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Abstract. In this paper, we propose a three-step iteration process and show that this process converges
faster than a number of existing iteration processes. We give a numerical example followed by graphs to
validate our claim. We prove strong and weak convergence results for approximating common fixed points
for two nonexpansive mappings. Again we reconfirm our results by examples and tables. Further, we
provide some applications of the our iteration process.

1. Introduction

A point which always remains invariant when subject to a transformation is referred to as a fixed point.
The existence of such points has a significant role in various fields of mathematics which include: Topology,
Algebraic Topology, Nonlinear Operators, Differential Equations (both ordinary and partial) and Functional
Analysis. Many operator equations, by suitable manipulations can be written in the form x = Px wherein
the solution of the equation is represented by a fixed point. By using techniques of fixed point theory, one
can effectively obtain appropriate and adequate solutions of operator equations representing phenomena
occurring in different fields of nonlinear sciences. Thus, the aim of finding solutions to these equations is
to locate the fixed point and its approximation.
Approximation of fixed points in different domains for nonlinear mappings using the different iterative
processes is the thrust of fixed point theory. Owing to it’s importance fixed point theory is attracting young
researchers across the world and in the last few years many iterative processes have been obtained in
different domains. To name a few, we have Mann [12], Ishikawa [8], Noor [13], Agarwal et al. [2], Abbas
and Nazir [1], Thakur et al. [19, 20], Picard-Mann hybrid [9], RK [15] and M∗ [21].
Following Khan [9], Ullah and Arshad [22] modified his Picard-Mann hybrid iteration process and named
it M-iteration process and they, without giving any analytical proof, gave an example to show that it
converges faster than Picard-S [6] and S iteration [2]. In order to define their iteration, let D be a nonempty
closed convex subset of a uniformly convex Banach space A and P : D → D be a nonexpansive mapping.

2010 Mathematics Subject Classification. Primary 47H09; Secondary 47H10
Keywords. Common fixed point, Strong and weak convergence, Contractive-like mappings, Nonexpansive mappings, Iteration

process
Received: 27 April 2019; Revised: 15 October 2019; Accepted: 20 November 2019
Communicated by Vasile Berinde
Corresponding author: Safeer Hussain Khan
Research supported by University Grants Commission, India
Email addresses: c.garodia85@gmail.com (Chanchal Garodia), izharuddin1@jmi.ac.in (Izhar Uddin), safeer@qu.edu.qa

(Safeer Hussain Khan)



C. Garodia et al. / Filomat 34:6 (2020), 2047–2060 2048

Then, a sequence { jn} is constructed from arbitrary j1 ∈ D by:
hn = (1 − %n) jn + %nPjn
in = Phn

jn+1 = Pin

(1.1)

for each n ∈N and {%n} is a sequence in (0, 1).
Motivated and inspired by the research going on in this direction,we introduce a new modified iteration

process for approximating common fixed points of two nonexpansive mappings to achieve a better rate
of convergence. Let P1,P2 : D → D be two nonexpansive mappings, then the sequence {1n} is generated
iteratively by 11 ∈ D and 

en = (1 − %n)1n + %nP11n

fn = P1((1 − ςn)en + ςnP2en)
1n+1 = P2 fn

(1.2)

for each n ∈N and {%n} and {ςn} are sequences in (0, 1).
Obviously, our process deals with the common fixed points and it is very well-known that a common

fixed point problem has direct link with a minimization process.
Remark:
Note that our process is comparable with the iterative processes mentioned above. For example,

• It reduces to Ullah and Arshad [22] when P1 = P2 = P.

• It is independent of Ullah and Arshad [21] and Thakur et al. [19, 20].

• None of the above mentioned iterative processes deal with common fixed points whereas our process
does.

The aim of this paper is to prove that the newly defined iteration process (1.2) converges faster than
iteration process (1.1) for contractive-like mappings. Also, we prove some weak and strong convergence
results involving the iteration process (1.2) for nonexpansive mappings. Further, we provide a numerical
example to show that our process (1.2) converges faster than a number of existing iteration processes. At the
end, we apply our iteration process to find solution of a variational inequality problem and a constrained
minimization problem.

2. Preliminaries

We begin by recalling some known lemmas and definitions which will be frequently used throughout
the text.
A mapping P : D→ D is said to be nonexpansive if ‖Pq− Pr‖‖ ≤ ‖q− r‖ for all q, r ∈ D. A point k ∈ D is said
to be a fixed point of P if Pk = k. We will denote the set of fixed points of P by F(P).
Definition 2.1. A Banach space A is said to be uniformly convex if for each α ∈ (0, 2] there is a β > 0 such
that for r, q ∈ A with ‖r‖ ≤ 1, ‖q‖ ≤ 1 and ‖r − q‖ > α, we have∥∥∥∥∥ r + q

2

∥∥∥∥∥ < 1 − β.

