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Abstract. In this article, a new notion of n-Jordan homomorphism namely the mixed n-Jordan homomor-
phism is introduced. It is proved that how a mixed (1 + 1)-Jordan homomorphism can be a mixed n-Jordan
homomorphism and vice versa. By means of some examples, it is shown that the mixed n-Jordan homo-
morphisms are different from the n-Jordan homomorphisms and the pseudo n-Jordan homomorphisms.
As a consequence, it shown that every mixed Jordan homomorphism from Banach algebra A into commu-
tative semisimple Banach algebra 8 is automatically continuous. Under some mild conditions, every unital
pseudo 3-Jordan homomorphism is a homomorphism.

1. Introduction and Preliminaries

Let A and B be complex Banach algebras and ¢ : A — B be a linear map. Then, ¢ is called an
n-homomorphism if for all a;, a5, ,a, € A,

p(maz - ay) = p(a1)p(az) - - - p(an).

The concept of an n-homomorphism was studied for complex algebras in [7] and [11]. Moreover, the
map ¢ is called an n-Jordan homomorphism if p(a”) = @(a)", for all a € A. This notion was introduced
by Herstein in [12]. A 2-homomorphism (2-Jordan homomorphism) is called simply a homomorphism
(Jordan homomorphism). It is clear that every n-homomorphism is an n-Jordan homomorphism, but the
converse is not valid in general. Indeed, it was Ancochea [2] who firstly studied the connection of Jordan
homomorphisms and homomorphisms. The results of Ancochea were generalized and extended in several
ways in [13] and [14]. There are plenty of known examples of n-Jordan homomorphism which are not
n-homomorphism. For n = 2, itis proved in [13] that some Jordan homomorphism on the polynomial rings
can not be homomorphism. In addition, each homomorphism is an #n-homomorphism for every n > 2, but
the converse generally does not hold. For instance, if h : A — $ is a homomorphism, then g := —his a 3-
homomorphism which is not a homomorphism [7]. However, it is easily checked that if A is a unital algebra
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and % is a 3-homomorphism then g(a) := h(1)h(a) is a homomorphism. Furthermore, the second author and
Peyvaste in [6, Theorem 2.4] showed that if ¢ : A — C is a 3-homomorphism, then ¢(a) := p(ua) (a € A)
is a homomorphism in which ¢(u) = 1. This result can be generalized for n-homomorphisms [3]. Herstein
[12] proved the following result.

Theorem 1.1. If ¢ is a Jordan homomorphism of a ring R onto a prime ring R’ of characteristic different from 2 and
3, then either ¢ is a homomorphism or an anti-homomorphism.

Next, Zelazko in [18] presented the upcoming result (see also [17]).

Theorem 1.2. Suppose that A is a Banach algebra, which need not be commutative, and suppose that B is a
semisimple commutative Banach algebra. Then each Jordan homomorphism @ : A — B is a homomorphism.

This result has been proved by the third author in [20] for 3-Jordan homomorphism with the extra condition
that the Banach algebra A is unital. In other words, he presented the following theorem.

Theorem 1.3. Suppose that A is a unital Banach algebra, which need not be commutative, and suppose that B is a
semisimple commutative Banach algebra. Then each 3-Jordan homomorphism ¢ : A — B is a 3-homomorphism.

After that, An [1] extended the above theorem for all # € IN in [1] and showed that for unital ring
A and ring B with char(8)> n, every n-Jordan homomorphism from A into B is an n-homomorphism
(n-anti-homomorphism) provided that every Jordan homomorphism from A into B is a homomorphism
(anti-homomorphism). Recently, the second author and Inceboz extended Theorem 1.2 for n € {3,4} in [5]
without the Banach algebra A is that of being unital by considering an extra condition on the mapping
p:A— Bas

(p(azb) = (p(baz), a,beA.

Some significant results concerning Jordan homomorphisms and their automatic continuity on Banach
algebras obtained by the third author in [19], [21] and [22]. For the commutative case, Lee in [15] and
Gselmann in [10] every n-Jordan homomorphism between two commutative Banach algebras is an n-
homomorphism where 7 is an arbitrary and fixed positive integer. Later, this problem solved in [4] based
on the property of the Vandermonde matrix, which is different from the methods that are used in [10] and
[15].

Let A and B be rings (algebras), and B be a right [left] A-module. Then, a linear map ¢ : A — Bis
said to be pseudo n-Jordan homomorphism if there exists an element w € A such that

Pa"w) = p@)" - w, [p@"w) = w- p(@)"] (@ € A).

The element w is called Jordan coefficient of ¢. The concept of pseudo n-Jordan homomorphism was
introduced and studied by Ebadian et al., in [8]. They also investigated the automatic continuity such
homomorphisms on commutative C*-algebras and semisimple (non unital) Banach algebras.

