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Available at: http://www.pmf.ni.ac.rs/filomat

Approximate Optimality for Quasi Approximate Solutions in
Nonsmooth Semi-Infinite Programming Problems, Using ε-Upper

Semi-Regular Semi-Convexificators

Jutamas Kerdkaewa, Rabian Wangkeereea,b, Gue Myung Leec

aDepartment of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
bInstitute for Computational Science and Technology, Ho Chi Minh City, Vietnam

cDepartment of Applied Mathematics, Pukyong National University, Busan 48513, Republic of Korea

Abstract. In this paper, we study optimality conditions of quasi approximate solutions for nonsmooth
semi-infinite programming problems (for short, (SIP)), in terms of ε-upper semi-regular semi- convexificator
which is introduced here. Some classes of functions, namely (ε − ∂∗ε)-pseudoconvex functions and (ε − ∂∗ε)-
quasiconvex functions with respect to a given ε-upper semi-regular semi-convexificator are introduced,
respectively. By utilizing these new concepts, sufficient optimality conditions of approximate solutions
for the nonsmooth (SIP) are established. Moreover, as an application, optimality conditions of quasi
approximate weakly efficient solution for nonsmooth multi-objective semi-infinite programming problems
(for short, (MOSIP)) are presented.

1. Introduction

It is well known that semi-infinite programming problems became an active research topic in mathemat-
ical programming due to its extensive applications in many fields such as reverse Chebyshev approximate,
robust optimization, minimax problems, design centering and disjunctive programming; see ([12, 30, 33]).
Recently, a great deal of results have appeared in the literature; see [3, 5, 9, 10, 15, 20, 21, 23, 24] and the
references therein.

We note that the approximate solutions of optimization problems are very important from both the
theoretical and practical points of view because they exist under very mild hypotheses and a lot of solution
methods (for example, iterative algorithms or heuristic algorithms) obtain this kind of solutions. Thus,
it is meaningful to consider various concepts of approximate solutions to optimization problems. The
first concept of approximate solutions for optimization problems was introduced by Kutateladze [22]. We
remark that, in recent years, many authors devoted their efforts to propose new notions of approximate
solutions in connection with the optimization problems [26].

On the other hand, the idea of convexificators has been used to extend, unify, and sharpen various results
in nonsmooth analysis and optimization (see, for instance [8, 17, 19]. They represent a weaker version of the
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notion of subdifferentials, and are more suitable to analysis and applications. These convexificators, which
firstly were assumed to be compact [7]), produce both upper convex and lower concave approximations
at a point for a function. In the paper [18], the notion of convexificator is introduced as a closed set,
but is not necessarily bounded or convex. The significance of noncompact convexificators is that they
allow applications of convexificators to continuous functions. For a locally Lipschitz function, most known
subdifferentials, which are convex and compact sets, such as the subdifferential of Clarke [6] , Michel–Penot
[28], Ioffe–Morduchovich [16, 29], and Treiman [35] are convexificators. Moreover, for locally Lipschitz
functions, these known subdifferentials may strictly contain the convex hull of a convexificator (see, [36,
Example 2.2]).

Finding the exact description of the solution in optimization problem, for instance, the description of
weakly efficient solution, sometimes it turns out to be practically impossible or computationally too expen-
sive. Thus, many researchers turn their attention on approximate solutions, and for various approximate
solution concepts we refer the reader to [2, 13, 14, 27, 34, 37]. According to above paragraph, the descrip-
tion of optimality conditions for solutions and approximate solutions in terms of convexificators provides
sharp results. Surely, such description in terms of ε-upper convexificators, which were introduced very
recently in [4], also. These new concepts were used for obtaining the results on approximation of solutions
in optimization problems. In the paper, with the continuous objective function, necessary and sufficient
conditions for a point to be an ε-quasi solution of a scalar optimization problem via ε-convexificators are
provided.

Motivated by these important problems and interesting concepts about convexificators and their genar-
alization, we aim to establish results on approximation of solutions in (SIP) via some tools related to convex-
ificators. In order to reach our goals, we introduce the notion of ε-upper semi-regular semi-convexificator,
and some classes of functions, namely (ε − ∂∗ε)-pseudoconvex of type I, (ε − ∂∗ε)-pseudoconvex of type II
and (ε − ∂∗ε)-quasiconvex functions with respect to a given upper semi-regular semi-convexificator. Then
employed these notions for deriving necessary and sufficient optimality conditions for characterizing the
quasi approximate solutions of our considered (SIP). Further, we then consider the optimality conditions
of quasi approximate efficient solution for a nonsmooth (MOSIP) and obtain the desired results.

The rest of the paper is organized as follows. Section 2 contains preliminaries. The optimality conditions
are investigated in Section 3. Then, an application of the results is presented in Section 4. Finally, the
conclusion can be found in Section 5.

2. Preliminaries

For a set A ⊆ Rn, we use the notations coA, intA and clA to denote the convex hull, the interior and the
closure of A, respectively. The considered norm ‖ · ‖ is the Euclidean norm, the notation 〈·, ·〉 is utilized to
denote inner product and the symbol B∗ stands for a closed unit ball in Rn.
A nonempty set A ⊆ Rn is called a cone if for each x ∈ K and each scalar α ≥ 0, we have αx ∈ K. A cone K is
said to be pointed whenever K ∩ (−K) = {0}.
Let A ⊆ Rn be a nonempty subset and x ∈ A.Denote by dA the distance function of A, i.e., dA(x) := inf{‖x−y‖ :
y ∈ A}. A vector v ∈ Rn is tangent to A at x provided d◦A(x; v) = 0. The set of all vectors tangent to A at x,
namely the Clarke tangent cone to A at x is denoted by TC(A, x). The Clarke normal cone to A at x is defined
by

NC(A, x) := {ξ ∈ Rn : 〈ξ, v〉 ≤ 0,∀v ∈ TC(A, x)}.

