with characteristic T(r, f ). We say
that a ∈ C is an α0−strong asymptotic value of a meromorphic function f , if there exists a continuous curve
Γ : z = z(t), 0 ≤ t < ∞, z(t)→∞ as t→∞, such, that

lim inf
t→∞

log | f (z(t)) − a|−1

T(|z(t)|, f )
= α(a) ≥ α0 > 0, if a , ∞;

lim inf
t→∞

log | f (z(t))|
T(|z(t)|, f )

≥ α0 > 0, if a = ∞.

If a is an α0-strong asymptotic value of f , then an asymptotic spot {a,Γ} is called an α0- strong asymptotic spot
[16]. It is easy to notice that, if a is an α0-strong asymptotic value of f , then the magnitude of Petrenko’s
deviation β(a, f ) ≥ α0. It means that a is also a deficient value in the sense of Petrenko. Marchenko proved
that the number k of distinct α0-strong asymptotic spots of a meromorphic function of finite lower order λ
is finite and the inequality

k ≤
[

2B(λ)
α0

]
holds (see: [16]). Similar results concerning strong asymptotic functions can be found, for example, in [4, 5].

The next result concerns asymptotic values in case of solutions of P1, P2, P34 and P4.

Theorem 2.5. If f is a solution of Painlevé equation P1 then f does not have any strong asymptotic values. Tran-
scendental solutions of the second Painlevé equation P2(α) do not have strong asymptotic values if α , 0. If α = 0
the solutions of the equation do not have non-zero strong asymptotic values. Transcendental solutions of Painlevé
equation P34(α) do not have strong asymptotic values if α , − 1

2 . If α = − 1
2 the solutions of the equation do not have

non-zero strong asymptotic values. Transcendental solutions of P4(α, β) do not have strong asymptotic values other
that, possibly, zero.

Now we move on to discuss deficient values in the sense of Petrenko and asymptotic values of the
σ-equations. We say that φ : (0,+∞)→ R is S(r, f ) if

φ(r) = o(T(r, f )) (r→∞, r < E),

where E is a set of finite linear measure.

Theorem 2.6. Let σ be a solution of S1. For all values a in C we have

L(r, a, σ) = S(r, σ) (r→∞)

and β(a, σ) = 0.
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Corollary 2.7. The solutions of Painlevé equation S1 do not have strong asymptotic values.

Theorem 2.8. Transcendental solutions of S2(α) fulfill the condition

L(r, σ) = S(r, f ) (r→∞).

Thus β(∞, σ) = 0. Moreover, if α , − 1
2 , for all complex values a, and if α = − 1

2 for all a ∈ C \ {0},

L(r, a, σ) = S(r, f ) and β(a, σ) = 0.

Theorem 2.8 leads to the following conclusion.

Corollary 2.9. Transcendental solutions of Painlevé equation S2(α) do not have strong asymptotic values apart from,
possibly, the value zero when α = − 1

2 .

Similar results can be formulated with respect to S4.

Theorem 2.10. Transcendental solutions of S4(θ0, θ∞) fulfill the condition

L(r, σ) = S(r, f ) (r→∞).

Thus β(∞, σ) = 0. Moreover, for all non-zero complex values a,

L(r, a, σ) = S(r, f ) and β(a, σ) = 0.

Theorem 2.10 leads to the following conclusion.

Corollary 2.11. Transcendental solutions of Painlevé equation S4(θ0, θ∞) do not have strong asymptotic values apart
from, possibly, the value zero.

Zero may actually be a strong asymptotic value of solution of S4, which the following example shows.

Example 2.12. Let us again consider S4(θ0, θ∞) with (θ0, θ∞) = (0, 1) or (θ0, θ∞) = (1, 0), that is the equation

(σ′′)2
− 4(zσ′ − σ)2 + 4σ′2(σ′ − 2) = 0.

We can see that in case of value zero a positive deviation is possible as β(0, σ0) ≥ δ(0, σ0) = 1 for the solution

σ0(z) =
(
ez2

∫ z

0 e−t2 dt
)−1

of this equation. Applying the asymptotics of the function
∫ z

0 e−t2 dt (see: [10, §2.5]), we can
make more accurate computatons and find out that

T(r, σ0) =
r2

π
+ O(1) (r→∞)

L(r, 0, σ0) ∼ r2 (r→∞), β(0, σ0) = π

L(r,∞, σ0) ∼ log r (r→∞), β(∞, σ0) = 0.