Definition 2.2. A Banach space A is said to satisfy the Opial’s condition if for any sequence {1n} in A which
converges weakly to 1 ∈ A i.e. 1n ⇀ 1 implies that

lim sup
n→∞

‖1n − 1‖ < lim sup
n→∞

‖1n − y‖

for all y ∈ A with y , 1.
A mapping P : D → A is demiclosed at a ∈ A if for each sequence {1n} in D and each b ∈ A, 1n ⇀ b and
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P1n → a imply that b ∈ D and Pb = a.
The following definitions about the rate of convergence were given by Berinde [4].
Definition 2.3. Let {an} and {bn} be two real sequences converging to a and b respectively. Then, {an}

converges faster than {bn} if lim
n→∞

‖an−a‖
‖bn−b‖ = 0.

Definition 2.4. Let {un} and {vn} be two fixed point iteration processes converging to the same fixed point
p. If {an} and {bn} are two sequences of positive numbers converging to zero such that ‖un − p‖ ≤ an and
‖vn − p‖ ≤ bn for all n ≥ 1, then we say that {un} converges faster than {vn} to p if {an} converges faster then
{bn}.
Next, we list two lemmas which will be useful in our subsequent discussion.
Lemma 2.1. ([18]) Let D be a nonempty closed convex subset of a uniformly convex Banach space A and P
a nonexpansive mapping on D. Then, I − P is demiclosed at zero.
Lemma 2.2. ([16]) Let A be a uniformly convex Banach space and { jn} be any sequence such that 0 < p ≤
jn ≤ q < 1 for some p, q ∈ R and for all n ≥ 1. Let {un} and {vn} be any two sequences of A such that
lim sup

n→∞
‖un‖ ≤ r, lim sup

n→∞
‖vn‖ ≤ r and lim sup

n→∞
‖ jnun + (1 − jn)vn‖ = r for some r ≥ 0. Then, lim

n→∞
‖un − vn‖ = 0.

As a background of our exposition, we now mention some contractive mappings.
Suppose that for a mapping P : D→ D, there exist real numbers a, b, c satisfying 0 < a < 1, 0 < b, c < 1

2 such
that, for each pair x, y ∈ D, at least one of the following is true:

(z1) ‖Px − Py‖ ≤ a‖x − y‖,
(z2) ‖Px − Py‖ ≤ b(‖x − Px‖ + ‖y − Py‖),
(z3) ‖Px − Py‖ ≤ c(‖x − Py‖ + ‖y − Px‖).

(2.1)

A mapping P satisfying the contractive conditions (z1), (z2) and (z3) in (2.1) is called a Zamfirescu operator
[23]. An operator satisfying condition (z2) is called a Kannan operator, while the mapping satisfying
condition (z3) is called a Chatterjea operator. As shown in [5], the contractive condition (2.1) leads to(b1) ‖Px − Py‖ ≤ δ‖x − y‖ + 2δ‖x − Px‖ i f one uses (z2)

(b2) ‖Px − Py‖ ≤ δ‖x − y‖ + 2δ‖x − Py‖ i f one uses (z3),
(2.2)

for all x, y ∈ D, where δ := max{a, b
1−b ,

c
1−c }, δ ∈ [0, 1), and it was shown that this class of operators is wider

than the class of Zamfirescu operators. Any mapping satisfying condition (b1) or (b2) is called a quasi-
contractive operator.
Osilike and Udomene [14] considered operator P for which there exist real numbers L ≥ 0 and δ ∈ [0, 1)
such that for all x, y ∈ D,

‖Px − Py‖ ≤ δ‖x − y‖ + L(‖x − Px‖). (2.3)

Imoru and Olantiwo [7] gave a more general definition: An operator P is called a contractive-like operator
if there exists a constant δ ∈ [0, 1) and a strictly increasing and continuous function ϕ : [0,∞)→ [0,∞) with
ϕ(0) = 0 such that for each x, y ∈ D,

‖Px − Py‖ ≤ δ‖x − y‖ + ϕ(‖x − Px‖). (2.4)