Let A ⊆ Rn be a nonempty closed convex subset. The contigent and the normal cone to A at x ∈ A are
respectively defined by

T(A, x0) = {d ∈ Rn : ∃tn ↓ 0,∃{dn} ⊆ R
n s. t. dn → d, x0 + tndn ∈ A},

and

N(A, x) := {ξ ∈ Rn : 〈ξ, y − x〉 ≤ 0,∀y ∈ A}.
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Clearly, if a set A is closed and convex, then NC(A, x) = N(A, x).
The polar cone of a set A ⊆ Rn is defined by

A◦ = {d ∈ Rn : 〈d, x〉 ≤ 0,∀x ∈ K}.

It is clear that NC(A, x) = (T(A, x))◦ and NC(A, x) = (T(A, x))◦.
The Hadamard Dini directional derivatives, defined as follows, play a vital role in this work. Hereafter,

dom f stands for the effective domain of f .

Definition 2.1. Consider f : Rn
→ R.

1. The Hadamard Dini directional derivative of f at x ∈ dom f in direction v ∈ Rn is defined by

f HD(x; v) := lim sup
d→v
t↓0

f (x + td) − f (x)
t

.

2. The lower and upper Dini directional derivatives of f at x ∈ dom f in direction d ∈ Rn are, respectively,
defined by

f−(x; d) := lim inf
t↓0

f (x + td) − f (x)
t

f +(x; d) := lim sup
t↓0

f (x + td) − f (x)
t

.

3. The directional derivative of f at x ∈ Rn in direction d ∈ Rn (if exists), denoted by f ′(x; d), is defined as

f ′(x; d) := lim
t↓0

f (x + td) − f (x)
t

.

Remark 2.2. If f is locally Lipschitz, then its upper Dini directional derivative and Hadamard directional
derivative are same.

Definition 2.3. [11, 18] Let f : Rn
→ R and x0 ∈ dom f . The function f is said to have:

1. an upper convexificator ∂∗ f (x0) at x0 if ∂∗ f (x0) ⊆ Rn is closed and, for each d ∈ Rn,

f−(x0; d) ≤ sup
η∈∂∗ f (x0)

〈η, d〉. (1)

2. a lower convexificator ∂∗ f (x0) at x0 if ∂∗ f (x0) ⊆ Rn is closed and, for each d ∈ Rn,

f +(x0; d) ≥ inf
η∈∂∗ f (x0)

〈η, d〉. (2)

3. a convexificator ∂∗ f (x0) at x0 if ∂∗ f (x0) ⊆ Rn is both of upper and lower convexificator (i.e. ∂∗ f (x0) is
closed and both of (1) and (2) are fulfilled for each d ∈ Rn.)

4. an upper semi-regular convexificator ∂∗ f (x0) at x0 if ∂∗ f (x0) ⊆ Rn is closed and, for each d ∈ Rn,

f +(x0; d) ≤ sup
η∈∂∗ f (x0)

〈η, d〉. (3)

5. an upper regular convexificator of f at x0 if inequality 3 holds as equality.

Definition 2.4. [4] Let ε ≥ 0 be given. Let f : Rn
→ R and x0 ∈ dom f . The function f is said to have:
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1. a ε-upper convexificator ∂
∗

ε f (x0) at x0 if ∂
∗

ε f (x0) ⊆ Rn is closed and, for each d ∈ Rn,

f−(x0; d) ≤ sup
η∈∂

∗

ε f (x0)

〈η, d〉 + ε‖d‖. (4)

2. a ε-lower convexificator ∂∗ε f (x0) at x0 if ∂∗ε f (x0) ⊆ Rn is closed and, for each d ∈ Rn,

f +(x0; d) ≥ inf
η∈∂∗ε f (x0)

〈η, d〉 − ε‖d‖. (5)

3. a ε-upper regular convexificator ∂
∗

ε f (x0) at x0 if ∂
∗

ε f (x0) ⊆ Rn is closed and, for each d ∈ Rn,

f +(x0; d) = sup
η∈∂

∗

ε f (x0)

〈η, d〉 + ε‖d‖. (6)

4. a ε-lower regular convexificator ∂∗ε f (x0) at x0 if ∂∗ε f (x0) ⊆ Rn is closed and, for each d ∈ Rn,

f−(x0; d) = inf
η∈∂∗ε f (x0)

〈η, d〉 + ε‖d‖. (7)

Following the idea of definitions for upper(and lower) semi-regular convexificators, we introduce the
following notions.

Definition 2.5. Let ε ≥ 0 be given. Let f : Rn
→ R and x0 ∈ dom f . The function f is said to have an ε- upper

semi-regular semi-convexificator ∂
∗

ε f (x0) at x0 if ∂∗ f (x0) ⊆ Rn is closed and, for each d ∈ Rn,

f HD(x0; d) ≤ sup
η∈∂

∗

ε f (x0)

〈η, d〉 +
√
ε‖d‖. (8)

Remark 2.6. If f is a locally Lipschitz function and ε = 0, then whenever f admits an ε upper semi-regular
semi-convexificator at x0 it also admits upper semi-regular convexificator at the point.

