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Abstract. The aim of this paper is to investigate the equivalence conditions for uniform perfectness of
quasimetric spaces. We also obtain the invariance property of uniform perfectness under quasimöbius
mappings in quasimetric spaces. In the end, two applications are given.

1. Introduction and Main Results

In this paper, we study the equivalence conditions for uniform perfectness of quasimetric spaces. The
first version of this paper was first finished in 2016 (an early version of this paper see [23]), there were
several applications in the area of geometric function theory based on that version [1, 19–21]. We start with
the definition of quasimetric spaces.

Definition 1.1. For a given set Z and a constant K ≥ 1,

1. a function ρ : Z × Z→ [0,+∞) is said to be K-quasimetric
(a) if for all x and y in Z, ρ(x, y) ≥ 0, and ρ(x, y) = 0 if and only if x = y;
(b) ρ(x, y) = ρ(y, x) for all x, y ∈ Z;
(c) ρ(x, z) ≤ K(ρ(x, y) ∨ ρ(y, z)) for all x, y, z ∈ Z.

2. the pair (Z, ρ) is said to be a K-quasimetric space if the function ρ : Z × Z → [0,+∞) is K-quasimetric
with K ≥ 1. In the following, we always say that K is the quasimetric coefficient of (Z, ρ).

Clearly, if (Z, ρ) is K1-quasimetric, it must be K2-quasimetric for any K2 ≥ K1. Hence, in the following,
the quasimetric coefficients of all quasimetric spaces are always denoted by K with K > 1. We also assume
that the quasimetric spaces considered in this paper contains at least three points.

Every quasimetric ρ defines a uniform structure on Z. The balls Bρ(x, r) = {y ∈ Z : ρ(x, y) < r} (r > 0)
form a basis of neighborhoods of x for the topology induced by the uniformity on Z. We shall refer to this
topology as the ρ-topology of Z (cf. [13]). If there is no risk of confusion, we will omit the subscript ρ in the
symbol.
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We know that every metric is a 2-quasimetric, but a quasimetric need not be a metric. For example,
Z = R2, ρ((x1, y2), (x2, y2)) = |x1 − y1|

α1 + |x2 − y2|
α2 , where α1 , α2 are positive numbers, not all equal.

In general, one can easily see that the nonnegative symmetric function is not necessary a metric but a
quasimetric. This example follows from Coifman and Weiss [5, §2(2)] and they have referred to such
property as nonisotropy. For more properties and examples concerning quasimetric spaces, see [6–9, 13] etc.

The following useful result on the relationship between quasimetric spaces and metric spaces follows
from [4, Proposition 2.2.5].

Lemma 1.2. Let (X, ρ) be a K-quasimetric space. For a constant 0 < ε ≤ 1, if Kε
≤ 2, then there is a metric dε on X

such that
1
4
ρε(z1, z2) ≤ dε(z1, z2) ≤ ρε(z1, z2)

for all z1, z2 ∈ X.

To state our results, we need the definition of uniform perfectness in quasimetric spaces.

Definition 1.3. A quasimetric space (Z, ρ) is called uniformly perfect if there is a constant µ ∈ (0, 1) such that
for each x ∈ Z and every r > 0, the set B(x, r) \ B(x, µr) , ∅ provided that Z \ B(x, r) , ∅.

Uniform perfectness is a weaker condition than connectedness. Connected spaces are uniformly perfect,
and those with isolated points are not. Many disconnected fractals such as the Cantor ternary set, Julia sets
and the limit set of a nonelementary, finitely generated Kleinian group of R

n
are uniformly perfect [10].

In particular, uniform perfectness has provided a useful tool in modern research of geometric functional
theory, harmonic analysis and asymptotic geometry.

For example, it is worth to mention that Buyalo and Schroeder established the quasisymmetric and
quasimöbius extension theorems for visual geodesic hyperbolic spaces which possess uniformly perfect
boundaries at infinity [4, Chapter 7]. In [20], the first author and Wang found several conditions under
which a weakly quasimöbius map is quasimöbius in uniformly perfect quasimetric spaces. The authors in
[22] investigated the invariance of doubling property under sphericalization and flattening transformations
in uniformly perfect spaces. Recently, Vellis [19] proved the classical quasisymmetric Schoenflies theorem
for planar uniform domains with uniformly prefect boundaries.

As the first goal of this paper, we discuss the relationship among uniform perfectness, homogeneous
density, σ-density etc in the setting of quasimetric spaces. We show that all these conditions are equivalent.
(Note that other notions appearing in the following results will be introduced in the body of this paper.)

Theorem 1.4. Suppose (Z, ρ) is a K-quasimetric space contains at least three points. Then the following are quanti-
tatively equivalent.

1. (Z, ρ) is µ-uniformly perfect;
2. (Z, ρ) is (λ1, λ2)-homogeneous dense;
3. (Z, ρ) is σ-dense;
4. There are numbers µ1 and µ2 such that 0 < µ1 ≤ µ2 < 1 and for any triple (a, c, d) of distinct points in Z, there

is a point x ∈ Z such that the cross ratio r(a, x, c, d) satisfying

µ1 ≤ r(a, x, c, d) ≤ µ2.

