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Abstract. In the paper, we give general parametric formulas for the fourth and fifth coefficients of functions
in the Carathéodory class.

1. Introduction

One of the classical research topics in the class A of analytic functions f of the form

f(Z)=ZﬂnZ", ap:=1,zeD:={zeC:|z| <1},

n=1

is the study of coefficient functionals. These studies include both the whole class A, as well as subfamilies,
in particular the class S of univalent functions and its subclasses. Although normalized differently, an
important class of analytic functions in ID is the class # consisting of functions p of the form

pz) =1+ Z cnz', zeD, 1)
n=1

having positive real part in ID, generally known as the Carathéodory class.

For a great many subclasses of A, it is possible express coefficient functionals in terms of the coefficients
of functions in . Thus knowledge about the coefficients in $ can form the basis of computational techniques
when considering coefficient problems in these classes. In recent years, attention has focused on the study
of e.g. inverse and logarithmic coefficients, the Fekete-Szegt functional, Hankel determinants, the Zalcman
functional, and a number of other related functionals, (see e.g., [5], [2], [11] and [6] for further references).
Parametric formulas for the initial coefficients of functions # are usually used to study these problems, and
formulas for the first and second coefficients ¢; and ¢, derived by Carathéodory ([1], [10, p. 166]), and a
formula for the third coefficient c3 found by Libera and Zlotkiewicz [8], [9] with the additional assumption
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that c; > 0, have been used extensively. This latter condition on c; restricts its use to rotationally invariant
classes and functionals. In [7] a parametric formula for fourth coefficient ¢, was derived using a determinant
method, but also with the restriction c; > 0. Due to computational difficulties, the determinant method
does not seem to be effective in finding further coefficient formula for c,, when n > 5.

As a result, in [3] an algorithmic method based on the Schwarz lemma was developed for deriving
parametric formulas for all the coefficients c,. In particular Lemma 2.4 in [3] gives a general formula for the
third coefficient c3, which was able to be used to study certain non-rotationally invariant functionals in A.

In this paper we give general formulas for ¢4 and cs, together with extreme functions, without the
restriction ¢; > 0, thus providing tools for further study into more difficult problems concerning functionals
in A.

We remark that the general method used will give formulas for ¢, when n > 6, but the computations
soon become too complicated to yield useful results.

2. Parametric formulas for coefficients of Carathéodory functions

Denote by By, the class of all self-maps of ID of the form

w(z) = Z b,z", zeD, (2)
n=1

Such functions are normally referred to as Schwarz functions.

Given a € D, let
z

— _
a = —_—, eD:= eC: <1}

Yol = 1=, zeDi=[zeCif<1)

It is well known that ¢, in a conformal automorphism of D, ¢,(ID) = D, ,(T) = T, and Yl = Y _,, where
T:={z e C:|z| = 1}. Moreover for n € N,

nla"

(n) —
V) = ®)
Let 1
+z
L(Z) = 1_—2/ zeD.

Now we prove the main result of this paper, noting that (4) is due to Carathéodory [1], (5) can be found in
[10, p. 166], and (6) in [3]. We state our results as lemmas rather than theorems, since they provide tools for
use in considering functions in A.

Lemma 2.1. Ifp € P and is of the form (1), then

1 = 2C1, (4)
¢ =207 +2(1 - G PG, 5)
c3 =20 +2(1 - [GP) (20 - T&) & + 20 - 1GAA - 1), ()

¢ =20 +2(1 - |G P) (3@% + TG -3GPG + Cz) G

+2(1 - 1L - 16P) (24 - 248 - &) G @
+2(1 =[G - 1LY - GG,



N. E. Cho et al. / Filomat 34:6 (2020), 2061-2072 2063

and
cs =207 +2(1 = |G ) (46; +3L5-2G8 -5 Q- 6LIGPG

+HATIGPG)G + 201 - [ - 6P (3G - 20586 + 34 G
+3TIGPG - Tt - 6GPG + 26+ 5 GG ®)
+2(1 =[G - 6P = 1GP) (20 = 208 - 268 - 5 G
+2(1 =GR = 16PA = IGAA - 185

forsome (; €D, ie{l,...,5).