In section 2, we introduce the notion of mixed n-Jordan homomorphism on algebras. We prove that
every 3-Jordan homomorphism ¢ from algebra A into ¢p-commutative algebra 8 is a mixed Jordan ho-
momorphism provided that ¢(ab — ba) = 0. Furthermore, we discuss the automatic continuity of mixed
Jordan homomorphisms. We show that under which conditions a mixed (# + 1)-Jordan homomorphism
is a mixed n-Jordan homomorphism and vice versa. We prove that every n-Jordan homomorphism on
non-commutative Banach algebras is a n-homomorphism with different conditions as in [1, Theorem 2.4]
and [4, Theorem 2.2]. It is of interest to know whether the converse of [8, Theorem 2.3] holds. In the last
section, we answer to this question. In fact, we show that every unital pseudo (7 +1)-Jordan homomorphism
is pseudo n-Jordan homomorphism with the same Jordan coefficient.
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2. Mixed n-Jordan homomorphisms
We start this section with the definition of mixed n-Jordan homomorphisms.

Definition 2.1. Let A and B be complex algebras and ¢ : A —> B be a linear map. Then, ¢ is called an mixed
n-Jordan homomorphism if for all a,b € A,

P(a"b) = p(a)" (D).

A mixed 2-Jordan homomorphism is said to be mixed Jordan homomorphism. It is clear that every
n-homomorphism is an mixed (n — 1)-Jordan homomorphism for n > 3, and every mixed n-Jordan homo-
morphism is (1 + 1)-Jordan homomorphism but the converse is not true in general. The following example
illustrates this fact.

X 0.
0 Y|’
YT is the transpose of matrix Y. Then, for all U € A, we have

Example 2.2. Let A = {[ 0 Y 0o YT

X, Ye MZ(C)}, and define ¢ : A — A by (p([X O]) = [X 0 ], where

P = p(U)" = [)f) (YQ)T].

Thus, @ is n-Jordan homomorphism, but ¢ is not mixed (n — 1)-Jordan homomorphism. In fact, for

X 0 A 0
a=[y 3] v-[o 5
we get (Y"DB)T % (YN "=DBT. Therefore, p(U"DV) # p(U) " Vp(V).

A leftideal I of an algebra A is a modular left ideal if there exists u € A such that A(es —u) € I, where
Alea —u) = {x —xu : x € A}. The Jacobson radical Rad (A) of A is the intersection of all maximal modular
left ideals of A. An algebra A is called semisimple whenever its Jacobson radical Rad (A) is trivial. For
example, every C*-algebra is semisimple.

Let n be an integer n > 2. Recall that an associative ring R is of characteristic not # if na = 0 impliesa = 0
for every a € R, and R is of characteristic greater than # if nla = 0 implies a = 0 for every a € R.

We bring some trivial observations are as follows:

e It is known that every mixed n-Jordan homomorphism is (n + 1)-Jordan homomorphism, and so by
[4, Theorem 2.2], every mixed n-Jordan homomorphism ¢ between commutative algebras A and B is
(n + 1)-homomorphism.

e Let A be a unital Banach algebra and 8 be a Banach algebra with char(8)> n. By [1, Theorem
2.4], every mixed n-Jordan homomorphism from A into B is an (n + 1)-homomorphism if every Jordan
homomorphism from A into B is a homomorphism. Hence, under such assumptions and that 8 is a
semisimple commutative Banach algebra, every surjective mixed n-Jordan homomorphism ¢ : A — B is
automatically continuous by [1, Corollary 2.5].

Proposition 2.3. Let ¢ be a mixed Jordan homomorphism between algebras A and B. Then

(i) @ is mixed (2n)-Jordan homomorphism for all n € IN.
(ii) if A is unital, then p(x)@(e) = @(e)p(x), where e is the identity of A.
(iii) the mapping Y(x) = @(x)@(e) is a homomorphism.

Proof. Suppose that ¢ is mixed Jordan homomorphism. Then for alla,b € A,
P(@*b) = p(ay’ p(b)- (1)

Replacing b by a?b in (1), gives
p(a'b) = p(@)*p(a’b) = p(a)'p(b).
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Thus(, ;0 is mixed 4-Jordan homomorphism. This argument can be repeated to achieve the desired result of
part (i).
For part (ii), replacing b by b + e in (1), we have

2¢p(ab) = [p@)p(e) + p(e)p(@)]p(b) (2)
for all a, b € A. Switching b by e in (2), we find

2¢(a) = p@)p(e)’ + pe)p(@)p(e) )
for all 2 € A. Multiplying ¢(e) from the left in (3), and using the equality ¢(e)® = ¢(e), we get

20(@)p(e) = p@)p(e) + p(e)p@)p(e)* (4)
for all 2 € A. Similarly,

2¢(e)p(a) = p(e)p(@)p(e)* + p(e)* p@)p(e) )
for all 2 € A. Relations (4) and (5) necessitate that

2pEp@) - p@pe)] = pleY'p@p(e) - p@)p(e) (6)
for all a € A. Multiplying ¢(e) from the right in (6), we arrive at