It should be mentioned that in case of functions of order 2, the highest possible value of deviation is 2π. It follows from
Theorem 2.10 that

∑
a∈C β(a, σ0) = π, while the extremal value of the sum of deviations for a function of order 2 is 4π.

Moreover, the function has two asymptotic values: the value zero with two separate asymptotic spots {0,Γ1}, {0,Γ2},
where

Γ1 : z(t) = t, t ∈ [0,∞), Γ2 : z(t) = −t, t ∈ [0,∞),

and the value∞ with two asymptotic spots {∞,Γ3}, {∞,Γ4}, where

Γ3 : z(t) = it, t ∈ [0,∞), Γ4 : z(t) = −it, t ∈ [0,∞).

Here 0 is a strong asymptotic value and {0,Γ1}, {0,Γ2} are strong asymptotic spots, while∞ is not strongly asymptotic.
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2.2. Ramification of Hamiltonians

For the estimates of multiplicity indices for P2 see [13], for P34 see [1], and for P4 see [27]. The following
results concerning ramification of values hold for solutions of S1,S2 and S4.

Theorem 2.13. Let σ be a solution of S1. The a-points of σ for a , 0 are at most double and ϑ(a, σ) ≤ 1
2 . The non-zero

zeros of σ are of multiplicity at most 3 and ϑ(0, σ) ≤ 2
3 . The poles of σ are simple with residuum 1 and ϑ(∞, σ) = 0.

Theorem 2.14. Let σ be a solution of S2(α). If α , − 1
2 , the a-points of σ are at most double and ϑ(a, σ) ≤ 1

2 . If
α = − 1

2 , then the multiplicity of non-zero a-points is at most 3 and ϑ(a, σ) ≤ 2
3 . The zeros are simple, so ϑ(0, σ) = 0.

For any choice of the parameter α, the poles of a solution of S2(α) are simple and ϑ(∞, σ) = 0.

Theorem 2.15. Let σ be a solution of S4(θ0, θ∞). The non-zero a-points of σ are at most double and ϑ(a, σ) ≤ 1
2 .

If θ0θ∞ = 0 the zeros of σ are simple, so ϑ(0, σ) = 0. If θ0θ∞ , 0, the multiple zeros are of multiplicity 3 and
ϑ(0, σ) ≤ 2

3 . For any choice of the parameters θ0, θ∞ the poles of a solution of S4(θ0, θ∞) are simple and ϑ(∞, σ) = 0.

3. Proofs of the main results

In order to prove the theorems presented in the previous section we need a few auxiliary results.

3.1. Auxiliaries

We first recall the well-known lemmas of Clunie and of A.Z. Mohon’ko and V.D. Mohon’ko as formulated
in [9, App. B].

Lemma 3.1. Let f be a transcendental meromorphic function of finite order such that

f p+1 = Q(z, f ), p ∈N,

where Q(z,u) is a polynomial in u and its derivatives with meromorphic coefficients bµ (µ ∈ M). If the total degree of
Q(z,u) as a polynomial in u and its derivatives does not exceed p, then

m(r, f ) = O(
∑
µ∈M

m(r, bµ)) + O(log r) (r→∞).

Lemma 3.2. Let F(z,u) be a polynomial in u and its derivatives with meromorphic coefficients bµ (µ ∈ M). Suppose
that f is a transcendental meromorphic function of finite order such that F(z, f ) = 0 and let c ∈ C. If F(z, c) . 0, then

m(r, c, f ) = O(
∑
µ∈M

T(r, bµ)) + O(log r) (r→∞).

The following results concerning deviation are modified versions of the (generalized) lemma on the
logarithmic derivative, Clunie lemma and Mohon’ko-Mohon’ko lemma.