The constants µ, λ1, λ2, σ, µ1 and µ2 depend only on each other and K.

Remark 1.5. In metric spaces, the equivalence between (1) and (4) coincides with [7, Lemma 11.7], the
equivalence between (2) and (3) follows from [9, Lemma 3.1], and the equivalence between (3) and (4))
follows from [2, Remark 3.3].
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In [18], Väisälä introduced the concept of quasimöbius mappings in metric spaces and obtained the close
connections among quasimöbius mappings, quasiconformal mappings and quasisymmetric mappings. See
[2–4, 7, 16, 17] for more background materials in this line. Further, in [16], Tukia and Väisälä proved that
every quasisymmetric mapping in uniformly prefect spaces is power quasisymmetric. As the second goal
of this paper, we shall investigate the relationships of the uniform perfectness with (power) quasisymmetric
mappings and (power) quasimöbius mappings, respectively. The next of our results reads as follows.

Theorem 1.6. Suppose f : (Z1, ρ1)→ (Z2, ρ2) is a quasimöbius mapping between K-quasimetric spaces (Z1, ρ1) and
(Z2, ρ2). Then (Z1, ρ1) is µ1-uniformly perfect if and only if (Z2, ρ2) is µ2-uniformly perfect, where µ1 and µ2 are
constants depending only on each other and the constant K.

Remark 1.7. We remark that Theorem 1.6 coincides with [10, Corollary 4.6] in the setting ofRn. Our result is
new in metric space as far as we know. Moreover, as we mentioned in the beginning of this paper, there were
already several applications based on Theorems 1.4 and 1.6. By using Theorems 1.4 and 1.6, the first author
and Wang investigated the relations between quasimöbius mappings and weakly quasimöbius mappings
in uniform perfect quasimetric spaces [20]. By using the equivalence of weakly quasisymmetric mappings
and quasisymmetric mappings on uniform perfect quasimetric spaces as established in [20], Vellis further
studied the quasisymmetric and bilipschitz extension properties of planer uniform domains with uniform
perfect boundaries [19]. Moreover, Assev [1] applied the main results in [20] and an early version of this
paper [23] to prove that in uniform perfect Ptolemaic Möbius structures, a single-valued mapping is of
the BAD class if and only if it is quasimöbius. In a recent work [21], the authors studied deformations on
ultrametric spaces and demonstrated the quasimöbius uniformization of symbolic Cantor sets by means of
the invariance of uniform perfect sets under sphericalization and flattening transformations.

By using Theorem 1.6, we further obtain the following equivalent conditions for uniform perfectness
concerning quasisymmetric and quasimöbius mappings in quasimetric spaces.

Theorem 1.8. Suppose (Z, ρ) is a quasimetric space contains at least three points. If (Z, ρ) has no isolated point, then
1. (Z, ρ) is uniformly perfect if and only if every quasisymmetric mapping of (Z, ρ) to a quasimetric space is power

quasisymmetric;
2. (Z, ρ) is uniformly perfect if and only if every quasimöbius mapping of (Z, ρ) to a quasimetric space is power

quasimöbius.

Remark 1.9. In the context of metric spaces, Theorem 1.8(1) was proved in [15, Theorems 4.13 and 6.20].
In Rn, Theorem 1.8(2) follows from [2, Theorem 4.1]. In fact, Aseev and Trotsenko proved that if (Z, ρ)
is σ-dense, then every quasimöbius mapping of (Z, ρ) is power quasimöbius by applying the conformal
moduli of families of curves (see [2, Theorem 4.1]). Because the general quasimetric spaces may even have
no rectifiable curve, one finds that the method of proof in [2] is no longer valid in quasimetric spaces. So
we establish a new method to prove 1.8(2).

Recently, Meyer studied the relationship between Gromov hyperbolic spaces and their boundaries at
infinity. He proved the invariance property of the uniform perfectness with respect to the inversions in
quasimetric spaces (see [14, Theorem 7.1]). This result is one of the main results in [14], whose proof
is lengthy. As an application of Theorem 1.6, we shall give a different proof to [14, Theorem 7.1] (see
Theorem 6.2 below). Also, we shall discuss the uniform perfectness of a complete quasimetric space and
the corresponding boundary of its hyperbolic approximation by applying Theorem 1.6 (see Theorem 6.3
below).