20(@lpE)p@) - p@)p(e)] = ple)p@eple) — ple)p@)p(e) = 0

foralla € A. Thus,

9(©)°p(a) = p(O)p@)p(e) )
for all a € A. Once more, multiplying ¢(e) from the right in (7), we obtain

P(O)p(@) = P’ p@)p(e). ()

It now follows from (6) and (8) that p(e)p(a) = p(a)p(e), for all a € A. This completes the proof of (ii). By
part (ii) and (2) we see that ¢(ab) = p(a)p(b)p(e), for all a,b € A. It concludes from the last equality that the
mapping 1 is a homomorphism. [

For certain calculations, we use the notation [a, b] = ab — ba which is called the Lie product of a and b. Let
@ : A — B be a map between Banach algebras. Then, we say that 8 is p-commutative if for all a,b € A,
[p(@), @(®)] = 0.

Note that every commutative Banach algebra is I-commutative, where I is the identity map.

a b

0 0]: a,beC}wzth

0 00
the usual sum and product. Define the linear map ¢ : A — B by

ol 8 )l o)

Then, B is non-commutative Banach algebra, but it is p-commutative.

u a b
Example 2.4. (i) Consider the Banach algebras A = {{0 0 c} : u,a,bce C} ,B= {[

a b c

0 0 u” = u. Then, p(XY) = @(YX) and
0 0O

[p(X), (Y)] = 0 for all X,Y € A. We see that ¢ is not 3-Jordan homomorphism and so it is neither mixed Jordan
homomorphism nor 3-homomorphism.

(ii) Let A as the part (i). Consider ¢ : A — C defined via (p(




M. Neghabi et al. / Filomat 34:6 (2020), 1989-2002 1993

Lemma 2.5. Let ¢ be an n-Jordan homomorphism from unital Banach algebra A into p-commutative Banach algebra
B. Then, foralla € A,

P(@) = p(©)" ' p(a) = p(a)p(e)"".
Proof. Let ¢ be a Jordan homomorphism. Then
@((a +3)* = 2(a +2)* +a*) = p(a +3)* = 2¢(a + 2)* + p(a)* )

for all a € A. Let e be the identity of A. By assumption ¢(e) = ¢(e)?, and so (9) gives

2¢(a) = pa)p(e) + p(e)p(a) (10)
for all a € A. On the other hand,
[p@), p(e)] = p(a)p(e) — p(e)p(a) =0, (aeA). (11)

It follows from (10) and (11) that ¢(a) = p(e)p(a) = p(a)p(e), for all a € A. Now, assume that n = 3. Then

((a+2)°=2a+1)°+a’) = pa+2)°-2p@+1)>° + ¢ (12)
for all a € A. Since ¢(e) = ¢(e)*, equation (12) implies that

3¢(a) = 9@)p(e)* + p(e)*p(@) + p(e)p(@)p(e) (13)
for all a € A. By the p-commutativity of 8, we have

p@)p(e) = ple)p(a) (14)

for all a € A. Plugging (13) into (14), we find @(a) = @(e)*p(a) = p(a)p(e)>. Similarly, one can obtain the
result foralln > 4. O

Lemma 2.6. Let A be a unital Banach algebra with unit e, and ¢ : A — B be an n-Jordan homomorphism. Then

9@) = pype"? (1€ A).
Proof. Refer to the proof of Theorem 2.4 from [1]. O

As mentioned before every n-Jordan homomorphism between commutative Banach algebras A and
8 is an n-homomorphism [4, Theorem 2.2]. In view of the proof of this theorem, we see the same result
holds by the weaker condition on 8, as gp-commutativity. However, in the next result, we show that
under some conditions every n-Jordan homomorphism on non-commutative Banach algebras can be an
n-homomorphism.

Theorem 2.7. Every n-Jordan homomorphism ¢ : A — B from unital Banach algebra ‘A into @-commutative
Banach algebra B satisfying the following condition is an n-homomorphism.

P(*) =0= p(x) =0, (x€A). (15)
Proof. Define the mapping 1 : A — B through
P(a) = p@p(e)'?, (a€A).

By Lemma 2.6, i is Jordan homomorphism and 8 is ip-commutative. One the other hand, Lemma 2.5
necessitates that i satisfies condition (15). We wish to show that 1 is a homomorphism. For all a,b € A,
we have

Y(ab + ba) = Pa)yp(b) + P(0)Y(a). (16)
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The 1p-commutativity of 8 implies that equality (16) converts to

P(ab + ba) = 20 (@(b) (17)
for all a,b € A. The mapping v is a Jordan homomorphism and hence
([, bF) = [Y(a), p(O)F = 0 (18)

for all a,b € A. Since ¢ satisfies condition (15), it concludes from (18) that

Y(ab—ba) = 0. (19)
for all a,b € A. Plugging (17) into (19), we have 1(ab) = (a)i(b). By Lemma 2.5, we get

Y@p(e) = p@pe)"™ = @a). (20)
for all a € A. It follows from Lemma 2.5 and relation (20) that

plmaz---ay) = Plamaz---a,)p(e)
= P(a)P(a) - Plan)ple)
= (@@ ) (p@)pe)"?) - (pan)pe)"*)p(e)
= @) p@)pe)"
= @a)pa)- - pa,).

forallay,az,--- ,a, € A. Therefore, ¢ is an n-homomorphism. [

Theorem 2.8. Let ¢ bea 3-Jordan homomorphism from algebra A into p-commutative algebra B such that ¢([a, b]) =
0 for any a,b € A. Then, ¢ is mixed Jordan homomorphism.