For Cy € T, there is a unique function p € P with ¢, as in (4), namely,

_ 1+ iz
B 1—C12’

For C; € D and G, € T, there is a unique function p = L o w € P with ¢y and ¢, as in (4) and (5), where

p(z)

eD. )

w(z) =zYP_,(Cz), z€D, (10)
ie.,
p(z) = gj—((zz)), zeD, (11)

where for z € ID,

Q2) =1+ (GG + )z + 57,
Ry(z) =1+ (ECz - Cl)Z - 07

For C1,C, € D and (3 € T, there is a unique function p = L o w € P with ¢y, ¢, and c3 as in (4) to (6), where

w(z) = z¢_¢, (2P, (C32)), z €D, (12)
ie.,
p(z) = gz((;) , zeD, (13)

where for z € D,

Qs(z) =1+ (653 + Gl + Cl) zZ+ (ZCs + GGG+ Cz) 22+ (32,
Ra(2) =1+ (Gl + GG - G)z+ (0l - GGl - &) 2 - G2

For 4,0y, G5 € D and Cy € T, there is a unique function p = L o w € P with c1, ¢z, c3 and ¢y as in (4) to (7),
where

w(z) = 2¢-¢, (2P0, (2¢-1,(Ca2)), z€D, (14)

Qu(z)
Ry(z)’

p(z) = €D, (15)
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where for z € D,

Qu(2) =1+ (GG + Gls + Gl + G1) 2
+ (ZCs + 0l + 0GGGLU + UGG + 4G + Cz) z
+ (564 + 000+ GGG + C3) 2+ (7,

Ry(2) :=1+(C1la + 0ls + Gola - &) 2
+ (C_1C3 + 00U+ GOGU - UGG - GGG - Cz) z
+ (ZC4 - 000U - GGL - C3)23 - Lzt

For(ielD,i=1,...,4,and G5 € T, there is a unique functionp = Low € Pwithc;, i=1,...,5,as in (4) to
(8), where

w(z) = 2¢—¢, (2 (2, (2, (C52)))), z €D, (16)
ie.,
p(z) = gs—((zz)), zelD, (17)

where for z € D,

Qs(z) =1+ (aCz + Cols + G3ly + Lals + Cl)Z
+ (ECs + 0y + GG + 010Gl + GGG
+0030aGs + GGG + 0Gsls + GGGs + Cz) Z
+ (018 + 0Gs + QGGG + 00Tt + GGG
+01GaGs + Colala + 0olals + G GGalils + C3)Z3
+ (ECS + 010G + (GaCs + G3lals + C4) 2t + (52,

Rs(z) =1+ (ECz + 0l + Gl + Gl — C1)Z
+ (a@ + 0l + GGs + GGG + LGGEs
+0030G — GGl — Glals — Ll — C2)22
+ (GG + Gls + GGGG + 005G - GG
~01G3Cs — LoGala — GUls — G GGG — Ca) z
+ (ECS — GGG — GGG — GhLls - C4)Z4 - G2
Proof. Letp € P and be of the form (1). Then there exists w € B of the form (2) such that
1-w@)piz)=1+w(z), zeD. (18)
Substituting (1) and (2) into (18), and equating coefficients, we obtain for n € IN

Cyp = Cn—lbl + Cn_zbz + -+ Clbn—l + 2bn
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Thus
€1 = 2bq,
¢ = 2b7 + 2by,
c3 = 2b] + 4b1b, + 2b3, (19)

Cy = Zb% + 6b%b2 + 4b1b3 + 2b§ + 2b4,
C5 = Zb? + Sb?bz + 61’]%173 + 6b1b§ + 4b1b4 + 4b2b3 + 2b5

1. By the Schwarz lemma (see e.g., [4, Vol. I, pp. 84-85]),
bl = 1/ Q)] < 1, (20)
ie.,
b =0, (21)
for some (; € E, and so from (19) we obtain (4).
Moreover equality is attained in (20), i.e., the case (; € T in (21) if, and only if,
w(z) =0z, zeD,
(e.g., [4, Vol. I, p. 85]). Thus from (18) it follows that p can be only as (9).