The organization of this paper is as follows. In the second section, we shall introduce some neces-
sary concepts and discuss the condition in quasimetric spaces under which quasimöbius mappings and
quasisymmetric mappings are the same. In the third section, some concepts will be introduced and the
equivalence of uniform perfectness with homogeneous density, σ-density etc will be proved. The invariance
property of uniform perfectness with respect to quasimöbius mappings will be shown in the forth section,
and in the fifth section, relationships among (power) quasisymmetric mappings, (power) quasimöbius
mappings and uniform perfectness will be established. In the last section, some applications of Theorem
1.6 will be given.
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2. Quasimöbius Mappings and Quasisymmetric Mappings in Quasimetric Spaces

In this section, we shall introduce certain necessary notations and concepts, and prove several basic
results. The main result in this section is Theorem 2.6, which concerns the condition under which power
quasisymmetric mappings and power quasimöbius mappings are the same. In the following, we use the
notations: r ∨ s and r ∧ s for numbers r, s in R, where

r ∨ s = max{r, s} and r ∧ s = min{r, s}.

2.1. Cross Ratios
For four points a, b, c, d in a quasimetric space (Z, ρ), its cross ratio is defined as

r(a, b, c, d) =
ρ(a, c)ρ(b, d)
ρ(a, b)ρ(c, d)

.

Then we have

Proposition 2.1. (1) For a, b, c and d in (Z, ρ),

r(a, b, c, d) =
1

r(b, d, a, c)
;

(2) For a, b, c, d and z in (Z, ρ),
r(a, b, c, d) = r(a, b, z, d)r(a, z, c, d).

In [3], Bonk and Kleiner introduced the following useful notation:

〈a, b, c, d〉 =
ρ(a, c) ∧ ρ(b, d)
ρ(a, b) ∧ ρ(c, d)

.

Moreover, they established a relation between r(a, b, c, d) and 〈a, b, c, d〉 in the setting of metric spaces (see
[3, Lemma 3.3]). The following result shows that this relation also holds in quasimetric spaces.

Lemma 2.2. For any a, b, c, d in (Z, ρ), we have

1. 1
θK(1/r(a,b,c,d)) ≤ 〈a, b, c, d〉 ≤ θK(r(a, b, c, d));

2. θ−1
K (〈a, b, c, d〉) ≤ r(a, b, c, d) ≤ 1

θ−1
K (1/〈a,b,c,d〉) ,

where θK(t) = K2(t ∨
√

t). (Here, we recall that K denotes the coefficient of the quasimetric space (Z, ρ).)

Proof. Obviously, we only need to prove the inequality (1) in the lemma. Let

〈a, b, c, d〉 = s and r(a, b, c, d) = t.

Without loss of generality, we may assume that ρ(a, c) ≤ ρ(b, d). Then we have

ρ(a, b) ≤ K(ρ(a, c) ∨ ρ(c, b)) ≤ K2
(
ρ(a, c) ∨ ρ(c, d) ∨ ρ(d, b)

)
= K2

(
ρ(c, d) ∨ ρ(d, b)

)
,

and similarly,
ρ(c, d) ≤ K2

(
ρ(a, b)) ∨ ρ(d, b)

)
.

The combination of these two estimates leads to

ρ(a, b) ∨ ρ(c, d) ≤ K2
(
(ρ(a, b) ∧ ρ(c, d)) ∨ ρ(b, d)

)
≤ K2(1 ∨

1
s

)ρ(d, b),
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and so we get

t = r(a, b, c, d) =
ρ(a, c)ρ(b, d)(

ρ(a, b) ∧ ρ(c, d)
)(
ρ(a, b) ∨ ρ(c, d)

) ≥ s
K2(1 ∨ 1

s )
,

which implies
s ≤ θK(t) = K2(t ∨

√
t).

Hence the right side inequality in (1) holds.
By Proposition 2.1, we see that the left side inequality in (1) easily follows from the right side one, and

so the proof of the lemma is complete.

2.2. Quasisymmetric Mappings and Quasimöbius Mappings
Definition 2.3. Suppose η and θ are homeomorphisms from [0,∞) to [0,∞). A homeomorphism f :
(Z1, ρ1)→ (Z2, ρ2) is said to be

1. (a) η-quasisymmetric if ρ1(x, a) ≤ tρ1(x, b) implies

ρ2(x′, a′) ≤ η(t)ρ2(x′, b′)

for all a, b, x in (Z1, ρ1) and t ≥ 0, where primes mean the images of points under f , for example,
x′ = f (x) etc;

(b) power quasisymmetric if it is η-quasisymmetric, where η has the form

η(t) = M1(t1/α
∨ tα)

for some constants α ≥ 1 and M1 ≥ 1.
2. (a) θ-quasimöbius if r(a, b, c, d) ≤ t implies

r(a′, b′, c′, d′) ≤ θ(t)

for all a, b, c, d in (Z1, ρ1) and t ≥ 0;
(b) power quasimöbius if it is θ-quasimöbius, where θ has the form

θ(t) = M2(t1/β
∨ tβ)

for some constants β ≥ 1 and M2 ≥ 1.

As a direct consequence of Lemma 2.2, we have the following two results.

Lemma 2.4. Suppose f : (Z1, ρ1)→ (Z2, ρ2) is a homeomorphism between two quasimetric spaces.