Proof. By assumption

P(°) = p(x)°, (21)
for all x € A. Replacing x by a + b in (21), we obtain

@(aba + ba* + a*b + b*a + ab® + bab) = 3[p(a)*p(b) + p(a)p(b)*] (22)
for all a, b € A. Switching b by —b in (22), we get

@(—aba — ba® — a*b + b*a + ab® + bab) = 3[-p(a)*p(b) + p(a)p(b)*] (23)
for all a,b € A. Relations (22) and (23) show that

@(b*a + ab® + bab) = 3p(@)p(b)*, (a,b € A). (24)
Since ¢([a, b]) = 0, we have

p(b*a) = p(ab®) = p(bab), (25)

for all a,b € A. It follows from (24) and (25) that p(b%a) = @(b)*@(a), for all a,b € A. Therefore, ¢ is mixed
Jordan homomorphism. [

As a consequence of Theorem 2.8, we have the next result.

Corollary 2.9. Let ¢ be a mapping from algebra A into @-commutative Banach algebra B, such that ¢([a,b]) = 0
foralla,b € A. Suppose 6 > 0 and ¢ satisfy |p(a®) — p(a)?| < 6. Then, ¢ is a mixed Jordan homomorphism.
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The following theorem is a well-known result, due to Silov, concerning the automatic continuity of
homomorphisms between Banach algebras.

Theorem 2.10. Let A and B be Banach algebras such that 8B is commutative and semisimple. Then, every homo-
morphism @ : A — B is automatically continuous.

In 1967, B. E. Johnson proved that if ¢ : A — B is a surjective homomorphism between a Banach
algebra A and a semisimple Banach algebra B, then ¢ is automatically continuous and so the Johnson’s re-
sult extended to n-homomorphism in [9]. One may refer to [7] for automatic continuity of 3-homomorphism.

We say that a linear map ¢ : A — B is a co-Jordan homomorphism if for all a € A, p(a®) = —¢p(a)*. For
example, the function ¢ : R — R defined by ¢(a) = —a is a co-Jordan homomorphism. Here, we show that
Theorem 2.10 holds for mixed Jordan homomorphisms.

Theorem 2.11. Let ¢ be a mixed Jordan homomorphism from Banach algebra A into C. Then, ¢ is automatically

continuous.
Proof. Suppose that there exist xp € A such that |lxg|| < 1 and @(xg) = 1. Take y = Y..74 xg- Then,
X0 + x5y = y — x3, and so
1+ () = pxo) + p(0)*p(y) = p(xo + x5Y) = () = P(5)-

Thus, ¢(x3) = —1. Since ¢ is mixed Jordan homomorphism, we have

p(a*b) = p(a)*p(b) (26)
for alla, b € A. Replacing a by u + v in (26), we get

P((uv + ou)b) = 2¢(u)p(v)p(b) (27)
for all a,u,v € A. Interchanging b by x3 in (27), we obtain

P((uv + vu)xg) = 20W)P)P(x5) = ~20(W)p(v) (28)
for all a,u,v € A. Substituting (1, v) into (u?,x3) in (28), we arrive at

PUxg) + i) = —20()p(xg) = 20(%) (29)

for all u € A. In addition, ¢(x]) = p(x0)*¢(x2) = -1, and

P(2uPx2) = P02 p(uPx3) = (oY pulp(2) = —p(u)?,

for all u € A. By (29), we have ¢(u)? = —p(u?) for all u € A. Hence, ¢ is co-Jordan homomorphism and it is
continuous by [22, Proposition 2.1]. If there is no x¢ € A such that ||xo|]| < 1 and @(xg) = 1, then for all x € A
with ||x]| < 1 we have |p(x)| < 1. Therefore, ¢ is continuous. [

The upcoming corollary is a direct consequence of Theorem 2.11.

Corollary 2.12. Let ¢ be a mixed Jordan homomorphism from Banach algebras A into commutative semisimple
Banach algebra B. Then, ¢ is automatically continuous.

Proof. Let (a,) € A, a, — 0 and @(a,) — b. Suppose that h € N(B), where M(B) is the maximal ideal
space of 8. Then, & o ¢ is a mixed Jordan homomorphism and so it is continuous by Theorem 2.11. Thus,

h() = lim h(p(a,)) = limh o p(a,) = 0.