Lemma 3.3. [1] Let f be a meromorphic function. Then, possibly except for r in a set of finite linear measure, for
k = 1, 2, ... we have

L

(
r,∞,

f (k)

f

)
= O(log(rT(r, f ))) , (r→∞),

where f (k) means the k-th derivative of f .
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Lemma 3.4. [1] Let f be a transcendental meromorphic solution of

f nP(z, f ) = Q(z, f ), (5)

where n is a positive integer, P(z, f ), Q(z, f ) are polynomials in f and its derivatives with meromorphic coefficients
aν, bν, respectively, which are small with respect to f in the sense that

L(r,∞, aν) = S(r, f ), L(r,∞, bν) = S(r, f ).

If the total degree d of Q(z, f ) as a polynomial in f and its derivatives is d ≤ n, then

L(r,∞,P(z, f )) = S(r, f ).

Lemma 3.5. [1] Let

P(z, f , f ′, ..., f (n)) = 0 (6)

be an algebraic differential equation (P(z,u0,u1, ...,un) is a polynomial in all arguments) and let f be its transcendental
meromorphic solution. If a constant a does not solve the equation (6), then L(r, a, f ) = S(r, f ) and β(a, f ) = 0.

3.2. Proof of Theorem 2.1
Let σ be a solution of S1. Then q = −σ′, p = −σ′′ fulfill (1), so q is a solution of P1. Thus q is meromorphic,
which means that σ′ and σ′′ are also meromorphic functions. It follows from S1, that

σ =
1
2

(σ′′)2
− 2(σ′)3 + zσ′, (7)

so σ is a sum of meromorphic functions and thus is also meromorphic in C. We know that solutions of P1
are transcendental meormorphic functions of order %( f ) = 5

2 . If f is a solution of P1 then f = −σ′ for a certain
solution σ of the equation S1. It follows that σ′ has to be a transcendental meromorphic function of order
%(σ′) = 5

2 . Since for meromorphic functions the order of the derivative is the same as of the function itself,
we get %(σ) = 5

2 .
Next, from (7) and by basic properties of the mean proximity function,

m(r, σ) ≤ 2m(r, σ′′) + 4m(r, σ′) + O(log r) ≤ 2m(r,
σ′′

σ′
) + 6m(r, σ′) + O(log r).

As m(r, σ′) = m(r, f ) for a certain solution f of P1, it follows that m(r, σ′) = O(log r). Applying the lemma on
the logarithmic derivative to σ′, we get

m(r, σ) = O(log r) (r→∞).

Let us notice now that if a ∈ C \ {0}, then a constant a does not satisfy the equation S1. Thus, by Lemma
3.2,

m(r, a, σ) = O(log r) (r→∞). (8)

Next,

m(r,
1
σ

) ≤ m(r,
σ′

σ
) + m(r,

1
σ′

). (9)

Moreover, −σ′ solves P1 and for a solution f of P1,

m(r,
1
f

) = O(log r) (r→∞),
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which means that also

m(r,
1
σ′

) = O(log r) (r→∞).

Applying the lemma on the logarithmic derivative to (9), we now obtain

m(r, 0, σ) = m(r,
1
σ

) = O(log r) (r→∞). (10)

It follows from (8) and (10) that

m(r, a, σ) = O(log r) (r→∞)

for all a ∈ C, which completes the proof.

3.3. Proof of Theorem 2.2
By the definition (3), each solution of the equation S2(α) can be expressed as a polynomial with rational

coefficients and in variables p, q,where q satisfies P2 and p satisfies P34. Since p, q are meromorphic, σ is also
a meromorphic function. Moreover, by the relationship p = −2σ′ between a solution p of the equation P34
and the derivative of σ we get

%(σ) = %(σ′) = %(p).

We have %(p) ≤ 3 [2], which implies %(σ) ≤ 3.
Next, by (3) again,

m(r, σ) = m(r,
1
2

p2
− (q2 +

1
2

z)p − (α +
1
2

)q),

where p, q are the solutions of P34 and P2, respectively. It follows that

m(r, σ) ≤ 3m(r, q) + 3m(r, p) + O(log r) (r→∞).

Since for solutions of P2 we have m(r, q) = O(log r) and for solutions of P34 also m(r, p) = O(log r), we get

m(r, σ) = O(log r) (r→∞).

Consider now the equation S2(α) with α , − 1
2 . In this case no constant fulfills the equation, so by Lemma

3.2, we get for all a ∈ C

m(r, a, σ) = O(log r) (r→∞). (11)

If α = − 1
2 the equality (11) holds for all non-zero complex numbers, by the same argument, which

completes the proof.