1. If f is η-quasisymmetric, then it is θ-quasimöbius, where θ(t) = 1
θ−1

K ( 1
η◦θK (t) )

and θK is from Lemma 2.2.

2. If f is a power quasisymmetric mapping with its control function η(t) = M(tα ∨ t
1
α ), where M ≥ 1 and α ≥ 1,

then it is power quasimöbius with its control function θ(t) = M2K4(1+α)(t2α
∨ t

1
2α ).

We remark that Lemma 2.4(1) is a generalization of [18, Theorem 3.2] in the setting of quasimetric spaces.
Next, we consider the converse of Lemma 2.4(2) in the setting of bounded quasimetric spaces. To this

end, we introduce the following condition.

Definition 2.5. Suppose both (Z1, ρ1) and (Z2, ρ2) are bounded quasimetric spaces. Let λ ≥ 1 be a constant.
A homeomorphism f : (Z1, ρ1) → (Z2, ρ2) is said to satisfy the λ-three-point condition if there are points z1,
z2, z3 in (Z1, ρ1) such that

ρ1(zi, z j) ≥
1
λ

diam(Z1) and ρ2(z′i , z
′

j) ≥
1
λ

diam(Z2)

for all i , j ∈ {1, 2, 3}, where “diam” means “diameter”.
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Theorem 2.6. Suppose that both (Z1, ρ1) and (Z2, ρ2) are bounded quasimetric spaces and that f : (Z1, ρ1)→ (Z2, ρ2)
satisfies the λ-three-point condition. Then f is power quasisymmetric if and only if it is power quasimöbius.

Proof. The necessity of the theorem obviously follows from Lemma 2.4(2). In the following, we prove the
sufficiency. Let f : (Z1, ρ1)→ (Z2, ρ2) be a power quasimöbius mapping between two bounded quasimetric
spaces, which satisfies the λ-three-point condition for some constant λ ≥ 1 and points z1, z2, z3 ∈ Z1. We
assume that the control function of f is

θ(t) = M(t1/β
∨ tβ)

for some constants M ≥ 1 and β ≥ 1.
To prove the power quasisymmetry of f , let x, a, b be any three points in (Z1, ρ1) with ρ1(x, a) = tρ1(x, b)

with t ≥ 0. Then we shall show that
ρ2(x′, a′) ≤ η(t)ρ2(x′, b′),

where η(t) = K3+6βM(2λ)1+2β(t1/(2β)
∨ t2β).

It follows from the λ-three-point condition that for any w ∈ Z1, there are i , j ∈ {1, 2, 3} such that

ρ1(w, zi) ∧ ρ1(w, z j) ≥
diam(Z1)

2Kλ
.

Similarly, for any u′ ∈ Z2, there exist m , n ∈ {1, 2, 3} such that

ρ2(u′, z′m) ∧ ρ2(u′, z′n) ≥
diam(Z2)

2Kλ
.

Therefore, there must exist zi ∈ {z1, z2, z3} such that

ρ1(a, zi) ≥
diam(Z1)

2Kλ
and ρ2(b′, z′i ) ≥

diam(Z2)
2Kλ

.

Thus

ρ1(a, zi) ∧ ρ1(x, b) ≥
ρ1(x, b)

2Kλ
and ρ2(b′, z′i ) ∧ ρ2(x′, a′) ≥

ρ2(x′, a′)
2Kλ

, (1)

from which we deduce that

〈x, b, a, zi〉 ≤ 2Kλ
ρ1(x, a)
ρ1(x, b)

and 〈x′, b′, a′, z′i〉 ≥
ρ2(x′, a′)

2Kλρ2(x′, b′)
. (2)

On the other hand, since f is power quasimöbius with its control function θ, we see from Lemma 2.2
that

〈x′, b′, a′, z′i〉 ≤ θ
′(〈x, b, a, zi〉),

where θ′(t) = θK ◦ θ
(

1
θ−1

K (1/t)

)
and θK is from Lemma 2.2. Then we deduce from (2) that

ρ2(x′, a′)
ρ2(x′, b′)

≤ 2Kλθ′(〈x, b, a, zi〉) ≤ 2Kλθ′
(
2Kλ

ρ1(x, a)
ρ1(x, b)

)
.

By taking η(t) = K3+6βM(2λ)1+2β(t1/(2β)
∨ t2β), we see from elementary computations that

ρ2(x′, a′)
ρ2(x′, b′)

≤ η
(ρ1(x, a)
ρ1(x, b)

)
.

Hence the proof of the theorem is complete.

Lemma 2.7. Suppose f : (Z1, ρ1)→ (Z2, ρ2) and 1 : (Z2, ρ2)→ (Z3, ρ3) are homeomorphisms.
1. If f is θ1-quasimöbius and 1 is θ2-quasimöbius, then 1 ◦ f is θ-quasimöbius, where θ = θ2 ◦ θ1;
2. If f is θ-quasimöbius and 1 is η-quasisymmetric, then 1 ◦ f is θ1-quasimöbius, where θ1(t) = 1

θ−1
K

(
1

η◦θK◦θ(t)

) ;
3. If f is power quasimöbius and 1 is power quasisymmetric (or power quasimöbius), then 1 ◦ f is power

quasimöbius, quantitatively.
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3. Uniform Perfectness, Homogeneous Density and σ-Density

We start this section with several definitions, and then establish the invariance property of uniform
perfectness with respect to quasisymmetric mappings in quasimetric spaces (Lemma 3.4 below). Based on
this result, Theorem 1.4 will be proved.