Since 8B is semisimple, we have b = 0, and thus ¢ is continuous by the close graph theorem. [
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The next result is the same as Theorem 2.10 for 3-homomorphism.

Corollary 2.13. Let ¢ be a 3-homomorphism from Banach algebras A into commutative semisimple Banach algebra
B. Then, ¢ is automatically continuous.

A linear map ¢ between unital Banach algebras A and 8 is called unital if p(e) = ¢/, where e and ¢’ are
the unit element of A and B, respectively.

Theorem 2.14. Every unital mixed (n + 1)-Jordan homomorphism ¢ : A — B is a homomorphism.

Proof. Let ¢ be a mixed (1 + 1)-Jordan homomorphism. Then

P(a"*'b) = p(@)" p(b) (30)
forall a,b € A. Since ¢ is unital, by putting b = ¢ in (30) we get
(P(ﬂn+l) — (P(a)rHl (31)

for all a € A. Replacing a by a + Ae in (31), where A is a complex number, and compare powers of A, we
arrive at

(@) = p(a’) (32)
for all a € A. Hence, ¢ is a Jordan homomorphism. Interchanging a by a + Ae in (30), we obtain
Pla"'b) = (p(a) + Ap(@)"™ p(b) (33)

for all a,b € A. Comparing powers of A" in (33) and using @(e) = ¢, one deduce that ¢ is a homomor-
phism. O

The next corollary follows immediately from Theorem 2.14.
Corollary 2.15. Every unital mixed (n+1)-Jordan homomorphism ¢ : A — B is a mixed n-Jordan homomorphism.

The following example shows the condition being unital for Banach algebras A and B in Theorem 2.14
is essential.

Example 2.16. Let

0 a b
A=20 0 c|: abcelR},
0 0O

and define ¢ : A — Avia

0 ab 0 a 0

(p[O 0 c]:[o 0 c}.

0 00 0 0O

Then, p(X?) # ¢(X)?, for all X € A. Hence, ¢ is not Jordan homomorphism, and so it is not homomorphism. But
foralln >3 and all X,Y € A, we have p(X"Y) = p(X)"@(Y). Therefore, ¢ is mixed n-Jordan homomorphism for all
nx3.

Corollary 2.17. Let ¢ : A — B be a unital mixed n-Jordan homomorphism. Then, ¢ is continuous under one of
the following conditions.

(i) B is semisimple and commutative.
(ii) B is semisimple and @ is surjective.
(iif) B is C*-algebra and ¢ is surjective.
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Proof. By Theorem 2.14, ¢ is a homomorphism and so it is n-Jordan homomorphism. Thus, the result
follows from Corollaries 2.9, 2.10 and 2.11 of [22]. O

In the upcoming result, we prove the converse of Theorem 2.14 under some conditions. The idea of the
proof is taken from [8, Theorem 2.6]. We include the proof for the sake of completeness.

Theorem 2.18. Let A, B be unital Banach algebras and ¢ : A — B be a unital mixed n-Jordan honmomorphism.
Suppose that there exists an idempotent p in A such that ¢(ab) = @(a)p(b) for all a,b,x € A with ab = px. Then,

n+1

@ px) = p(a)" L o(px) for all a,x € A. In particular, @ is mixed (n + 1)-Jordan honmomorphism.

Proof. Let e be a until element of A and a € A. For A € C, with |A] < 1/|lal|, e — A is invertible and
(e—Aa)~t =Y 7, A"a". Then

o(px) = p((e — Aa)(e - )\a)_lpx)
= p(e = Aa)p((e — Aa)~'px)

= (p(e) - Ap(@)g [Z A”a"px]
n=0

= pOp(px) + ¢ [Z A"a"px] ~ Ap(a)p [Z A”a"px]
n=0

n=1

= p(px) + ) A"p(@"px) - Ap(a)p {Z A"a”pr
n=1 n=0

= p(px) + ) A" @ px) - pla) ) A p(a"px)
n=0

n=0

Hence, Yo"y A" p(@"px) — p(a)p(a'px)] = 0 for A € C, with [A| < 1/|la||. Thus, p(a**px) = p(a)p(a"px) for
n=0,1,2,--- . Forn > 1, we have

)n+1

p@)pa"px) = p@)p@)"ppx) = p@)" (px).

n+1

Therefore, p(a™'px) = p(a)"p(px) for all a,x € A. If we take p = ¢, we get p(a""1x) = p(a)" ¢(x). This
finishes the proof. [

We should note that Theorem 2.18 is true if “mixed” removed from it. In the following result, under
certain conditions, we prove that each mixed Jordan homomorphism is a mixed n-Jordan homomorphism.

Proposition 2.19. Let ¢ : A — B be a unital mixed Jordan homomorphism. Then, @ is mixed n-Jordan homomor-
phism.