Example 2.7. Consider f (x) = −|x|, x ∈ R. We know that f ′(x; v) = −|v|, v ∈ R, f ◦ = |v|, v ∈ R, and
∂C f (0) = [−1, 1]. It is not difficult to check that the closed set ∂∗ε f (0) = [−1,−1 + ε] ∪ [1 − ε, 1] is an ε upper
semi-regular semi-convexificator at x = 0 as follows:
Case I: v ≥ 0;

f HD(0; v) = −v ≤ v +
√
εv = sup

x∗∈[−1,−1+ε]∪[1−ε,1]
〈x∗, v〉 +

√
ε|v|,

Case II: v < 0;

f HD(0; v) = v ≤ −(1 +
√
ε)v ≤ sup

x∗∈[−1,−1+ε]∪[1−ε,1]
〈x∗, v〉 +

√
ε|v|.

Notice that this ε semi-regular semi-convexificator is contained in the Clarke subdifferential ∂C f (0) of f at
0 and it is not equal to the convexificator ∂∗ f (0) = {−1, 1} of f at 0.

In locally Lipschitz optimization programming, in 2009, Son et al. [32] introduced the following gen-
eralized convexity which is a generalization of the convexity and the semiconvexity (in locally Lipschitz
optimization programming).

Definition 2.8. [32] Let A ⊆ Rn be a nonempty subset and ε ≥ 0. A locally Lipschitz function f : Rn
→ R is

said to be ε-semiconvex at x ∈ K if f is regular at x and

f ′(x; y − x) +
√
ε‖y − x‖ ≥ 0⇒ f (y) +

√
ε‖y − x‖ ≥ f (x), ∀y ∈ A.
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Very recently, X.-J. Long et al.[25]introduced the generalized convex functions called ε-pseudoconvex
of Type I, ε-pseudoconvex of Type II, and ε-quasiconvex function.

Definition 2.9. [25] Let A ⊆ Rn be a nonempty set and ε ≥ 0. For a locally Lipschitz function f : Rn
→ R,

∂◦ f (x) stands for its Clark subdifferential at a point x ∈ Rn. The function f is said to be

1. ε-pseudoconvex of type I at x ∈ A if, for all y ∈ A,

f (y) +
√
ε‖y − x‖ < f (x)⇒ 〈ξ, y − x〉 +

√
ε‖y − x‖ < 0,∀ξ ∈ ∂◦ f (x0).

2. ε-pseudoconvex of type II at x ∈ A if, for all y ∈ A,

f (y) +
√
ε‖y − x‖ < f (x)⇒ 〈ξ, y − x〉 < 0,∀ξ ∈ ∂◦ f (x).

3. ε-quasiconvex at x ∈ A if, for all y ∈ A,

f (y) ≤ f (x)⇒ 〈ξ, y − x〉 +
√
ε‖y − x‖ ≤ 0,∀ξ ∈ ∂◦ f (x).

Recently, by going along the lines of Dutta and Chandra [11], Ahmad et.al [1] gave the definitions
of ∂∗-convex, strict ∂∗-convex, ∂∗-pseudoconvex, strict ∂∗-pseudoconvex, and ∂∗-quasiconvex functions by
using the concept of convexifactors.

Definition 2.10. [1] Let a function f : Rn
→ R admit a convexifactor ∂∗ f (x) at x ∈ Rn. The function f is said

to be

1. ∂∗-convex at x ∈ Rn if, for all y ∈ Rn,

f (y) − f (x) ≥ 〈ξ, y − x〉, ∀ξ ∈ ∂∗ f (x);

and if above inequality holds strictly for all y ∈ Rn, y , x, f is said to be strict ∂∗-convex at x ∈ Rn.
2. ∂∗-pseudoconvex at x ∈ Rn if, for all y ∈ Rn,

f (y) < f (x)⇒ 〈ξ, y − x〉 < 0, ∀ξ ∈ ∂∗ f (x);

3. strict ∂∗-pseudoconvex at x ∈ Rn if, for all y ∈ Rn, y , x,

f (y) ≤ f (x)⇒ 〈ξ, y − x〉 < 0, ∀ξ ∈ ∂∗ f (x);

4. ∂∗-quasiconvex at x ∈ Rn if, for all y ∈ Rn,

f (y) ≤ f (x)⇒ 〈ξ, y − x〉 ≤ 0, ∀ξ ∈ ∂∗ f (x).

Now, we shall introduce the following classes of functions dealing with pseudoconvexity and quasi-
convexity.

Definition 2.11. Let A ⊆ Rn be a nonempty set and ε ≥ 0 be given. Assume that f : Rn
→ R admits an ε

upper (semi-regular) semi-convexifactor ∂∗ε f (x) at x ∈ Rn. The function f : Rn
→ R is said to be

1. (ε − ∂∗ε)-pseudoconvex of type I at x ∈ A if, for all y ∈ A,

f (y) +
√
ε‖y − x‖ < f (x)⇒ 〈ξ, y − x〉 +

√
ε‖y − x‖ < 0, ∀ξ ∈ ∂∗ε f (x);

2. (ε − ∂∗ε)-pseudoconvex of type II at x ∈ A if, for all y ∈ A,

f (y) +
√
ε‖y − x‖ < f (x)⇒ 〈ξ, y − x〉 < 0, ∀ξ ∈ ∂∗ε f (x);

3. (ε − ∂∗ε)-quasiconvex at x ∈ A if, for all y ∈ Rn,

f (y) ≤ f (x)⇒ 〈ξ, y − x〉 +
√
ε‖y − x‖ ≤ 0, ∀ξ ∈ ∂∗ε f (x).



J. Kerdkaew et al. / Filomat 34:6 (2020), 2073–2089 2078

In order to connect with approximation, we now recall some definitions of approximate solutions.
Denote the feasible set of (23) by C, i.e., C := {x ∈ Ω : 1i(x) ≤ 0,∀i ∈ I}.