3.1. Homogeneous Density and σ-Density
Definition 3.1. Suppose {xi}i∈Z denotes a sequence of points in a quasimetric space (Z, ρ) with a , xi , b.

(i) If xi → a as i→ −∞ and xi → b as i→ +∞, then {xi} is called a chain joining a and b; further, if there is
a constant σ > 1 such that for all i,

| log r(a, xi, xi+1, b)| ≤ log σ,

then {xi} is called a σ-chain.
(ii) (Z, ρ) is said to be σ-dense (σ > 1) if any pair of points in (Z, ρ) can be joined by a σ-chain.

We remark that a σ-dense space does not contain any isolated point, and also, every σ-dense space must
be σ′-dense for any σ′ ≥ σ.

Definition 3.2. A quasimetric space (Z, ρ) is said to be homogeneously dense, if there are constants λ1 are λ2
with 0 < λ1 ≤ λ2 < 1 such that for each pair of points a, b ∈ Z, there is x ∈ Z satisfying

λ1ρ(a, b) ≤ ρ(a, x) ≤ λ2ρ(a, b).

To emphasize the parameters, we also say that (Z, ρ) is (λ1, λ2)-homogeneously dense.

Lemma 3.3. (1) If a quasimetric space is (λ1, λ2)-homogeneously dense, then it is (λn
1 , λ

n
2)-homogeneously dense for

any n ∈N+ = {1, 2, . . .}.
(2) Suppose that both (Z1, ρ1) and (Z2, ρ2) are quasimetric spaces and that f : (Z1, ρ1) → (Z2, ρ2) is η-

quasisymmetric. If (Z1, ρ1) is (λ1, λ2)-homogeneously dense, then (Z2, ρ2) is (µ1, µ2)-homogeneously dense, where
both µ1 and µ2 depend only on λ1, λ2 and η.

We remark that, in the setting of metric spaces, Lemma 3.3 coincides with [16, Lemma 3.9]. Also the
proof of Lemma 3.3 is similar to that of [16, Lemma 3.9]. We omit it here.

3.2. The Invariance Property of Uniform Perfectness with Respect to Quasisymmetric Mappings
It is known that uniform perfectness is an invariant with respect to quasisymmetric mappings in metric

spaces (cf. [7, Exercise 11.2]). In the following, we prove that this fact is still valid in quasimetric spaces.

Lemma 3.4. Let f : (Z1, ρ1)→ (Z2, ρ2) be η-quasisymmetric, where both (Zi, ρi) (i = 1, 2) are K-quasimetric. Then
(Z1, ρ1) is µ1-uniformly perfect if and only if (Z2, ρ2) is µ2-uniformly perfect, where µ1 and µ2 depend only each other
and K, η.

Proof. Since the inverse of a quasisymmetric mapping is also quasisymmetric, to prove the lemma, it suffices
to show that the uniform perfectness of (Z1, ρ1) implies the uniform perfectness of (Z2, ρ2).

Now, we assume that (Z1, ρ1) is µ-uniformly perfect for some µ ∈ (0, 1). Then we shall show that (Z2, ρ2)
is uniformly perfect too. To reach this goal, it suffices to find a constant µ′ ∈ (0, 1) such that for any z′ ∈ Z2
and r > 0, if Z2 \ B(z′, r) , ∅, then there is a point u′ in (Z2, ρ2) such that

µ′r ≤ ρ2(z′,u′) < r.

By the assumption Z2 \ B(z′, r) , ∅, we see that there is a point u′0 ∈ Z2 such that

ρ2(z′,u′0) ≥ r. (3)
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Choose 0 < α < 1 small enough such that η(α) < 1. Then there exists an integer k such that

η(α)kρ2(z′,u′0) < r ≤ η(α)k−1ρ2(z′,u′0). (4)

Since (Z1, ρ1) isµ-uniformly perfect and u0 ∈ Z1\B(z, αρ1(z,u0)), we see thatB(z, αρ1(z,u0))\B(z, µαρ1(z,u0)) ,
∅. So there is a point u1 ∈ Z1 such that

µαρ1(z,u0)) ≤ ρ1(z,u1) < αρ1(z,u0).

Hence

µ′ρ2(z′,u′0) ≤ ρ2(z′,u′1) < η(α)ρ2(z′,u′0), (5)

where µ′ = 1
η( 1

µα )
.

If ρ2(z′,u′1) < r, then (3) and (5) lead to

µ′r ≤ ρ2(z′,u′1) < r.