3. Rate of Convergence Results

In this section, first we show that our iteration process (1.2) converges faster than the M-iteration process
(1.1) for contractive-like mappings. It must be noted here that Ullah and Arshad [22] never gave the rate of
convergence of their process analytically. They just gave an example. However, we not only give the proof
analytically but also validate with a nontrivial example.
Theorem 3.1. Let D be a nonempty closed convex subset of a Banach space A and P1,P2 : D → D be two
contractive-like mappings as in (2.4) with F(P1) ∩ F(P2) , ∅. If {1n} is a sequence defined by (1.2), then {1n}
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converges faster than { jn} given by the iteration process (1.1).
Proof. From (1.2) and (2.4), for any k ∈ F(P1) ∩ F(P2),

‖en − k‖ = ‖(1 − %n)1n + %nP11n − k‖
≤ (1 − %n)‖1n − k‖ + %n‖P11n − k‖
≤ (1 − %n)‖1n − k‖ + %nδ‖1n − k‖
= (1 − (1 − δ)%n)‖1n − k‖

and

‖ fn − k‖ = ‖P1((1 − ςn)en + ςnP2en) − k‖
≤ δ(‖(1 − ςn)en + ςnP2en − k‖)
≤ δ((1 − ςn)‖en − k‖ + ςnδ‖en − k‖)
= δ(1 − (1 − δ)ςn)‖en − k‖
≤ δ(1 − (1 − δ)ςn)(1 − (1 − δ)%n)‖1n − k‖.

As, {%n}, {ςn} are sequences in (0, 1), we can find %n, ςn ∈ R such that %n ≤ % < 1 and ςn ≤ ς < 1 for all n ∈N.
So,

‖1n+1 − k‖ = ‖P2 fn − k‖
≤ δ‖ fn − k‖
≤ δ2(1 − (1 − δ)ςn)(1 − (1 − δ)%n)‖1n − k‖
≤ δ2(1 − (1 − δ)ς)(1 − (1 − δ)%)‖1n − k‖
...
≤ δ2n(1 − (1 − δ)ς)n(1 − (1 − δ)%)n

‖11 − k‖.

Now, for k ∈ F(P) using (1.1), we have

‖hn − k‖ = ‖(1 − %n) jn + %nPjn − k‖
≤ (1 − %n)‖ jn − k‖ + %n‖Pjn − k‖
≤ (1 − %n)‖ jn − k‖ + %nδ‖ jn − k‖
= (1 − (1 − δ)%n)‖ jn − k‖

and

‖in − k‖ = ‖Phn − k‖
≤ δ‖hn − k‖
≤ δ(1 − (1 − δ)%n)‖ jn − k‖.

Thus,

‖ jn+1 − k‖ = ‖Pin − k‖
≤ δ‖in − k‖
≤ δ2(1 − (1 − δ)%n)‖ jn − k‖
≤ δ2(1 − (1 − δ)%)‖ jn − k‖
...
≤ δ2n(1 − (1 − δ)%)n

‖ j1 − k‖.

Let

bn = δ2n(1 − (1 − δ)%)n
‖ j1 − k‖

and

an = δ2n(1 − (1 − δ)ς)n(1 − (1 − δ)%)n
‖11 − k‖.
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Then,

an
bn

=
δ2n(1−(1−δ)ς)n(1−(1−δ)%)n

‖11−k‖
δ2n(1−(1−δ)%)n‖ j1−k‖

→ 0 as n→∞.

Hence, {1n} converges faster than { jn}.

Theorem 3.2. Let D be a nonempty closed convex subset of a Banach space A and P1,P2 : D → D be two
contractive-like mappings with F(P1) ∩ F(P2) , ∅. If {1n} is a sequence defined by (1.2), then {1n} converges
to a common fixed point of P1 and P2.
Proof. From (1.2), for any k ∈ F(P1) ∩ F(P2),

‖en − k‖ = ‖(1 − %n)1n + %nP11n − k‖
≤ (1 − %n)‖1n − k‖ + %n‖P11n − k‖
≤ (1 − %n)‖1n − k‖ + %nδ‖1n − k‖
= (1 − (1 − δ)%n)‖1n − k‖

and

‖ fn − k‖ = ‖P1((1 − ςn)en + ςnP2en) − k‖
≤ δ(‖(1 − ςn)en + ςnP2en − k‖)
≤ δ((1 − ςn)‖en − k‖ + ςnδ‖en − k‖)
= δ(1 − (1 − δ)ςn)‖en − k‖
≤ δ(1 − (1 − δ)ςn)(1 − (1 − δ)%n)‖1n − k‖.