2. By Part 1 we can assume that b; € ID, and so from (2) we have

w(z) =zp1(z), zeD, (22)
where
(P](Z) = bl + sz + b322 + b4Z3 + b5Z4 +..., zeD. (23)

From (22) and the maximum principle for analytic functions it follows that ¢ is a self-map of ID. Thus

w1(z) == Yy, (P1(2)) = b(ll)z + b(zl)z2 + b;l)z3 + bﬁll)z4 +..., z€elD, (24)
is a Schwarz function. By the Schwarz lemma we have

bl = 00 < 1, (25)
ie.,

B =0, (26)

for some (, € D. Using (24), (3) and (23) we obtain

b\ = w;(0) = ¥}, (P1(0))g (0) = m

which, using (26) and (21), gives
by = (1 -1GP)G. (27)
Substituting (21) and (27) into (19) gives (5).
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Noting (26), equality in (25) holds in the case C; € T if, and only if, w1(z) = (pz, z € D. Thus by (22), (24)
and (21) we have
w(2) = z291(2) = 2¢p, (01(2)) = 29, (C22), z€DD,
i.e, wis asin (10). Hence and from (18) it follows that p can be only as in (11).
3. By Parts 1 and 2 we can assume that b, bgl) € D. By (24) we have

0)1(2) = Z(PZ(Z)/ ze D/ (28)
where
02(2) =0 + bz + 22 + 0" +..., zeD. (29)

From (28) and again by the maximum principle for analytic functions, it follows that ¢, is a self-map of D.
Thus

wy(z) := gbbgu(qoz(z)) = b(lz)z + b(22)22 + béz)z3 +..., zeD, (30)
is a Schwarz function. By the Schwarz lemma we have

D7) = lwp(0)l < 1, (31)
ie.,

b =, (32)

for some (3 € D. Using (30), (3) and (29) we obtain

2) ’ ’ ’ b(Zl)
by” = wy(0) = l#bgu((Pz(O))(Pz(O) = m,
1
which, taking into account (32) and (26), yields
by = (1-1GPG. (33)
On the other hand, from (24) and (23), (3), (21) and (27) we get
1 " 1 " ’ ’ "
B = 5w7(0) = 5 (7 @1 0@ 0 + ¢, (@107 (0)
_ 1 ’7 2 ’ _ Eb% b3
- §¢b1 (bl)bz + ll)hl(bl)bS - (1 _ |b1|2)2 + 1-— |b1|2
— b
=L+ ———.
“QtTTge
This, together with (33), gives
by = —(1 - [GAGE + (1 - [GPA - 6. (34)

Substituting (21), (27) and (34) into (19) gives (6).

Moreover equality in (31), i.e., the case (3 € T in (32) holds if, and only if, w»(z) = C3z, z € ID. Thus by
(28), (30) and (26) we have

w1(z) = za(2) = zr,bfhin (w2(2)) = z¢_,(C32), ze€D.
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Now (22) and (24) with (21) yields

@(z) = 201(2) = 2P, (01(2)) = 2¢-¢, (2P,(C2), z€ DD,

i.e., wis asin (12). Hence from (18) it follows that p can be only as (13).