At present, we can take u′ = u′1.
Now, we consider the case:

ρ2(z′,u′1) ≥ r. (6)

Since (Z1, ρ1) isµ-uniformly perfect and u1 ∈ Z1\B(z, αρ1(z,u1)), we see thatB(z, αρ1(z,u1))\B(z, µαρ1(z,u1)) ,
∅. So there is a point u2 ∈ Z1 such that

µαρ1(z,u1) ≤ ρ1(z,u2) < αρ1(z,u1).

Hence
µ′ρ2(z′,u′1) ≤ ρ2(z′,u′2) < η(α)ρ2(z′,u′1) < η(α)2ρ2(z′,u′0).

If ρ2(z′,u′2) < r, then (6) leads to
µ′r ≤ ρ2(z′,u′2) < r.

Hence, we can take u′ = u′2.
Next, we consider the case:

ρ2(z′,u′2) ≥ r.

By repeating this procedure, we can reach the following conclusion: There is u′k ∈ Z2 such that

1. For any i ∈ {1, . . . , k − 1}, ρ2(z′,u′i ) ≥ r;
2. µ′ρ2(z′,u′k−1) ≤ ρ2(z′,u′k) < η(α)kρ2(z′,u′0).

Then (4) guarantees that
µ′r ≤ ρ2(z′,u′k) < r.

By taking u′ = u′k, we finish the proof.

3.3. The Proof of Theorem 1.4
By applying Lemmas 1.2, 3.3 and 3.4, together with Lemma 4.1 below, we see that the equivalence

between (1) and (2) easily follows from [7, Lemma 11.7], and the equivalence between (2) and (3)) follows
from [9, Lemma 3.1]. Hence, to finish the proof, it remains to show the equivalence between (3) and (4),
whose proof is as follows.

(3) ⇒ (4) Assume that (Z, ρ) is σ-dense. Let a, c, d be three distinct points in (Z, ρ). Then there is a
σ-chain {xi}i∈Z in (Z, ρ) joining a and d such that

1
σ
≤ r(a, xi, xi+1, d) ≤ σ. (7)
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To prove this implication, it suffices to show that there is an integer k such that

1
2σ2 ≤ r(a, xk−1, c, d) ≤

1
2σ
. (8)

For the proof, we let

k = inf{i ∈ Z : r(a, xi, c, d) <
1

2σ2 }.

Since limi→+∞ r(a, xi, c, d) = 0 and limi→−∞ r(a, xi, c, d) = +∞, we see that k is finite, and so

r(a, xk, c, d) <
1

2σ2 and r(a, xk−1, c, d) ≥
1

2σ2 .

Then (7) implies

r(a, xk−1, c, d) = r(a, xk, c, d)r(a, xk−1, xk, d) <
1

2σ
.

Hence (8) is true, and thus the implication from (3) to (4) is proved.

(4)⇒ (3) For any two distinct points a and d ∈ Z, let c be a fixed point in (Z, ρ), which is different from
a and d. Then there is a point x0 ∈ Z such that

µ1 ≤ r(a, x0, c, d) ≤ µ2,

where 0 < µ1 ≤ µ2 < 1.
By repeating this procedure, we can find a sequence {xi}i∈N+ in (Z, ρ) such that

µ1 ≤ r(a, xi, xi−1, d) ≤ µ2.

Then

µ1 ≤
r(a, xi, c, d)

r(a, xi−1, c, d)
= r(a, xi, xi−1, d) ≤ µ2,

which implies that
µi+1

1 ≤ r(a, xi, c, d) ≤ µi+1
2 ,

and so xi → d as i→ +∞.
Similarly, we know that there exists {x−i}i∈N+

in (Z, ρ) such that

µ1 ≤ r(d, x−i, x1−i, a) = r(a, x1−i, x−i, d) ≤ µ2

and
µ1µ

1−i
2 ≤ r(a, x−i, c, d) ≤ µ1−i

1 µ2.

Then x−i → a as i→ +∞, and hence we have proved that (Z, ρ) is 1
µ1

-dense.

4. The Invariance Property of Uniform Perfectness with Respect to Quasimöbius Mappings

The aim of this section is to prove Theorem 1.6. To this end, by Theorem 1.4, it suffices to show the
following lemma.

Lemma 4.1. Let f : (Z1, ρ1) → (Z2, ρ2) be θ-quasimöbius, where both (Zi, ρi) (i = 1, 2) are quasimetric. Then
(Z1, ρ1) is σ-dense if and only if (Z2, ρ2) is σ′-dense with σ and σ′ depend on each other and θ.
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Proof. Since the inverse of a θ-quasimöbius mapping is θ′-quasimöbius with θ′(t) = 1
θ−1(1/t) , to prove this

lemma, it suffices to show that (Z2, ρ2) is σ′-dense under the assumption “(Z1, ρ1) being σ-dense”, where
σ > 1 and σ′ depends only on σ and θ. For this, we only need to check that for each pair of points a′, b′

in (Z2, ρ2), there is a σ′-chain in (Z2, ρ2) joining them. Now, we assume that {xi}i∈Z is a σ-chain in (Z1, ρ1)
joining the points a and b with

1
σ
≤ r(a, xi, xi+1, b) ≤ σ.