Proof. The proof follows from Theorem 2.14. [J
Proposition 2.20. Let ¢ : A — B be a linear map such that
lp(a"b) = p(@)" ()| < Sllall" b1l (34)
foralla,b € Aand for some 6 > 0. If B is commutative and semisimple, then @ is continuous.
Proof. Replacing b by a in (34), we get
@) = @@l < dllall™*". (35)

Thus, ¢ is almost n-Jordan homomorphism and so it is continuous by [22, Theorem 3.4]. O
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Theorem 2.21. Let ¢ : A — B be a linear map such that
llp(a"b) = @) @@l < 5(lall + [Ibll), (36)

foralla,b € Aand for some 6 > 0. Then, ¢ is (n + 1)-Jordan homomorphism.

Proof. At first, we consider the inequality

llp(a"b) = (@) @@l < o(lall - lIbll), (37)

for all a,b € A. Putting a = b in (37), we get p(a"™) = ¢(a)"*! and so ¢ is (n + 1)-Jordan homomorphism.
Now, assume that

llp(a"b) — (@) @®)Il < o(lall + [1bll) (38)
for all a,b € A. Replacing b by a in (38), we find
llp@™!) = play™ || < 28]lall (39)

for all a € A. Setting a = 2"x, we obtain
m+1

02
(™) = ()"l < s (40)

for all x € A. Letting m — oo, we obtain @(x"*!) = p(x)"*! and hence ¢ is (1 + 1)-Jordan homomorphism. [

3. Pseudo n-Jordan homomorphisms

We commence this section with the concept of pointwise pseudo n-Jordan for homomorphisms which
is different from pseudo n-Jordan.

Definition 3.1. Let A and B be rings (algebras), and 8 be a right [left] A-module. We say that a linear
mapping i : A —> Bis a pointwise pseudo n-Jordan homomorphism if for each a € A there exists an element
w, € A such that Y(a"w,) = P(a)" - w, [(P(w.a") = wa - P(a)")]. We say that w, is a Jordan coefficient of ¢
depended on a.

It is obvious that every n-Jordan homomorphism from unital Banach algebra A into 8 which is unitary
Banach A-module is a pseudo n-Jordan homomorphism. Moreover, we can see that for a pseudo n-Jordan
homomorphism, there are infinitely many Jordan coefficient. However, every pseudo n-Jordan homomor-
phism is a pointwise pseudo n-Jordan homomorphism. Now, let ¢ be a mixed n-Jordan homomorphism
such that has a fixed point, say w. Then, ¢ is a pseudo n-Jordan homomorphism with a Jordan coefficient
w. The following example indicates this fact that the converse is false in general.

Uz(]R)z{[g ZZ] a,b,ceIR}

be the algebra of 2 X 2 matrices with the usual sum and product. Let 1 : Up(R) — Uy (IR) be a linear map defined by

a b a b
s c)-15 ol
For every n € IN, we have

a b B a" Zﬂ;lan—k—lbck [ a Zn;lan—k—lbck
ol t])-ell § FET )AL

Example 3.2. Let
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o 2[5 8115 )

Thus, 1 is not an n-Jordan homomorphism and thus it is not mixed (n — 1)-Jordan homomorphism. Assume that

o6 efe)-el5 )

s
0 0
Therefore, 1 is a pseudo n-Jordan homomorphism. On the other hand, for each a,b,c € R, take

and

t,s € R Puta):[

s —gcln Z.Z;ZZ a"k—2pck
Wa e = 0 0 .

tlooe| g & ])=ensl[ 5 ]

This means that  is a pointwise pseudo n-Jordan homomorphism. Note that

R e e ] e e ke

Here, we remind that part (3) of [8, Example 2.2] is not true. Indeed, it is corrected in Example 3.2.
It is known that every Jordan homomorphism is n-Jordan homomorphism [21]. The next example shows
that the same result is false for mixed Jordan homomorphisms and pseudo n-Jordan homomorphisms.

Then,

n

S—

Example 3.3. Let A be a Banach algebra and f : A — A be a homomorphism. Define ¢ : A — A by
@(x) = —f(x). Then, @ is a 3-homomorphism. Thus,
() = p(xYp(@),

and so ¢ is a mixed Jordan homomorphism, but ¢ is not a mixed 3-Jordan homomorphism. Suppose that ¢ has a fixed
point, say a. Hence @(a) = a. Thus,

P(*a) = p()*p(a) = p(x)a.
Therefore, @ is a pseudo Jordan homomorphism with a Jordan coefficient a, but @ is not a pseudo 3-Jordan homomor-

phism. Note that for all n € IN, @ is a pseudo (2n)-Jordan homomorphism with a Jordan coefficient a, but ¢ is not a
pseudo (2n + 1)-Jordan homomorphism for all n € IN.

In the sequel, ( Z ) is the binomial coefficient defined for all n,k € N with n > k by n!/(k!(n — k)!).