3.4. Proof of Theorem 2.3
By the definition (4), each solution σ of the equation S4(θ0, θ∞) can be represented as

σ = 2qp2
− (q2 + 2zq + 2θ0)p + θ∞q,

where q satisfies P4(α, β) with α = 1−θ0 +2θ∞, β = −2θ2
0, and−2p satisfies P4(α, β) with α = 2θ0−θ∞−1, β =

−2θ2
∞. Since p, q are meromorphic, then σ is also a meromorphic function. Moreover,

T(r, σ) = T(r, 2qp2
− (q2 + 2zq + 2θ0)p + θ∞q)

≤ 5T(r, q) + 3T(r, p) + O(log r)
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As both %(q) ≤ 4 and %(p) ≤ 4, we get %(σ) ≤ 4. Similarly,

m(r, σ) ≤ 5m(r, q) + 3m(r, p) + O(log r).

By known estimates for solutions of P4 we have

m(r, q) = O(log r) and m(r, p) = O(log r),

so we get m(r, σ) = O(log r) (r→∞), and δ(∞, σ) = 0.
Let us now notice that, as a non-zero constant a does not solve S4(θ0, θ∞), by Lemma 3.2 we get for all

a ∈ C \ {0}

m(r, a, σ) = O(log r).

3.5. Proof of Theorem 2.5

Let f be solution of P1. Then, by Theorem 3.16 in [3] we have β(a, f ) = 0 for every value a ∈ C. If a were
to be an α0-strong asymptotic value of f , then β(a, f ) ≥ α0 > 0 - a contradiction. It follows that f does not
have α0- strong asymptotic values for any α0 > 0.

By Theorem 3.3 in [1] and a similar reasoning we obtain conclusions concerning strong asymptotic
values of solutions P2 and P4.

3.6. Proof of Theorem 2.6

Let σ be a solution of S1. By a similar argument as in the proof of Theorem 2.1, since σ fulfills the equation
(7) and by the properties of the function of deviation, we get

L(r, σ) ≤ 2L(r, σ′′) + 4L(r, σ′) + O(log r) ≤ L(r,
σ′′

σ′
) + 6L(r, σ′) + O(log r).

As L(r, σ′) = L(r, f ) for a certain solution f of P1, it follows from Theorem 3.16 in [3] that L(r, σ′) = S(r, σ′).
Applying Lemma 3.3 to σ′ and the fact that S(r, σ′) = S(r, σ), we obtain

L(r, σ) = S(r, σ) (r→∞).

If a ∈ C \ {0}, then a constant a does not fulfill the equation S1. Thus, by Lemma 3.5,

L(r, a, σ) = S(r, σ).

Next,

L(r,
1
σ

) ≤ L(r,
σ′

σ
) +L(r,

1
σ′

).

We apply again Lemma 3.3. Moreover, it follows from Theorem 3.16 in [3] in connection with the fact
that σ′ = − f for a solution f of P1, that

L(r,
1
σ′

) = S(r, σ′) = S(r, σ).

This way we obtain the statement.
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3.7. Proof of Theorem 2.8
By a similar argument as in the proof of Theorem 2.2, since we consider transcendental solutions of the

equation S2(α) and by the properties of the function of deviation, we get

L(r, σ) = L(r,
1
2

p2
− (q2 +

1
2

z)p − (α +
1
2

)q),

where p, q are the solutions of P34 and P2, respectively. It follows that

L(r, σ) ≤ 3L(r, q) + 3L(r, p) + O(log r) (r→∞).

Applying Theorems 3.3 and 3.9 from [1], we get

L(r, σ) = S(r, p) + S(r, q) (r→∞).

By the relationships of σ with p and q, we have

S(r, p) = S(r, σ) and S(r, q) = S(r, σ).

It follows that L(r, σ) = S(r, σ).
If α , − 1

2 then no constant a ∈ C fulfills the equation S2(α). Thus, by Lemma 3.5,

L(r, a, σ) = S(r, σ)

and β(a, σ) = 0. If, on the other hand α = − 1
2 , then the same argument holds for non-zero values, so β(a, σ) = 0

for all a ∈ C \ {0}, which completes the proof.