Definition 2.12. [26] Let ε ≥ 0. A feasible solution x0 ∈ C is called:

1. an ε-minimum of (9) if for each x ∈ C,

f (x0) ≤ f (x) + ε,

2. an ε-quasi minimum of (9) if for each x ∈ C

f (x0) ≤ f (x) +
√
ε‖x − x0‖.

Example 2.13. Consider

f (x) :=

x
3
2 + x; if x ≥ 0,

2x; if x < 0,

By direct computation, we get that

f HD(0; v) = f ′(0; v) =

v; if x ≥ 0,
2v if x < 0,

and

f ◦(0; v) =

2v; if x ≥ 0,
v if x < 0.

Let ε =
1
4
. It can be checked that ∂∗ε f (0) = [ 5

4 ,
3
2 ] is an ε upper semi-convexificator of f at 0. Note that

this ε upper semi-convexificator is contained in Clarke subdifferential ∂C f (0) = [1, 2] of f at 0. The (ε − ∂∗ε)-
pseudoconvexity of type I of f at 0 is sastisfied as follows:
for y ≥ 0; consider ξ = 5

4 ∈ [ 5
4 ,

3
2 ] with 7

4 y = 〈 5
4 , y〉 ≥ 0. Clearly, f (y) = y3 + y > 0 = f (0). On the other hand,

for y < 0; for any ξ ∈ [ 5
4 ,

3
2 ] we have 〈ξ, y〉 ≤

3
4

y < 0. Also, the (ε − ∂∗ε)-pseudoconvexity of type II of f is
fulfilled at 0. However, f is not semiconvex at 0 since it is not regular at the point.

Let us denote by Cε the ε-feasible set, which is nonempty and closed, is in the following form:

Cε :=
{
x ∈ Ω : 1i(x) ≤

√
ε, i ∈ I

}
.

Definition 2.14. [24] Let ε > 0 be given. A point x0 ∈ X is said to be an almost ε-quasi minimum) for (23) if
x0 satisfies the following conditions:

1. x0 ∈ Cε;
2. f (x0) ≤ f (x) +

√
ε‖x − x0‖, for all x ∈ C.

3. Approximate optimality for quasiapproximate solutions in (SIP)

In this section, we firstly investigate the following (SIP):

Minimize f (x)
subject to 1i(x) ≤ 0, i ∈ I, (9)
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where f , 1i : Rn
→ R for i ∈ I are real-valued functions. Here, I is an arbitrary (possibly infinite) nonempty

set. Unlike various related publications existing in the literature, in the present work, appearing functions
are not locally Lipschitz or convex necessarily. The set of feasible solutions of Problem (9) is

K := {x ∈ Rn : 1i(x) ≤ 0, i ∈ I}.

We assume K , ∅. For a given x0 ∈ K, set

I(x0) := {i ∈ I : 1i(x0) = 0}.

If for each i ∈ I, 1i is a convex or quasiconvex function, then C is a convex set.
Now, let us denote by R(I) the following linear vector space [1]:

R(I) := {r = (ri)i∈I : ri = 0 for all i ∈ I except for initely many ri , 0}.

The nonnegative cone of R(I) is denoted by

R(I)
+ := {r = (ri)i∈I ∈ R

(I) : ri ≥ 0, i ∈ I}.

It is easy to see that R(I)
+ is a convex cone of R(I). For α ∈ R(I)

+ , the supporting set corresponding to α is
defined by

I(α) := {i ∈ I : αi > 0},

which is a finite subset of I.
Let Z be a linear vector space. For α ∈ R(I) and {zi}i∈I ⊆ Z, we set

∑
i∈I

αizi :=


∑

i∈I(α) αizi, I(α) , ∅,
0, I(α) = ∅.

Now, we concentrate on consideration of the following (SIP):

Minimize f (x)
subject to 1i(x) ≤ 0, i ∈ I, x ∈ Ω (10)

where f , 1i : Rn
→ R for i ∈ I are real-valued functions, while Ω ⊆ Rn is a closed convex set. Here, I is an

arbitrary (possibly infinite) nonempty set. The set of feasible solutions of Problem (10) is

C := {x ∈ Ω : 1i(x) ≤ 0, i ∈ I}, (11)

which is assumed to be nonempty.
To obtain the necessary optimality condition, we consider the following constraint qualification condi-

tion:

NC(C, x0) ⊆
⋃

µ∈A(x0)

∑
i∈I

µico
(
∂∗1i(x0)

) + N(Ω, x0), (12)

where A(x0) := {µ ∈ R(I)
+ : µi1i(x0) = 0,∀i ∈ I} and x0 ∈ C.

Theorem 3.1. Let f : Rn
→ R be a fuction and let C be a closed subset of Rn. Consider the problem:

Minimize f (x) subject to x ∈ C. (13)

Let x0 ∈ C. Assume that

int (TC(C, x0)) ∩ dom 1 , ∅, (14)
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where 1(v) = sup
x∗∈∂

∗

ε f (x0)

〈x∗, v〉 +
√
ε‖v‖. If x0 is an ε-quasi solution of the problem (13), then 0 ≤ f HD(x0; v) +

√
ε‖v‖, ∀v ∈ T(C, x0). In addition, if f admits an ε upper semiregular semi-convexificator ∂

∗

ε f (x0) at x0, i.e.,
∂
∗

ε f (x0) is closed and f HD(x0; v) ≤ sup
x∗∈∂

∗

ε f (x0)

〈x∗, v〉 +
√
ε‖v‖, then 0 ∈ clco∂

∗

ε f (x0) +
√
εB∗ + NC(C, x0).

Proof. Let v ∈ T(C, x0). Then, there exist λn > 0 and xn ∈ C such that xn → x0 and v = limn→+∞ λn(xn − x0).
Putting vn = λn(xn − x0) implies

vn → v and xn = x0 +
1
λn

vn.