Here and subsequently, let A and 8 be unital Banach algebras and 8 be a right A-module. Besides, it
is assumed that ¢ between unital Banach algebras A and 8 is unital. The following result is the converse
of [8, Theorem 2.3].

Theorem 3.4. Every unital pseudo (n + 1)-Jordan homomorphism ¢ : A — B with a Jordan coefficient w is a
pseudo n-Jordan homomorphism.

Proof. We firstly have
(@ +1ey"'w) = (pla +10)"" -w, (41)
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for alla,b € A, where l is an integer with 1 < < n. It follows from equality (41) and assumption that

2:#(”?1)@mm»—¢WY¢ﬂ=o, 1 <I<n), (42)
i=1
for all 4 € A. We can rewrite the equalities in (42) as follows

1 1 - 1 T'i(a, w) 0

2 22 ... 2" || Tala,w) 0

3 3 ... 3 T3(a,w) |=| O

n n* --- T,(a,w) 0

n+1

i
that the above square matrix is invertible. This implies that I';(a,w) =0 foralll <i<nandalla € A In
particular, I';,(a, w) = 0. This means that ¢ is a pseudo n-Jordan homomorphism. [J

for all a € A, where I'i(a, w) = ( )[(p(uiw) — @) -w] for all 1 <i < n. Itis shown in [4, Lemma 2.1]

The next corollary is a consequence of Theorem 3.4.

Corollary 3.5. Every unital (n + 1)-Jordan homomorphism ¢ : A — B is an n-Jordan homomorphism.

Example 3.6. Let

0 a b
A=20 0 c|: abcelR},
0 0O

and define ¢ : A — A by

0 a b 0 a 0
o[|0 0 c|[=]0 0 c].
0 0 O 0 0 O

Then, for all X € A, p(X?) # ¢(X)*. Hence, ¢ is not Jordan homomorphism, but for all n > 3 and all X € A, we
have p(X") = (X)". Therefore, ¢ is n-Jordan homomorphism for all n > 3. Assume that s,t,r € R is arbitrary. Put

0 s t
w=|(0 0 rf.

0 00

Foralln € N and X € A, we get p(X"w) = ¢(X)"w. Therefore, ¢ is a pseudo n-Jordan homomorphism. In other
words, we showed the condition that being unital for Banach algebras A and B in Corollary 3.5 is essential.

Suppose that A is a Banach algebra and M is an A-module. Let w € A. Then, w is called a left (right)
separating point of M if the condition wx = 0 (xw = 0) for x € M implies that x = 0 [16].

In the following result, under mild conditions, we prove that each pseudo Jordan homomorphism is
n-Jordan homomorphism.

Theorem 3.7. Let ¢ : A — B be a unital pseudo Jordan homomorphism with a Jordan coefficient w such that w is
a right separating point of B. Then, ¢ is n-Jordan homomorphism.

Proof. Assume that ¢ is a pseudo Jordan homomorphism. Then

p@*w) = p(a)’ - w (43)
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for all 2 € A. Replacing a by a + b in (43), we get
plab + bayw] = [p@)p(®) + pL)p@)] - w (44)
forall a,b € A. Since ¢ is unital, one can show that
ol(ab + ba)yw] = p(ab + ba) - w (45)
for alla, b € A. It follows from (44) and (45) that

(p(ab + ba) - [p(@)p(b) + pb)p(@)]) - w = 0 (46)
Since w is a right separating point of 8, we get
@(ab + ba) = p(a)p(b) + p(b)p(a)

forall a,b € A. Thus, ¢ is a Jordan homomorphism. Now, by Lemma 2.6 of [22], ¢ is n-Jordan homomor-
phism. O

From Theorem 3.7, [4, Theorem 2.3] and [1, Corollary 2.5], we have the following trivial consequence.

Corollary 3.8. By hypotheses of Theorem 3.7, @ is n-homomorphism if either

(i) A and B are commutative, or
(ii) B is commutative and semisimple.

Corollary 3.9. Let ¢ : A — B be a unital pseudo n-Jordan homomorphism with a Jordan coefficient w such that w
is a right separating point of B. Then, @ is continuous with each of the following conditions.

(i) B is semisimple and commutative.
(if) B is semisimple and @ is surjective.
(iii) B is C*-algebra and ¢ is surjective.