4. Arguing as before, by Parts 1 to 3 we can assume that b, bgl), b(12) € ID, and so by (30) we have

a)Z(Z) = Z(P3(Z)/ zZ € D/ (35)
where
03(2) = 0P + b7z + P22 + ..., zeD. (36)

From (35) and by the maximum principle for analytic functions it follows that ¢s is a self-map of ID. Thus

03(2) = Pyo(93(2)) = bz 4022 +..., zeD, (37)
is a Schwarz function. By the Schwarz lemma we have

b = w3 (0) < 1, (38)
ie.,

b = ¢, (39)
for some {4 € ID. Using (37), (3) and (36) we obtain

@

() I — ’ _ 2
b1 = w3(0) = I#bgz) ((PS(O))(Pg(O) = 1 |b(2)|2,
1

which, taking into account (32) and (39), yields

b = (1 - |G (40)

On the other hand from (30), applying (29), (3), (26) and (33) we obtain

1 1 7 ’ ’ ’’
b = 3050) = 5 (91 (@20D @50 + U (2005 0)
bgl)(b(zl))z b(31)
Oy T e
(1_|b1|) 1_|b1|

1 4 ’

= 5V ® )6 + 0 65 =
_ by

- 2 3

B

This, together with (40), yields

b = ~(1 = 1GAGE + (1 - [GP)( - G 4
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From (24), (23), (3), (21), (27) and (34) we have

by <3’(0)

3
(¢<3><<p1(0>)<<p1(0))3 + 395 (@1(0)9; (0097 (0) + 1}, (91(0) ) (0))
(¢<3>(b1)bg + 6y (br)babs + 61}, (b1)bs ) @)

_ bl bg n 251721’)3 + b4
A =101y (A= 1b1)? |b1|2

=-0 C3 +2(1 - 16LAG GG T

|C >
Comparing (41) and (42) we obtain

by =(1— (GG G~ (1~ 1P - 16D (GG + 206G)
+ (116 - 16PA - 18P,
and substituting (21), (27), (34) and (43) into (19) we obtain

(43)

cs =2b7 + 6b7b, + 4bybs + 213 + 2by
=20} +6(1 = |GP)GG +4G [-(1 - IGPGE + (1 - 1GAA - 16AG]
+2(1 - [GPPG + 201 - GG G - 20~ 1GP) - 16P) (&3 + 20G0)
+2(1 =GR = (&P - 16GRG,

which gives (7).

For equality in (38), i.e., the case {4 € T in (39), we argue as before, so that equality and holds if, and
only if,

w3(z) = G4z, zeD. (44)
By (22) and (24) with (21) we have
w(z) = 291(2) = 2P, (01(2)) = 2P, (w1(2)), z€D. (45)
Also by (28), (30) and (26) we have
@1(2) = 292(2) = 2¢_0(@2(2)) = 29, (@2(2)), z€D. (46)
Next by (35) and (37) with (32), and using (44), we have
@(2) = 203(2) = 2¢_o(w3(2)) = 29, (Ca2), z€D.

Thus taking into account (45) and (46), it follows that w is as in (14), hence from (18) it follows that p can be
only as (15).

5. We proceed as before so that by Parts 1 to 4 we can assume that b;, b(l) bgz), b?) € D, and so

w3(z) = zp4(z), z €D, (47)
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where

Qa(z) = ng) + b(23)z + b(33)22 +..., zeD. (48)
From (47) and by the maximum principle for analytic functions it follows that ¢, is a self-map of ID. Thus

0i(2) = Yo (Pa(2)) = bWz +022+..., zeD, (49)
is a Schwarz function. By the Schwarz lemma we have

P7] = lwj )l < 1, (50)
ie.,

v =g, (51)

for some (5 € D. Using (49), (3) and (48) we obtain

b(3)
b(14) = wy(0) = le(s (¢4(0))p3(0) = W (52)
which, taking into account (39) and (51) yields
Y = (1= PG (53)
On the other hand, from (37), (36), (3), (32) and (40) we get
1
b = 5000 = 3 (¥ @OV @O + ¥ 305 )
2@ 1 2)y2 ()
I U S L by
- Ewb?)(bl )(b2 ) + ybb(f)(bl )b3 - (1 _ |b(12)|2)2 + 1 _ |b§2)|2
. b(z)
— 2 3
SOLt TG
which, together with (53), yields
Y = —(1 - 1GPHGE + (1 - 16 - [GP)Es. (54)
From (30), (29), (3), (26), (33) and (41) we have
b2 = 1 w<3>(0)
( Y (@200’ + 3¢, (92(0)5(0)¢5 (0) + tp;,(ln«pz(on(pf)(m)
= & (V00 + 60 O + g7, ) 69