Let 1
λn

= tn, then

xn = x0 + tnvn ∈ C.

We may assume that v , 0. Then λn → +∞ and so tn ↓ 0. Thus, we have that

f HD(x0; v) = lim sup
d→v
t↓0

f (x0 + td) − f (x0)
t

≥ lim sup
n→∞

f (x0 + tnvn) − f (x0)
tn

= lim sup
n→∞

f (x0 + tnvn) − f (x0) +
√
ε‖tnv‖

tn
−
√
ε‖v‖

≥ −
√
ε‖v‖.

Hence, we obtain

0 ≤ f HD(x0; v) +
√
ε‖v‖, ∀v ∈ T(C, x0).

Next, we assume that f HD(x0; v) ≤ sup
x∗∈∂∗ f (x0)

〈x∗, v〉 +
√
ε‖v‖ for all v ∈ Rn. It follows that

0 ≤ sup
x∗∈∂

∗

ε f (x0)

〈x∗, v〉 +
√
ε‖v‖, ∀v ∈ T(c, x0)

= sup
x∗∈clco∂

∗

ε f (x0)+
√
εB∗
〈x∗, v〉, ∀v ∈ T(c, x0).

Let 1(v) = sup
x∗∈clco∂

∗

ε f (x0)

〈x∗, v〉. Then 1(0) = 0 and so 1 is a proper convex function. Since TC(C, x0) ⊆ T(C, x0),

we have

0 ≤ 1(v), ∀v ∈ TC(C, x0),

and so

0 ≤ 1(v) + δTC(C,x0)(v), ∀v ∈ Rn.

Hence, we get that

0 ∈ ∂
(
1 + δTC(C,x0)

)
(0)

= ∂1(0) + ∂δTC(C,x0)(0)
= ∂1(0) + NC(C, x0). (15)
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Note that

1(v) = sup
x∗∈clco∂

∗

ε f (x0)+
√
εB∗
≥ 1(0) + 〈x∗, v〉.

so, we obtain clco∂
∗

ε f (x0) + εB ⊆ ∂1(0). On the other hand, assume that there exists ξ ∈ clco∂
∗

ε f (x0) +
√
εB∗

such that ξ < ∂1(0). Thus, there is v̂ ∈ Rn such that

1(v̂) < 1(0) + 〈ξ, v̂〉.

So,

sup
x∗∈clco∂

∗

ε f (x0)+
√
εB∗
〈x∗, v〉 < 〈ξ, v̂〉,

a contradiction. From (15), 0 ∈ clco∂
∗

ε f (x0) +
√
εB∗ + NC(C, x0).

Theorem 3.2. Let ε ≥ 0 be given and x0 be an ε-quasi-minimizer for (10). Suppose that f admits an ε-upper
semi-regular semi-convexificator ∂

∗

ε f (x0) at x0, each 1i, i ∈ I admits an upper convexificator ∂
∗

1i(x0) at x0,
assume the assumption (14) and the constraint qualification condition (12) hold at x0. Then, there exist
µi ≥ 0,∀i ∈ I and µ ∈ R(I)

+ such that

0 ∈ clco∂
∗

ε f (x0) +
√
εB∗ +

∑
i∈I

µi(co∂
∗

1i(x0)) + N(Ω, x0), 1i(x0) = 0,∀i ∈ I(µ). (16)

Proof. Since f admits ε-semi regular convexificator at x0, we have

f HD(x0; v) ≤ sup
x∗∈∂∗ε f (x0)

〈x∗, v〉 +
√
ε‖v‖, ∀v ∈ Rn.

Due to assumptionas and Theorem 3.1, we obtain that

0 ∈ clco∂
∗

ε f (x0) +
√
εB∗ + NC(C, x0).

Since (12) is satisfied at x0, we obtain that

0 ∈ clco∂
∗

ε f (x0) +
√
εB∗ +

⋃
µ∈A(x0)

∑
i∈I

µico
(
∂∗1i(x0)

) + N(Ω, x0),

where A(x0) := {µ ∈ R(I)
+ : µi1i(x0) = 0,∀i ∈ I}. Therefore, there exists µi ≥ 0, ∀i ∈ I such that

0 ∈ clco∂
∗

ε f (x0) +
√
εB∗ +

∑
i∈I

µi

(
co∂

∗

1i(x0)
)

+ N(Ω, x0),

1i(x0) = 0, i ∈ I(µ).

Therefore (16) is verified.

We next formulate some sufficient conditions for an almost ε-quasi minimizer for the problem (10).

Theorem 3.3. (x0, µ) ∈ Cε ×R
(I)
+ be given. Suppose that f admits ε-upper semi-regular semi-convexificator

∂
∗

ε f (x0) at x0, 1i, i ∈ I admit upper convexificators ∂
∗

1i(x0), respectively, at x0, and (x0, µ) is such that

0 ∈ co∂
∗

ε f (x0) +
∑
i∈I

µi

(
co∂

∗

1i(x0)
)

+ N(Ω, x0) +
√
εB∗, (17)

1i(x0) ≥ 0,∀i ∈ I(µ). (18)

Assume that for each i ∈ I, the function 1i is quasiconvex at x0.
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1. If f is ∂
∗

ε-pseudoconvex of type I at x0, then x0 is an almost ε-quasi minimizer for (10).

2. If f is ∂
∗

ε-pseudoconvex of type II at x0, then x0 is an almost ε-quasi minimizer for (10).