Then for all i, we have
1

θ(σ) + 1
≤ r(a′, x′i , x

′

i+1, b
′) ≤ θ(σ) + 1,

which shows that {x′i }i∈Z is a σ′-chain in (Z2, ρ2) joining a′ and b′ with σ′ = θ(σ) + 1.

5. Uniform Perfectness, (Power) Quasisymmetric Mappings and (Power) Quasimöbius Mappings

This section is devoted to the proof of Theorem 1.8 concerning the relationships among uniform per-
fectness, (power) quasisymmetric mappings and (power) quasimöbius mappings in quasimetric spaces.
It consists of two subsections. In the first subsection, we shall prove a relationship among uniform per-
fectness, quasisymmetric mappings and power quasisymmetric mappings, i.e. Theorem 1.8(1), and in the
second subsection, the proof of a relationship among uniform perfectness, quasimöbius mappings and
power quasimöbius mappings, i.e. Theorem 1.8(2), will be presented.

5.1. The Proof of Theorem 1.8(1)
Let ε ∈ (0, 1) be a constant such that Kε

≤ 2. Then it follows from Lemma 1.2 that there exists a metric dε
(briefly d in the following) in Z such that

1
4
ρε(z1, z2) ≤ d(z1, z2) ≤ ρε(z1, z2)

for all z1, z2 ∈ Z. Let id denote the identity mapping from (Z, ρ) to (Z, d), i.e.,

id : (Z, ρ)→ (Z, d).

Obviously, id is power quasisymmetric with its control function η(t) = 4(tε ∨ t
1
ε ).

We first assume that (Z, ρ) is uniformly perfect, and consider a quasisymmetric mapping f defined in
(Z, ρ). It follows from the power quasisymmetry of id and Lemma 3.4 that (Z, d) is uniformly perfect, and so
Theorem 1.4 implies that (Z, d) is (λ1, λ2)-homogeneously dense for constantsλ1 andλ2 with 0 < λ1 ≤ λ2 < 1.
Since the composition of two quasisymmetric mappings is still a quasisymmetric mapping, we have f ◦ id−1

is quasisymmetric in (Z, d). Moreover, we see from [16, Corollary 3.12] that every quasisymmetric mapping
defined in a homogeneously dense space is a power quasisymmetric mapping, so we get that f ◦ id−1 is
power quasisymmetric, which implies that f itself is power quasisymmetric.

Next, we assume that every quasisymmetric mapping of (Z, ρ) is power quasisymmetric. Then we see
that for any quasisymmetric mapping 1 in (Z, d), 1 ◦ id is power quasisymmetric in (Z, ρ), and so 1 itself
is power quasisymmetric. Hence, by [15, Theorems 4.13 and 6.20], (Z, d) is uniformly perfect. Since id is
power quasisymmetric, it follows from Lemma 3.4 that (Z, ρ) is uniformly perfect.

5.2. The Proof of Theorem 1.8(2)
We start this subsection with the following result in metric spaces.

Lemma 5.1. Suppose (Z, d) is a metric space with no isolated points. Then the following statements are quantitatively
equivalent.

1. (Z, d) is uniformly perfect;



Q. Zhou et al. / Filomat 34:6 (2020), 1975–1987 1985

2. every quasimöbius mapping of (Z, d) is power quasimöbius.

Proof. By [2, Theorem 3.2], we only need to prove the implication from (2) to (1). Assume that every
quasimöbius mapping in (Z, d) is a power quasimöbius mapping. To prove the uniform perfectness of
(Z, d), we divide the proof into two cases.

Case 5.2. (Z, d) is unbounded.

We shall apply Theorem 1.8(1) to finish the proof in this case. For this, we assume that f is a quasisym-
metric mapping in (Z, d). Then Lemma 2.4 implies that f is quasimöbius, so it follows from condition (2)
that f is power quasimöbius. And further, [18, Theorem 3.10] guarantees that f (z)→∞ as z→∞. Again, it
follows from [18, Theorem 3.10] that f is power quasisymmetric, and so Theorem 1.8(1) ensures that (Z, d)
is uniformly perfect. Hence the lemma is true in this case.

Case 5.3. (Z, d) is bounded.