As, {%n}, {ςn} are sequences in (0, 1) and 0 ≤ δ < 1, we have (1 − (1 − δ)%n) < 1 and (1 − (1 − δ)ςn) < 1 for all
n ∈N. So,

‖1n+1 − k‖ = ‖P2 fn − k‖
≤ δ‖ fn − k‖
≤ δ2(1 − (1 − δ)ςn)(1 − (1 − δ)%n)‖1n − k‖
≤ δ2

‖1n − k‖
...
≤ δ2n

‖11 − k‖.

Since, 0 ≤ δ < 1, we get

lim
n→∞

δn = 0.

Thus,

lim
n→∞
‖1n+1 − k‖ = 0.

Now, we present an example to show that our process (1.2) converges faster than many iterations
namely: Thakur et. al, M, M∗, Abbas and Nazir, Agarwal, Noor, SP iteration processes for contractive-like
mappings.
Example 1. Let A = R and D = [0, 6]. Let P : D→ D be a mapping defined as

P(x) =

 x
4 x ∈ [0, 3)
x
8 x ∈ [3, 6].

for all x ∈ D.
Proof: Clearly x = 0 is the fixed point of P. First, we prove that P is a contractive-like mapping but not
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a contraction. Since P is not continuous at x = 3 ∈ [0, 6], so P is not a contraction. We show that P is a
contractive-like mapping. For this, define ϕ : [0,∞)→ [0,∞) as ϕ(x) = x

6 . Then, ϕ is a strictly increasing as
well as continuous function. Also, ϕ(0) = 0.
We need to show that

‖Px − Py‖ ≤ δ‖x − y‖ + ϕ(‖x − Px‖) (A)

for all x, y ∈ [0, 6] and δ is a constant in [0, 1).
Before going ahead, let us note the following. When x ∈ [0, 3),

‖x − Px‖ =
∣∣∣∣∣∣∣∣x − x

4

∣∣∣∣∣∣∣∣ =
3x
4

and
ϕ

(3x
4

)
=

3x
24

=
x
8
. (3.1)

Similarly, when x ∈ [3, 6],then

‖x − Px‖ =
∣∣∣∣∣∣∣∣x − x

8

∣∣∣∣∣∣∣∣ =
7x
8

and
ϕ

(7x
8

)
=

7x
48
. (3.2)

Now, consider the following cases:
Case A: Let x, y ∈ [0, 3). Using (3.1) we get

‖Px − Py‖ = ‖
x
4 −

y
4 ‖

= 1
4‖x − y‖ + ϕ( 3x

4 )
= 1

4‖x − y‖ + ϕ(‖x − Px‖).

So (A) is satisfied with δ = 1
4 .

Case B: Let x ∈ [0, 3) and y ∈ [3, 6]. Using (3.1), we get

‖Px − Py‖ = ‖
x
4 −

y
8 ‖

≤
1
8‖x − y‖ +

∥∥∥∥ x
8

∥∥∥∥
≤

1
4‖x − y‖ + ϕ( 3x

4 )
= 1

4‖x − y‖ + ϕ(‖x − Px‖).

So (A) is satisfied with δ = 1
4 .

Case C: Let x ∈ [3, 6] and y ∈ [0, 3). Using (3.2), we get

‖Px − Py‖ = ‖
x
8 −

y
4 ‖

≤
1
4‖x − y‖ +

∥∥∥∥ 7x
48

∥∥∥∥
= 1

4‖x − y‖ + ϕ(‖x − Px‖).

So (A) is satisfied with δ = 1
4 .

Case D: Let x, y ∈ [3, 6]. Using (3.2), we get

‖Px − Py‖ = ‖
x
8 −

y
8 ‖

≤
1
4‖x − y‖ +

∥∥∥∥ 7x
48

∥∥∥∥
= 1

4‖x − y‖ + ϕ(‖x − Px‖).

So (A) is satisfied with δ = 1
4 .