Proof. (i) Let (x0, µ) ∈ Cε ×R
(I)
+ be such that (17) holds. Then, there exist a ∈ co∂

∗

ε f (x0), bi ∈ co(∂
∗

1i(x0)) with
µi ∈ R+,∀i ∈ I, c ∈ N(Ω, x0) and d ∈ B∗, such that 1i(x0) ≥ 0 for all i ∈ I(µ) and

a +
∑
i∈I

µibi + c + d = 0. (19)

Since c ∈ N(Ω, x0), and d ∈ B∗, one has

〈c, x − x0〉 ≤ 0, d(x − x0) ≤ ‖x − x0‖, ∀x ∈ Ω.

Because of these inequalities and (19), we obtain that〈
a +

∑
i∈I

µibi, x − x0

〉
+
√
ε‖x − x0‖ ≥ 0.

Therefore, it follows that〈
a +

∑
i∈I(µ)

µibi, x − x0

〉
+
√
ε‖x − x0‖ ≥ 0,

which is equivalent to

〈a, x − x0〉 +
√
ε‖x − x0‖ ≥ −

〈∑
i∈I(µ)

µibi, x − x0

〉
. (20)

Due to the hypothesis and property of any feasible points, respectively, we have 1i(x0) ≥ 0 for all i ∈ I(µ)
and 1i(x) ≤ 0 for all i ∈ I, x ∈ C. Thus, for any x ∈ C and i ∈ I(µ),

1i(x) ≤ 1i(x0).

By the ∂
∗

ε-quasiconvexity of 1i, i ∈ I(µ) at x0, above inequality implies

〈bi, x − x0〉 ≤ 0, ∀bi ∈ ∂
∗1i(x0), ∀i ∈ I(µ).

Thus, one has〈∑
i∈I(µ)

µibi, x − x0

〉
≤ 0. (21)

Then, we obtain by combining (20) and (21) that

〈a, x − x0〉 +
√
ε‖x − x0‖ ≥ 0. (22)

Immediately, the ∂
∗

ε- pseudoconvexity of type I of f at x0 yields

f (x0) ≤ f (x) +
√
ε‖x − x0‖,

which means x0 is an almost ε-quasi minimizer of (10) as desired.
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(ii) From (20) and the fact that −
√
ε‖x − x0‖ ≤ 0, it is not hard to see that

〈a, x − x0〉 ≥ −

〈∑
i∈I(µ)

µibi, x − x0

〉
,

which together with (21) yields

〈a, x − x0〉 ≥ 0.

Therefore, it follows from the ∂
∗

ε-pseudoconvexity of type II of the function f that x0 is an almost ε-quasi
minimizer of (10). This completes the proof. �

Example 3.4. Consider the following problem (9):

min f (x)
subject to 1i(x) ≤ 0, i ∈ I = [0, 1],

x ∈ Ω = [−1, 1],

where

f (x) :=

0; if x ≥ 0,
−

x
4 ; if x < 0,

and 1i(x) := x3i, for x ∈ R and i ∈ I. Simple calculations provide

f HD(x; d) = f +(x; d) =

0; if d ≥ 0,
−

d
4 ; if d < 0.

Let ε =
1
4
. By direct computation, we can see that ∂

∗

1
4

= [ 1
2 , 1] is an

1
4

- upper convexificator of f at x0 = 0.

Moreover, we can check that f is ∂
∗

1
4
-pseudoconvex of type I (obviously, also of type II) of the function f at

0, and 1i, i ∈ I, is quasiconvex at 0. The feasible set of the considered problem is K = [1, 0]. It is clear that,
N(Ω; 0) = {0}, and ∂

∗

01i(0) = ∂C1i(0) = {3x2i} for all i ∈ I, are respectively convexificators of 1i, i ∈ I at 0. Let µ
be such that µ0 = 1 and µi = 0 for all i ∈ I\{0}.We can check that the optimality condition (17) corresponding
(0, µ) holds. In this case we obtain I(µ) = {0}. By Theorem 4.3, x0 = 0 is an almost 1

4 -quasi minimum for (9).

4. Approximate optimality for quasiapproximate weakly efficiency in (MOSIP)

This section is an attempt to investigate constraint qualifications (CQs) and to characterize quasi efficient
solutions of the following (MOSIP):

Minimize f (x) := ( f1(x), . . . , fk(x))
subject to 1i(x) ≤ 0, i ∈ I, (23)

where f j, 1i : Rn
→ R for j = 1, 2, . . . , k and i ∈ I are real-valued functions. Here, I is an arbitrary (possibly

infinite) nonempty set. Unlike various related publications existing in the literature, in the present work,
appearing functions are not locally Lipschitz or convex necessarily. The set of feasible solutions of Problem
(23) is

K := {x ∈ Rn : 1i(x) ≤ 0, i ∈ I}.
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We assume K , ∅. Set I := {1, . . . , k}. Furthermore, for a given x0 ∈ K, set

I(x0) := {i ∈ I : 1i(x0) = 0}.

Now, we concentrate on consideration of the following (MOSIP):

Minimize f (x) := ( f1(x), . . . , fk(x))
subject to 1i(x) ≤ 0, i ∈ I, x ∈ Ω (24)

where f j, 1i : Rn
→ R for j = 1, 2, . . . , k and i ∈ I are real-valued functions, while Ω ⊆ Rn is a closed convex

set. Here, I is an arbitrary (possibly infinite) nonempty set. The set of feasible solutions of Problem (24) is

C := {x ∈ Ω : 1i(x) ≤ 0, i ∈ I}, (25)

which is assumed to be nonempty.
Now, we recall the notions of approximate quasi efficiency in (23).

Definition 4.1. [14] Let ε ≥ 0. A point x0 ∈ C is said to be

1. an ε-quasi efficient solution of (23) if

f (x) − f (x0) + ε‖x − x0‖ek < −R
k
+ \ {0}, ∀x ∈ C,

2. an ε-quasi weakly efficient solution of (23) if

f (x) − f (x0) + ε‖x − x0‖ek < −intRk
+ \ {0}, ∀x ∈ C.