By the Kuratowski embedding theorem [12], we may assume that Z is a subset of a Banach space E. By
performing an auxiliary translation, further, we assume that 0 ∈ Z. Let

u(x) =
x
|x|2

be the inversion in Ė = E ∪ {∞}. Then, clearly, u(Z) is unbounded. By [18, §1.6], u is θ-quasimöbius, where
θ(t) = 81t, and obviously, it is power quasimöbius. To prove that (Z, d) is uniformly perfect, by Theorem
1.6, it suffices to show that u(Z) is uniformly perfect. Again, we shall apply Theorem 1.8(1) to reach this
goal. For this, we assume that 1 is quasisymmetric in u(Z). Once more, by Lemma 2.4, 1 is quasimöbius.
Then 1 ◦ u is quasimöbius in (Z, d), which implies that 1 ◦ u is power quasimöbius, and thus we deduce
from Lemma 2.7(3) that 1 itself is power quasimöbius. So we infer from [18, Theorem 3.10] that 1 is power
quasisymmetric. Then it follows from Theorem 1.8(1) that u(Z) is uniformly perfect. Hence the proof of the
lemma is complete.

The proof of Theorem 1.8(2). Let id : (Z, ρ) → (Z, d) be the same as that in the proof of Theorem 1.8(1).
Then id is power quasisymmetric with its control function η(t) = 4(tε ∨ t

1
ε ), where ε ∈ (0, 1).

Assume now that (Z, ρ) is uniformly perfect, and so is (Z, d) by Lemma 3.4. For any quasimöbius
mapping f in (Z, ρ), it follows from Lemma 5.1 that f ◦ id is power quasimöbius, and so is f itself by Lemma
2.7. This shows that the necessity in Theorem 1.8(2) is true.

To prove the sufficiency in Theorem 1.8(2), it suffices to prove the uniform perfectness of (Z, d) under the
assumption that every quasisymmetric mapping in (Z, ρ) is power quasimöbius. By Lemma 5.1, we only
need to show the power quasisymmetry of each quasisymmetric mapping in (Z, d). This fact easily follows
from Lemma 2.7. Hence the proof of Theorem 1.8(2) is complete.

6. Applications

The aim of this section is twofold. First, as an application of Theorem 1.6, we will give a different proof
to [14, Theorem 7.1]. Second, we shall apply Theorem 1.6 to discuss the uniform perfectness of a complete
quasimetric space and the corresponding boundary of its hyperbolic approximation.

6.1. Application I
We begin this subsection with a definition.

Definition 6.1. ([4, Page 57]) For p ∈ (Z, ρ), let

ρp(x, y) =
r2ρ(x, y)

ρ(x, p)ρ(y, p)

for all x, y ∈ Z \ {p}. Then ρp is said to be the inversion with respect to ρ centered at p with radius r > 0.
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Theorem 6.2. ([14, Theorem 7.1]) For any p ∈ Z, if (Z \ {p}, ρ) is a uniformly perfect quasimetric space, then
(Z \ {p}, ρp) is a uniformly perfect quasimetric space.

Proof. First, if (Z \ {p}, ρ) is a K-quasimetric space, by [4, Proposition 5.3.6], we know that (Z \ {p}, ρp) is
a K2-quasimetric space. Then a direct computation gives that the identity mapping from (Z \ {p}, ρ) to
(Z \ {p}, ρp) is θ-quasimöbius with θ(t) = t. Hence the proof of the theorem easily follows from Theorem
1.6.

6.2. Application II
Let Hypr(Z, ρ) denote the hyperbolic approximation of (Z, ρ) with parameter r, ∂a,o

∞Hypr(Z, ρ) the bound-
ary at infinity of Hypr(Z, ρ) with respect to the quasimetric a−(·|·)o based at o ∈ Hypr(Z, ρ) with a > 1, and
∂a′,b
∞ Hypr(Z, ρ) the boundary at infinity of Hypr(Z, ρ) with respect to the quasimetric a′−(·|·)ω based at ω with

a′ > 1, where b is a Busemann function based at ω. See [11, §3] for their precise definitions.

Theorem 6.3. Suppose (Z, ρ) is a complete quasimetric space and r ∈ (0, 1). Then the following are quantitatively
equivalent.

(a) (Z, ρ) is uniformly perfect;
(b) ∂a,o

∞Hypr(Z, ρ) is uniformly perfect;
(c) ∂a′,b

∞ Hypr(Z, ρ) is uniformly perfect.

Proof. First, by [4, Proposition 2.2.9 and 5.2.8], we know that the identity mapping from ∂a′,b
∞ Hypr(Z, ρ) to

∂a,o
∞Hypr(Z, ρ) is quasimöbius, and so Theorem 1.6 implies the quantitative equivalence of (b) and (c).

To finish the proof of the theorem, we divide the discussions into two cases. The first case is that (Z, ρ) is
unbounded. By [11, Theorem 3], we know that for any Busemann function b ∈ B(ω), the identity mapping
from ∂a′,b

∞ Hypr(Z, ρ) to (Z, ρ) is bi-Hölder, and thus Theorem 1.6 guarantees the quantitative equivalence of
(a) and (c). For the remainder case, that is, (Z, ρ) is bounded, again, by [11, Theorem 3], we see that the
identity mapping from ∂a,o

∞Hypr(Z, ρ) to (Z, ρ) is bi-Hölder. Once more, it follows from Theorem 1.6 that (a)
and (b) are quantitatively equivalent. Hence the proof of this theorem is complete.
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