3.8. Proof of Theorem 2.10
By definition (4), a solution σ of S4(θ0, θ∞) can be represented as

σ = 2qp2
− (q2 + 2zq + 2θ0)p + θ∞q,

where q satisfies P4(α, β) with α = 1−θ0 +2θ∞, β = −2θ2
0, and−2p satisfies P4(α, β) with α = 2θ0−θ∞−1, β =

−2θ2
∞. Applying the properties of the function of deviation, we get

L(r, σ) ≤ 5L(r, q) + 3L(r, p) + O(log r).

As σ is transcendental, applying Theorem 3.3 from [1], we obtain

L(r, σ) = S(r, p) + S(r, q).

It follows from the relationships between p and q with σ that L(r, σ) = S(r, σ).
Let us now notice that, as a non-zero constant a does not solve S4(θ0, θ∞). By Lemma 3.5 we get for all

a ∈ C \ {0}

L(r, a, σ) = S(r, σ).

3.9. Proof of Theorem 2.13
Let z0 be an a-point of a solution σ of S1 (a , ∞). If a , 0, the assumption that σ(z0) = a, σ′(z0) = 0 leads

to the conclusion that (σ′′(z0))2 = 2a. Thus the non-zero a−points of σ are at most double. It follows that

N1(r, a, σ) = N(r, a, σ) −N(r, a, σ) ≤
1
2

N(r, a, σ)

and

ϑ(a, σ) = lim inf
r→∞

N1(r, a, σ)
T(r, σ)

≤
1
2
.
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Assume now that z0 is a zero of σ. Standard computations lead to the Taylor series around z0 of the form

σ(z) = a1(z − z0) +

√
−a1(a2

1 +
z0

2
)(z − z0)2 + (−a2

1 −
z0

6
)(z − z0)3

+(−a1

√
−a1(a2

1 +
z0

2
) −

1
24

)(z − z0)4 +

∞∑
k=5

ak(z − z0)k

with ak depending on z0 and a1.
If we assume that z0 is a multiple zero we get the series around z0 of the form

σ(z) = −
z0

6
(z − z0)3

−
1

24
(z − z0)4

−
z2

0

20
(z − z0)7 + ....

It follows that, apart from possibly a zero point at zero, all the zeros of σ are of multiplicity at most 3. so

N1(r,
1
σ

) ≤
2
3

N(r,
1
σ

) + O(log r) and ϑ(0, σ) ≤
2
3
.

Let now z0 be a pole of the solution of S1. The expansion around z0 is

σ(z) =
1

z − z0
+ a0 +

z0

30
(z − z0)3 +

1
24

(z − z0)4 + a5(z − z0)5 + ...,

so z0 is a simple pole with residuum 1. It follows that ϑ(∞, σ) = 0.

3.10. Proof of Theorem 2.14
Let σ be a solution of the equation S2(α). The assumption that z0 is an a-point of σ (a , ∞) leads to the

system of equations binding the initial coefficients of the expansion around z0 :



4a2
2 + 4a3

1 + 2z0a2
1 − 2aa1 = 1

4 (α + 1
2 )2

6a2a3 + 6a2
1a2 + 2z0a1a2 − aa2 = 0

18a2
3 + 24a2a4 + 24a1a2

2 + 18a2
1a3 + a1a2 + 4z0a2

2 + 6z0a1a3 − 3aa3 = 0
36a3a4 + 20a2a5 + 8a3

2 + 36a1a2a3 + 12a2
1a4 + a2

2 + a1a3
+6z0a2a3 + 4z0a1a4 − 2aa4 = 0
72a2

4 + 120a3a5 + 60a2a6 + 72a2
2a3 + 54a1a2

3 + 96a1a2a4 + 30a2
1a5

+7a2a3 + 3a1a4 + 9z0a2
3 + 16z0a2a4 + 10z0a1a5 − 5aa5 = 0

.....