Similarly, we denote by Cε the ε-feasible set, which is nonempty and closed, is in the following form:

Cε :=
{
x ∈ Ω : 1i(x) ≤

√
ε, i ∈ I

}
.

Next, we introduce the following concepts of almost (approximate) quasi efficient solution.

Definition 4.2. Let ε > 0 be given. A point x0 ∈ X is said to be an almost ε-quasi weakly efficient solution for
(23) if x0 ∈ Cε and for any x ∈ C

f (x) − f (x0) +
√
ε‖x − x0‖ek < −intRk

+ \ {0}.

Theorem 4.3. Let ε ≥ 0 be given and x0 be an ε-quasi weakly efficient solution for (24). Suppose that each
continuous function f j, j ∈ J and 1i, i ∈ I admit ε-upper semi-regular semi-convexificator ∂

∗

ε f j(x0) and upper

convexificator ∂
∗

1i(x0), respectively, at x0. Assume the assumption (14) and let constraint qualification (12)
be satisfied at x0. Then, there exist (λ, µ) ∈ Rk

+ ×R
(I)
+ such that

∑
j∈J λ j = 1 and

0 ∈ clco

 ⋃
j∈J(x0)

∂
∗

ε f j(x0)

 +
√
εB∗ +

∑
i∈I

µico(∂
∗

1i(x0)) + N(Ω, x0),

1i(x0) = 0,∀i ∈ I(µ). (26)

where J(x0) =
{
j ∈ J : f j(x0) = Φ(x0)

}
.

Proof. By the definition of an ε-quasi weakly efficient solution and feasible solution for (MOSIP), we have
that for all x ∈ C,

f (x) − f (x0) +
√
ε‖x − x0‖ek < −intRk

+ \ {0},
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where ek := (1, . . . , k) ∈ Rk
+, and 1i(x) ≤ 0, ∀i ∈ I. In other words, there is no x ∈ Rn such that f j(x) − f j(x0) +

√
ε‖x−x0‖ ≤ 0,∀ j ∈ J, fl(x)− f (x0) +

√
ε‖x−x0‖ < 0,∃l ∈ J, and 1i(x) ≤ 0,∀i ∈ I. So, for any x ∈ C,we have that

max
j∈J
{ f j(x) +

√
ε‖x − x0‖} ≥ max

j∈J
{ f j(x0)}, and 1i(x) ≤ 0,∀i ∈ I.

This implies

max
j∈J
{ f j(x)} +

√
ε‖x − x0‖ ≥ max

j∈J
{ f j(x0)}, and 1i(x) ≤ 0,∀i ∈ I.

Let

Φ(x) := max
j∈J

f j(x), ∀x ∈ C.

Clearly, x0 is an ε-quasi minimizer of Φ over C. By Theorem 3.1 and definition of Φ, we have

0 ∈ clco∂
∗

εΦ(x0) +
√
εB∗ + NC(C, x0)

= clco∂
∗

ε

(
max

j∈J
f j(x0)

)
+
√
εB∗ + NC(C, x0).

Since the constraint qualification (12) is satisfied at x0, one has

0 ∈ clco∂
∗

ε

(
max

j∈J
f j(x0)

)
+
√
εB∗ +

⋃
µ∈A(x0)

∑
i∈I

µico
(
∂
∗

1i(x0)
) + N(Ω, x0).

Due to the same reasons as in the proof of Theorem 3.2, there exists µ = (µ1, µ2, . . .) ∈ R
(I)
+ such that

0 ∈ clco∂
∗

ε

(
max

j∈J
f j(x0)

)
+
√
εB∗ +

∑
i∈I

µico
(
∂
∗

1i(x0)
)

+ N(Ω, x0), 1i(x0) = 0,∀i ∈ I(µ).

Using the Proposition 2 in [4] yields

0 ∈ clco

 ⋃
j∈J(x0)

∂
∗

ε f j(x0)

 +
√
εB∗ +

∑
i∈I

µico
(
∂
∗

1i(x0)
)

+ N(Ω, x0),

1i(x0) = 0, ∀i ∈ I(µ).

Theorem 4.4. Let ε ≥ 0 be given and x0 be an ε-quasi efficient solution for (24). Suppose all assumptions
of Theorem 4.3. In addition, assume that co

(⋃
j∈J(x0) ∂

∗

ε f j(x0)
)

+
√
εB∗ is closed. Then, there exist (λ, µ) ∈

Rn
×R(I)

+ , λ j ≥ 0,∀ j ∈ J,
∑

j∈J λ j = 1, and µi ≥ 0,∀i ∈ I such that

0 ∈
∑

j∈J(x0)

λ jco(∂
∗

ε f j(x0)) +
∑
i∈I

µico(∂
∗

1i(x0)) + N(Ω, x0) +
√
εB∗, 1i(x0) = 0,∀i ∈ I(µ). (27)

where J(x0) =
{
j ∈ J : f j(x0) = Φ(x0)

}
.

Proof. The proof is completed by following above proof of Theorem 4.3 and using a well-known result from
[11].
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We next formulate some sufficient conditions for an almost ε-quasi weakly efficient solution for MOSIP
(24).

Theorem 4.5. Let (x0, λ, µ) ∈ Cε × Rk
+ × R

(J)
+ be given. Suppose that f j,∀ j ∈ J and 1i,∀i ∈ I admit ε-upper

semi-regular semi-convexificators ∂
∗

ε f j(x0) and upper convexificators ∂
∗

1i(x0), respectively, at x0 and assume
that (x0, λ, µ) is such that

0 ∈
∑

j∈J(x0)

λ jco(∂
∗

ε f j(x0)) +
∑
i∈I

µico(∂
∗

1i(x0)) + N(Ω, x0),

1i(x0) ≥ 0,∀i ∈ I(µ). (28)

Assume that 1i, i ∈ I is quasiconvex at x0.