Consequently, (A) is satisfied for δ = 1
4 and ϕ(x) = x

6 in all the possible cases. Thus, P is a contractive-like
mapping.
Now, using P, we show that our iteration process converges at a better rate. Set %n = ςn = γn = n

n+1 for each
n ∈N. Then, we get the following Table 1 and Table 2 with the initial value 4.5.
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Step Agarwal Iteration Abbas Iteration Thakur New M Iteration Our Iteration
1 4.5 4.5 4.5 4.5 4.5
2 0.59765625 0.3911132813 0.1098632813 0.158203125 0.09887695313
3 0.099609375 0.03802490234 0.004577636719 0.004943847656 0.001544952393

...
6 0.000224198103 0.00002489541683 1.609878382 × 10−7 7.920898497 × 10−8 1.624403012 × 10−9

7 0.00002516509319 2.005060904 × 10−6 4.517515867 × 10−9 1.7680577 × 10−9 1.294964136 × 10−11

Table 1:

Step Noor Iteration Picard S Iteration Thakur Iteration M∗ Iteration Our Iteration
1 4.5 4.5 4.5 4.5 4.5
2 2.570800781 0.1494140625 0.4790039063 0.1604003906 0.09887695313
3 1.035461426 0.006225585938 0.05987548828 0.004177093506 0.001544952393
...

...
8 0.0005774046657 1.63495252 × 10−10 1.234039751 × 10−7 3.981751878 × 10−12 9.563638943 × 10−14

9 0.00008791758285 4.163073546 × 10−12 6.474899929 × 10−9 4.608509118 × 10−14 6.641415933 × 10−16

10 0.00001221642288 1.021253979 × 10−13 3.157525419 × 10−10 4.986550882 × 10−16 4.384372237 × 10−18

Table 2:

Also, the Figure 1 and Figure 2 shows that our iteration process (1.2) converges faster to x = 0 which is
a fixed point of P.

Figure 1:

Thus, it is evident from the tables as well as graphs that the newly introduced iteration process converges
at a much faster rate than a number of the existing iteration processes.

4. Convergence Results

Our results in this section are just new of their kind. They are independent of, for example, [19, 20] and
[21, 22].They are better in the sense of approximating common fixed points as opposed to [19, 20] and
[21, 22].
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Figure 2:

Lemma 4.1. Let D be a nonempty closed convex subset of a Banach space A and P1,P2 : D→ D be two
nonexpansive mappings with F(P1) ∩ F(P2) , ∅. Let {1n} be defined by the iteration process (1.2). Then
(i) lim

n→∞
‖1n − k‖ exists for all k ∈ F(P1) ∩ F(P2),

(ii) lim
n→∞
‖P11n − 1n‖ = lim

n→∞
‖P21n − 1n‖ = 0.

Proof. Let k ∈ F(P1) ∩ F(P2). Then, using (1.2) we get

‖en − k‖ = ‖(1 − %n)1n + %nP11n − k‖
≤ (1 − %n)‖1n − k‖ + %n‖P11n − k‖
≤ (1 − %n)‖1n − k‖ + %n‖1n − k‖
= ‖1n − k‖

(4.1)

and
‖ fn − k‖ = ‖P1((1 − ςn)en + ςnP2en) − k‖

≤ (1 − ςn)‖en − k‖ + ςn‖P2en − k‖
≤ (1 − ςn)‖en − k‖ + ςn‖en − k‖
= ‖en − k‖
≤ ‖1n − k‖.

(4.2)

Using (4.1) and (4.2) we obtain

‖1n+1 − k‖ = ‖P2 fn − k‖
≤ ‖ fn − k‖
≤ ‖en − k‖
≤ ‖1n − k‖.

Thus, {‖1n − k‖} is bounded and non-increasing for all k ∈ F(P1) ∩ F(P2) which gives that lim
n→∞
‖1n − k‖ exists

for all k ∈ F(P1) ∩ F(P2).
(ii) Let lim

n→∞
‖1n − k‖ = χ.

From (4.1) and (4.2), we get

lim sup
n→∞

‖en − k‖ ≤ χ (4.3)
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and
lim sup

n→∞
‖ fn − k‖ ≤ χ. (4.4)

Now,

χ = lim
n→∞
‖1n+1 − k‖ = lim

n→∞
‖P2 fn − k‖.

So,

lim
n→∞
‖P2 fn − k‖ = χ.

Also,

‖P2 fn − k‖ ≤ ‖ fn − k‖

which gives

χ ≤ lim inf
n→∞

‖ fn − k‖.