If α , − 1
2 the multiple a-points of σ are at most double. Indeed, the assumption that σ(z0) = a, σ′(z0) = 0

leads to the equality (σ′′(z0))2 = 1
4 (α + 1

2 )2. Thus we have ϑ(a, σ) ≤ 1
2 . If α = − 1

2 , the assumption that z0 is a
multiple a-point of σ with a , 0 leads to the conclusion that the multiplicity is 3 and ϑ(a, σ) ≤ 2

3 . The zeros
in this case are simple with the expansion

σ(z) = a1(z − z0) +

√
−a2

1(a1 +
1
2

z0)(z − z0)2 + (−a2
1 −

z0

3
a1)(z − z0)3 + ...,

so ϑ(0, σ) = 0.
The initial part of the Laurent expansion around a pole z0 is

σ(z) =
1

z − z0
+ a0 −

z0

6
(z − z0) −

1
8

(z − z0)2
−

1
30

(a0 +
1
6

z0)(z − z0)2 + ....

Thus the poles of σ are simple with residuum 1, so ϑ(∞, σ) = 0.
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3.11. Proof of Theorem 2.15
Let σ be a solution of S4(θ0, θ∞). If σ(z0) = a (a , 0,∞) and assuming that σ′(z0) = 0, we get σ′′(z0) = ±2a.

Thus multiple non-zero a-points are at most double and ϑ(a, σ) ≤ 1
2 .

Around an a-point z0 of σ (a , ∞) we have a Taylor expansion with the initial coefficients bound by the
system

a2
2 + a3

1 + (2θ∞ + 2θ0 − z2
0)a2

1 + 2z0aa1 + 4θ0θ∞a1 − a2 = 0
3a3 + 3a2

1 + (4θ∞ + 4θ0 − 2z2
0)a1 + 2z0a + 4θ0θ∞ = 0

6a4 + 6a1a2 + (4θ∞ + 4θ0 − 2z2
0)a2 − z0a1 + a = 0

5a5 + 3a1a3 + (2θ∞ + 2θ0 − z2
0)a3 + 2a2

2 − z0a2 = 0
a6 + 12a1a4 + (8θ∞ + 8θ0 − 4z2

0)a4 + 18a2a3 − 5z0a3 − a2 = 0
105a7 + 30a1a5 + 10(2θ∞ + 2θ0 − z2

0)a5 + 48a2a4 − 14z0a4 + 27a2
3 − 4a3 = 0

.....

Let now z0 be a zero of σ. The system above leads to the following expansion around z0

σ(z) = a1(z − z0) +
√
−a3

1 − (2θ∞ + 2θ0 − z2
0)a2

1 − 4θ∞θ0a1(z − z0)2

−(a2
1 + 2

3 (2θ∞ + 2θ0 − z2
0)a1 + 4

3θ∞θ0)(z − z0)3 +
∑
∞

k=4 ak(z − z0)k

with ak depending on z0, a1 and parameters θ∞, θ0.
If θ∞θ0 = 0 the zeros are simple and thus ϑ(0, σ) = 0. If θ∞θ0 , 0, the multiple zeros are of multiplicity

3 with the expansion

σ(z) = −
4
3
θ∞θ0(z − z0)3 +

4
15
θ∞θ0(2θ∞ + 2θ0 − z2

0)(z − z0)5
−

20
3

z0θ∞θ0(z − z0)6 + ....

It follows that ϑ(0, σ) ≤ 2
3 in this case.

Let z0 be a pole of a solution σ of S4. The expansion around z0 is

σ(z) =
1

z − z0
+ a0 +

z2
0 − 2(θ∞ + θ0)

3
(z − z0) +

z0

2
(z − z0)2 + ...,

so the pole is simple with residuum 1 and thus ϑ(∞, σ) = 0.
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Fys. 17 (1922-23), 1–89.

[16] I.I. Marchenko, On the strong asymptotic spots of meromorphic functions of finite lower order, Mat. fizika, analiz, geometriya
11 (2004), 484-491. (Russian)

[17] I.I. Marchenko, A.I. Shcherba, On the magnitudes of deviations of meromorphic functions, Mat. Sb. 181 (1990), 3–24 (1990)
(Russian); Engl. transl.: Math. USSR Sbornik 69(1) (1991), 1–24.

[18] K. Okamoto, Polynomial Hamiltonians associated with Painlevé equations. I, Proc. Japan Acad. 56(A) (1980), 264–268.
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Math. Soc. 47(1) (2004), 231–249.
[26] G. Somorjai, On asymptotic functions, J. London Math. Soc. 21(2) (1980), 297–303.
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