1. If for each j ∈ J, f j is ∂
∗

ε-pseudoconvex of type I at x0, then x0 is an almost ε-quasi weakly efficient
solution for (24).;

2. If for each j ∈ J, f j is ∂
∗

ε-pseudoconvex of type II at x0, then there exists ε ≥ 0 such that x0 is an almost
ε-quasi weakly efficient solution for (24).;

3. for each j ∈ J, f j is quasiconvex at x0, then x0 is an almost ε-quasi weakly efficient solution for (24).

Proof. (i) Let (x0, λ, µ) ∈ Cε × Rk
+ × R

(I)
+ be such that (28) holds. Then, there exist a j ∈ co(∂

∗

ε f j(x0)) with

λ j ∈ R+,∀ j ∈ J, bi ∈ co(∂
∗

1i(x0)) with µi ∈ R+,∀i ∈ I, c ∈ N(Ω, x0) and d ∈ B∗ such that 1i(x0) ≥ 0 for all i ∈ I(µ)
and ∑

j∈J(x0)

λ ja j +
∑
i∈I

µibi + c + d = 0. (29)

Therefore, we obtain

0 =

〈 ∑
j∈J(x0)

λ ja j +
∑
i∈I

µibi + c + d, x − x0

〉

=

〈∑
j∈J

λ ja j +
∑
i∈I

µibi, x − x0

〉
+ 〈c, x − x0〉 + 〈d, x − x0〉.

Since c ∈ N(Ω, x0), and d ∈ B∗, one has

〈c, x − x0〉 ≤ 0, d(x − x0) ≤ ‖x − x0‖, ∀x ∈ Ω

and so〈∑
j∈J

λ ja j +
∑
i∈I

µibi, x − x0

〉
+
√
ε‖x − x0‖ ≥ 0. (30)

Hence, we obtain that〈∑
j∈J

λiai, x − x0

〉
+
√
ε‖x − x0‖ ≥ −

〈∑
i∈I(µ)

µibi, x − x0

〉
. (31)

Again, the hypothesis and property of any feasible points imply, respectively, that 1i(x0) ≥ 0 for all i ∈ I(µ)
and 1i(x) ≤ 0 for all i ∈ I, x ∈ C. Thus, for any x ∈ C and i ∈ I(µ),

1i(x) ≤ 1i(x0).
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By the quasiconvexity of 1i, i ∈ J(µ) at x0, above inequality implies〈∑
i∈I(µ)

µibi, x − x0

〉
≤ 0, ∀x ∈ C. (32)

Then, we obtain by using (31) and combining this new inequality with (32) that〈∑
i∈I

λ ja j, x − x0

〉
+
√
ε0‖x − x0‖ ≥ 0. (33)

Therefore, there exists ā =
∑

j∈J λ̄ ja j =
∑

j∈J(λ j/λ)a j ∈ co(∂
∗

εΦ(x0)) such that

〈ā, x − x0〉 +
√
ε0‖x − x0‖ ≥ 0, (34)

Immediately, the ∂
∗

ε- pseudoconvexity of type I of Φ at x0 yields

max
j∈J

f j(x0) ≤ max
j∈J

f j(x) +
√
ε0‖x − x0‖,

which means for any x ∈ C

f (x) − f (x0) +
√
ε‖x − x0‖ek < −intRk

+ \ {0}.

Hence, x0 is an almost ε-quasi weakly efficient solution of (24) as desired.

(ii) It is clear that inequality (30) implies〈∑
i∈I

λiai, x − x0

〉
≥ −

〈∑
i∈I(µ)

µibi, x − x0

〉
, (35)

which together with (33) yields〈∑
i∈I

λiai, x − x0

〉
≥ 0.

Thus, there exists ā ∈ co
(
∂
∗

εΦ(x0)
)

such that

〈ā, x − x0〉 ≥ 0. (36)

By the ∂
∗

ε-pseudoconvexity of type II of Φ at x0,

max
j∈J

f j(x0) < max
j∈J

f j(x) +
√
ε‖x − x0‖

and we obtain the desired result.

(iii) In order to obtain (36), we follow the same way in proof of statement (ii). Then, since ε > 0 and x , x0,
the strictly inequality 〈ā, x − x0〉 +

√
ε‖x − x0‖ > 0 is satisfied and so the quasiconvexity of Φ at x0 provides

max
j∈J

f j(x0) < max
j∈J

f j(x),

thereby

max
j∈J

f j(x0) < max
j∈J

f j(x) +
√
ε‖x − x0‖, ∀x ∈ C.

Thus, there is no x ∈ C such that f (x)− f (x0) +
√
ε‖x− x0‖e j ∈ −intRk

+ \ {0} and hence x0 is an almost ε-quasi
weakly efficient solution of (24). This completes the proof.
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5. Conclusions

Some classes of functions, namely (ε − ∂∗ε)-pseudoconvex function and (ε − ∂∗ε)-quasiconvex functions
with respect to a given ε upper semi-regular semi-convexificator are introduced, respectively. By utilizing
these new concepts, sufficient optimality conditions of approximate solutions for the nonsmooth (SIP), in
terms of ε-upper semi-regular semi-convexificator, are established. Moreover, as an application, optimality
conditions of quasi approximate weakly efficient solution for nonsmooth multi-objective semi-infinite
programming problems (MOSIP) are presented.
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