So, using (4.4), we have
lim
n→∞
‖ fn − k‖ = χ. (4.5)

From (4.2), we obtain

‖ fn − k‖ ≤ ‖en − k‖,

which yields
χ ≤ lim inf

n→∞
‖en − k‖. (4.6)

Owing to (4.3) and (4.6), we get
lim
n→∞
‖en − k‖ = χ, (4.7)

and hence in view of Lemma 2.2.
lim
n→∞
‖P11n − 1n‖ = 0. (4.8)

Now,

‖1n − en‖ = ‖(1 − %n)1n + %nP11n − 1n‖

= ‖%n(P11n − 1n).‖

So, by using (4.8), we obtain
lim
n→∞
‖1n − en‖ = 0. (4.9)

Consider,

‖ fn − k‖ = ‖P1((1 − ςn)en + ςnP2en) − k‖
≤ ‖(1 − ςn)en + ςnP2en − k‖
≤ ‖en − k‖,

which on using (4.5) and (4.7) gives

lim
n→∞
‖(1 − ςn)en + ςnP2en − k‖ = χ. (4.10)

Also, since P2 is nonexpansive so we obtain

lim sup
n→∞

‖P2en − k‖ ≤ lim sup
n→∞

‖en − k‖ = χ. (4.11)
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Owing to (4.7), (4.10), (4.11) and Lemma 2.2, we obtain

lim
n→∞
‖P2en − en‖ = 0. (4.12)

Now, consider

‖P21n − 1n‖ ≤ ‖P21n − P2en‖ + ‖P2en − en‖ + ‖en − 1n‖

≤ ‖1n − en‖ + ‖P2en − en‖ + ‖en − 1n‖.

On using (4.9) and (4.12), we get

lim
n→∞
‖P21n − 1n‖ = 0.

Now, we prove the weak convergence of iteration process (1.2).
Theorem 4.1. Let D be a nonempty closed convex subset of a uniformly convex Banach space A which
satisfies the Opial’s condition and P1,P2 : D→ D be two nonexpansive mapping with F(P1) ∩ F(P2) , ∅. If
{1n} is defined by the iteration process (1.2), then {1n} converges weakly to a common fixed point of P1 and
P2.
Proof. Let k ∈ F(P1)∩F(P2). Then, from Lemma 4.1 lim

n→∞
‖1n−k‖ exists. In order to show the weak convergence

of the iteration process (1.2) to a common fixed point of P1 and P2, we will prove that {1n} has a unique weak
subsequential limit in F(P1)∩ F(P2). For this, let {1n j } and {1nk } be two subsequences of {1n}which converges
weakly to w and y respectively. By Lemma 4.1, we have lim

n→∞
‖P11n − 1n‖ = lim

n→∞
‖P21n − 1n‖ = 0 and using

the Lemma 2.1, we have I − P1 and I − P2 are demiclosed at zero. So w, y ∈ F(P1) ∩ F(P2).
Next, we show the uniqueness. Since w, y ∈ F(P1)∩F(P2), so lim

n→∞
‖1n−w‖ and lim

n→∞
‖1n− y‖ exists. Let w , y.

Then, by Opial’s condition, we obtain

lim
n→∞
‖1n − w‖ = lim

n j→∞
‖1n j − w‖

< lim
n j→∞

‖1n j − y‖

= lim
n→∞
‖1n − y‖

= lim
nk→∞

‖1nk − y‖

< lim
nk→∞

‖1nk − w‖

= lim
n→∞
‖1n − w‖

which is a contradiction, so w = y. Thus, {1n} converges weakly to a common fixed point of P1 and P2.
Next, we establish some strong convergence results for iteration process (1.2).
Theorem 4.2. Let D be a nonempty closed convex subset of a Uniformly convex Banach space A and
P1,P2 : D → D be two nonexpansive mappings with F(P1) ∩ F(P2) , ∅. If {1n} is defined by the iteration
process (1.2), then {1n} converges to a point of F(P1) ∩ F(P2) if and only if lim inf

n→∞
d(1n,F(P1) ∩ F(P2)) = 0.

Proof. If the sequence {1n} converges to a point k ∈ F(P1) ∩ F(P2), then it is obvious that lim inf
n→∞

d(1n,F(P1) ∩
F(P2)) = 0.
For the converse part, assume that lim inf

n→∞
d(1n,F(P1) ∩ F(P2)) = 0. From Lemma 4.1, we have lim

n→∞
‖1n − k‖

exists for all k ∈ F(P1) ∩ F(P2), which gives

‖1n+1 − k‖ ≤ ‖1n − k‖ for any k ∈ F(P1) ∩ F(P2)

which yields
d(1n+1,F(P1) ∩ F(P2)) ≤ d(1n,F(P1) ∩ F(P2)). (4.13)

Thus, {d(1n,F(P1)∩ F(P2))} forms a decreasing sequence which is bounded below by zero as well, so we get
that lim

n→∞
d(1n,F(P1) ∩ F(P2)) exists. As, lim inf

n→∞
d(1n,F(P1) ∩ F(P2)) = 0 so lim

n→∞
d(1n,F(P1) ∩ F(P2)) = 0.
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Next, we prove that {1n} is a Cauchy sequence in D. Let ε > 0 be arbitrarily chosen. Since lim inf
n→∞

d(1n,F(P1)∩
F(P2)) = 0, there exists n0 such that for all n ≥ n0, we have

d(1n,F(P1) ∩ F(P2)) <
ε
4
.