CRRCS

R N R
pw

_ 4
1-1GPR

= -5 C+2(1 - [P GG +
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and so comparing (54) and (55) we obtain
—2 — —
b =(1- 1A% G- 1 - 1P - 16P) (GG +25060)

+ (1= 16&PA - 1GAHA - 18P
From (24), (23), (3), (21), (27), (34) and (43) we have

(56)

1
b = 2 791 ©)

= (1) @10} 0)* + 69 (1 0N} 0) 7 0)

+4¢;; (@101 () (0) + 3y7, (@1(ON(@Y (0)) + ¥}, (91(0)'(0))
(lp;)(b )b3 + 120 (b1)b3bs + 24y (b1)babs

+12¢;’1 (b1)b + 244, (b1)bs) 7

—3 —2 _ —

_ bl bé " 3b1 b§b3 + 2b1b2b4 + blbg + b5

TA-bP T A-PP T AP (=P 1 bl

=G G +30 Q-GG + (- LP)G]
#2000 - (- 16P) (G + ZC_1C2C3) + (1= 1GP) - [P

+O[-GG+ - 1LPG] o |c 7

Finally comparing (56) and (57) we obtain
bs=—(1- GG ¢
- (- 1GP) - 16D (GG - &6 - 36786 - 3TIGPE)
— (1= 161 = 6P - 1GP) (GG + 2880 +2500)
+ (1= 1G P =16 = 1P = 1C6P)Es.
Substituting (21), (27), (34), (43) and (58) into (19) gives

(58)

cs =2b7 + 8b3by + 6b3bs + 6b1b3 + 4b1by + 4bybs + 2bs
=20 +80G(1 - 1GP) + 66 [~(1 =~ [GATE + (1 =[G - 1G]
+60G(1 = G
+40 [(1 ~ PG G - (1 - 6P - 16P) (G + 28 0ks)
+ (1= 10 P = 6P - 15
+40(1 - [thP) [~ = 1GPGE + (1 - (LA - 16
+2|-0-LPE’Y
- (- 1P - 6P (GG - &6 - 30 7dG - 3TIGPE)
— (1= G - 16P)A - 16P) (GG + 2000 +250L)
+ (1= 1GP)( = 1GPA =GP = 16P)Ss|
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which yields (8).
Moreover, equality in (50), i.e., the case (4 € T in (51) holds if, and only if,

wy(z) = (s5z, zeD. (59)
Note that @ and w; are given by (45) and (46) respectively. From (35) and (37) with (32) it follows that

@2(2) = 203(2) = 2 _(w3(2) = 29, (@3(2), z € D. (60)
By (47), (49), (39) and (59) we have

w3(z) = z4(2) = lel_bgs) (w4(2)) = z2¢p_,(C52), ze€D.

Hence taking into account (45), (46) and (60) we see that w is as in (16), and so from (18) it follows that p
can be only as (17). O

Remark 2.2. When ¢; > 0, (6) was found in [8] and [9], and (7) in [7].
Directly from the proof of Lemma 2.1, using (21), (27), (34), (43) and (58) we can formulate the following.

Lemma 2.3. If w € By and is of the form (2), then

b =0, (61)
by = (1 =812y, (62)
by = -(1-1GPGE + (1= 1GPA - 16LAG, (63)
by =1~ 1GPG G - A - 16D - 6P (&3 +2460) ”

+ (1= 18P = 15LPA - 1GP)G

and
bs = — (1- |GG ¢
— —2 —2 J—
—(1-1aP-1gP (clcé -0 §G-3G GG - 3c1|c2|2c§) (©5)

— (1= 1P = 1GP)A = 1GP) (GG + 2068 +2506G)
+ (1 =10 - LA =GP - 1L,

for some (; eD,ie {1,...,5}.
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