Proof. By Theorem 3.4, ¢ is pseudo Jordan homomorphism and by Theorem 3.7 it is n-Jordan homomor-
phism. Thus, the result follows from Corollaries 2.9, 2.10 and 2.11 from [22]. O

Theorem 3.10. Let ¢ : A — B be a unital pseudo 3-Jordan homomorphism with a Jordan coefficient w such that
w is a right separating point of B. Suppose that B is commutative and

p(abcw) = p(acbw), (a,b,c € A). 47)
Then, @ is a homomorphism.
Proof. Assume that e is an unit element of A. Letting a = e in (47), we get

p(bcw — cbw) =0
for all b, c € A. Thus, p((ab)cw) = p(c(ab)w) = @(c(ba)w) and hence
P(a(be)w) = p((be)aw) = p(blca)w) = p(b(acw)

foralla,b,c € A. Thatis

plabcw) = p(xyzw), (48)

whenever (x, y, z) is a permutation of (4, b, ¢). Since ¢ is a pseudo 3-Jordan homomorphism, p(a3w) = ¢(a)*-w,
for all a € A. Replacing a by a + b, we get

@[(ab® + b*a + a®b + ba® + aba + bab)w] = [3p(a)p(b)* + 3p(a)*e(b)] - w (49)
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for all a,b € A. Interchanging b by —b in (49), we obtain

(p[(ab2 + b*a — a*b — ba® — aba + bab)w] = [?;(p(a)go(b)2 - 3g0(a)2qo(b)] W (50)

for all a,b € A. Relations (49), and (50) imply that

@l(ab* + b*a + bab)w] = [3(p(a)qo(b)2] - (51)

forall a,b € A. Replacing b by b — c in (51), we deduce

@[(abc + acb + bac + bea + cab + cba)w] = [6¢(a)p(b)p(c)] - w (52)

foralla,b,c € A. It follows from (48) and (52) that

plabcw) = [p(@)pD)p(c)] - w (53)

foralla,b,c € A. Putc = ein (53), we arrive at

(p(ab) = [p@)p®)]) -w =0

for all a,b € A. Since w is a right separating point of B, we get

p(ab) = p(a)pb), a,be A.

Thus, ¢ is a homomorphism. [J

References

(1]
[2]
[3]
(4]
(5]
(6]
(71
(8]

[9

[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]
[19]
[20]
[21]

[22]

G. An, Characterization of n-Jordan homomorphism, Linear Multilinear Algebra. 68(4) (2018), 671-680.

G. Ancochea, Le théoréme de von Staudt en géomeétrie projective quaternionienne, J. Reine Angew. Math. 184 (1942), 193-198.
A. Bodaghi, n-homomorphism amenability, Proc. Rom. Aca., Series A, 14, No.2 (2013), 101-105.

A. Bodaghi and H. Inceboz, n-Jordan homomorphisms on commutative algebras, Acta. Math. Univ. Comenianae. 87 (1), (2018),
141-146.

A. Bodaghi and H. Inceboz, Extension of Zelazko's theorem to n-Jordan homomorphisms, Adv. Pure. Appl. Math. 10(2) (2019),
165-170.

A. Bodaghi and M. Peyvaste, 3-homomorphism amenability of Banach algebras, U.P.B. Sci. Bull., Series A, 77, Iss. 2 (2015),
105-116.

J. Braci¢ and M. S. Moslehian, On automatic continuity of 3-homomorphisms on Banach algebras, Bull. Malaysian Math. Sci. Soc.
30 (2), (2007), 195-200.

A. Ebadian, A. Jabbari and N. Kanzi, n-Jordan homomorphisms and Pseudo n-Jordan homomorphisms on Banach algebras,
Mediterr. J. Math., 14 (241), (2017), 1-11.

M. Eshaghi Gordji, A. Jabbari and E. Karapinar, Automatic continuity of surjective #- homomorphisms on Banach algebras, Bull.
Iranian Math. Soc. 41, No. 5, (2015), 1207-1211.

E. Gselmann, On approximate n-Jordan homomorphisms, Annales Math. Silesianae. 28 (2014), 47-58.

Sh. Hejazian, M. Mirzavaziri and M. S. Moslehian, n-homomorphisms, Bull. Iranian Math. Soc. 31 (1), (2005), 13-23.

I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1), (1956), 331-341.

N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (3), (1950), 479-502.

I. Kaplansky, Semi-automorphisms of rings, Duke Math. J. 14 (1947), 521-525.

Y. H. Lee, Stability of n-Jordan homomorphisms from a normed algebra to a Banach algebra, Abst. Appli. Anal. 2013, Art. ID
691025, (2013), 5 pages.

F. Lu, Characterizations of derivations and Jordan derivations on Banach algebras, Linear Alg. Appl. 430, (2009), 2233-2239.

T. Miura, S. E. Takahasi, and G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, J. Ineq.
Appl. 2005 (4), (2005), 435—441.

W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83-85.
A. Zivari-Kazempour, A characterization of Jordan homomorphism on Banach algebras, Chinese J. Math. 2014 (2014), 3 pages.
A. Zivari-Kazempour, A characterization of 3-Jordan homomorphism on Banach algebras, Bull. Aust. Math. Soc. 93 (2), (2016),
301-306.

A. Zivari-Kazempour, A characterization of Jordan and 5-Jordan homomorphisms between Banach algebras, Asian-Eropean J.
Math. 11 (2), (2018), 1-10.

A. Zivari-Kazempour, Automatic continuiuy of n-Jordan homomorphisms on Banach algebras, Commun. Korean Math. Soc. 33
(1), (2018), 165-170.