In particular,

inf{‖1n0 − k‖ : k ∈ F(P1) ∩ F(P2)} <
ε
4
,

so there must exist a b ∈ F(P1) ∩ F(P2) such that

‖1n0 − b‖ <
ε
2
.

Thus, for m,n ≥ n0, we have

‖1n+m − 1n‖ ≤ ‖1n+m − b‖ + ‖1n − b‖ < 2‖1n0 − b‖ < 2
ε
2

= ε

which shows that {1n} is a Cauchy sequence. Since D is a closed subset of a Banach space A, therefore {1n}

must converge in D. Let, lim
n→∞
1n = s for some s ∈ D.

Now using lim
n→∞
‖P11n − 1n‖ = 0, we get

‖s − P1s‖ ≤ ‖s − 1n‖ + ‖1n − P11n‖ + ‖P11n − P1s‖
≤ ‖s − 1n‖ + ‖1n − P11n‖ + ‖1n − s‖
→ 0 as n→∞

and hence s = P1s. Similarly, we can show that s = P2s, thus s ∈ F(P1) ∩ F(P2). This proves our result.
Two mappings P1,P2 : D→ D are said to satisfy the Condition (A) ([17]) if there exists a nondecreasing

function t : [0,∞)→ [0,∞) with t(0) = 0 and t(r) > 0 for all r ∈ (0,∞) such that

‖u − P1u‖ ≥ t(d(u,F(P1) ∩ F(P2)))

or

‖u − P2u‖ ≥ t(d(u,F(P1) ∩ F(P2)))

for all u ∈ D.

Theorem 4.3. Let D be a nonempty closed convex subset of a uniformly convex Banach space A. Let
P1,P2 : D→ D be two nonexpansive mapping such that F(P1)∩ F(P2) , ∅ and {1n} be the sequence defined
by (1.2). If P1 and P2 satisfies Condition (A), then {1n} converges strongly to a point of F(P1) ∩ F(P2).
Proof. From (4.13) we get lim

n→∞
d(1n,F(P1) ∩ F(P2)) exists.

Also, by Lemma 4.1, we have lim
n→∞
‖1n − P11n‖ = lim

n→∞
‖1n − P21n‖ = 0.

It follows from condition (A) that

lim
n→∞

t(d(1n,F(P1) ∩ F(P2))) ≤ lim
n→∞
‖1n − P11n‖ = 0

or

lim
n→∞

t(d(1n,F(P1) ∩ F(P2))) ≤ lim
n→∞
‖1n − P21n‖ = 0

so that lim
n→∞

t(d(1n,F(P1) ∩ F(P2))) = 0.

Since t is a non-decreasing function satisfying t(0) = 0 and t(r) > 0 for all r ∈ (0,∞), therefore lim
n→∞

d(1n,F(P1)∩
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F(P2)) = 0.
By Theorem 4.2., the sequence {1n} converges strongly to a point of F(P1) ∩ F(P2).

We now reconfirm our above convergence result with the help of the following example.
Example 2. Let A = R and D = [1, 50]. Let P1,P2 : D→ D be two mappings defined as P1(k) =

√

k2 − 9k + 54
and P2(k) =

√

k2 − 7k + 42 for all k ∈ D. Clearly k = 6 is the common fixed point of P1 and p2. Set %n = n
n+1

and ςn = 0.7 for all n ∈N. Then, we get the Table 3 and Figure 3 for three different initial values.

Step when 11 = 2 when 11 = 8 when 11 = 15
1 2 8 15
2 5.93505362831552 6.12583922716451 8.1126797070467
3 5.99803076818424 6.00400176170888 6.11071817599684

...
10 6.000000000000000 6.00000000000001 6.00000000000034
11 6.000000000000000 6.000000000000000 6.00000000000001
12 6.000000000000000 6.000000000000000 6.000000000000000

Table 3:

Figure 3:

5. Applications

Let A be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖, respectively. Let D be a nonempty
closed convex subset of A and T : D→ A a nonlinear operator. Then, T is said to be:
(i) monotone if 〈Tu − Tv,u − v〉 ≥ 0 for all u, v ∈ D,
(ii) λ- strongly monotone if there exist a constant λ > 0 such that 〈Tu−Tv,u− v〉 ≥ λ‖u− v‖2 for all u, v ∈ D,
(iii) υ- inverse strongly monotone (υ-ism) if there exist a constant υ > 0 such that 〈Tu−Tv,u−v〉 ≥ υ‖Tu−Tv‖2

for all u, v ∈ D.
The variational inequality problem denoted by VI(D,T) is to find a point z ∈ D such that 〈Tz, z − u〉 ≥ 0
for all u ∈ D. The set of solutions of variational inequality problem is denoted by Ω(D,T). The variational
inequalities were initially studied by Stampachhia [10, 11]. Such a problem is connected with convex
minimization problem, the complementarity problem,the problem of finding a point u ∈ A satisfying
0 = Tu and so on. The existence and approximation of solutions are important aspects in the study of
variational inequalities. The variational inequality problem is equivalent to finding the set of fixed points
of the operator PD(I − µT), i.e., F(PD(I − µT)) = Ω(D,T), where µ > 0 is a constant and PD is the metric
projection from A onto D. If T is L-Lipschitzian and λ - strongly monotone, then the operator F(µ) is a
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contraction on D provided that 0 < µ < 2λ/L2. Then, it follows from the Banach contraction principle that
VI(D,T) has a unique solution u∗ and the sequence of the Picard iteration process, given by

un+1 = PD(I − µT)un, n ∈N

converges strongly to u∗.
Now, in view of Theorem 3.1 and Theorem 3.2, we have the following results:
Theorem 5.1. Let D be a nonempty closed convex subset of a Hilbert space A and T : D→ A a L-Lipschitzian
and λ- strongly monotone operator. Suppose {%n} and {ςn} are sequences in (0, 1). Then for µ ∈ (0, 2λ/L2),
the iterative sequence {1n} constructed from 11 ∈ D and defined by

en = (1 − %n)1n + %nPD(I − µT)1n

fn = PD(I − µT)((1 − ςn)en + ςnPD(I − µT)en)
1n+1 = PD(I − µT) fn

, n ∈N

converges strongly to 1∗ ∈ Ω(D,T).
Theorem 5.2. Let D be a nonempty closed convex subset of a Hilbert space A and T : D → A a υ- inverse
strongly monotone mapping, where υ > 0 is a constant. Suppose Ω(D,T) , φ and µ ∈ (0, 2υ). Let {1n} be a
sequence in D constructed from 11 ∈ D and defined by

en = (1 − %n)1n + %nPD(I − µT)1n

fn = PD(I − µT)((1 − ςn)en + ςnPD(I − µT)en)
1n+1 = PD(I − µT) fn

, n ∈N

where {%n} and {ςn} are sequences in (0, 1). Then, {1n} converges weakly to a solution of the variational
inequality VI(D,T.)
Algorithms for signal and image processing are often iterative constrained optimization procedures de-
signed to minimize a convex differentiable function q(x) over a closed convex set D in A. It is well known
that every L-Lipschitzian operator is 2/L-ism. Therefore, the following process converges to minimizer of q.
Theorem 5.3. Let D be a nonempty closed convex subset of a Hilbert space A and q a convex and differen-
tiable function on an open set E containing the set D. Suppose that ∇q is a L-Lipschitz continuous operator
on E, µ ∈ (0, 2/L) and minimizers of q relative to the set D exist. Let {1n} be a sequence in D constructed
from 11 ∈ D and defined by

en = (1 − %n)1n + %nPD(I − µ∇q)1n

fn = PD(I − µ∇q)((1 − ςn)en + ςnPD(I − µ∇q)en)
1n+1 = PD(I − µ∇q) fn

, n ∈N

where {%n} and {ςn} are sequences in (0, 1). Then, {1n} converges weakly to a minimizer of q.

6. Conclusion

We conclude from the above sections that our iteration process (1.2) converges faster than the M-iteration
process (1.1) for contractive-like mappings. It must be noted here that Ullah and Arshad [22] never gave
the rate of convergence of their process analytically. They just gave an example. However, we not only
give the proof analytically but also validate with an example. As far as convergence results are concerned,
our results are just new of their kind. They are independent of, for example, [19, 20] and [21, 22]. Keeping
in mind that common fixed point problem has a direct link with minimization problem, our results are
better in the sense of approximating common fixed points as opposed to [19, 20] and [21, 22]. We have not
only validated our resuts by example, but also applied to find the solution of variational inequality and
optimization problem.
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