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Abstract. In this paper, we introduce a new class of EP elements which is called strongly EP element and
give some characterizations of strongly EP elements.

1. Introduction

Let R be an associative ring with 1, and let a ∈ R. a is said to be group invertible if there exists a#
∈ R

such that
aa#a = a, a#aa# = a#, aa# = a#a.

The element a# is called a group inverse of a, which is uniquely determined by the above equations [3]. We
denote the set of all group invertible elements of R by R#.

An involution in R is an anti-isomorphism ∗ : R→ R, a 7→ a∗ of degree 2, that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

If a∗a = aa∗, the element a is called normal [12].
An element a+ is called the Moore-Penrose inverse (or MP-inverse) [7] of a, if

aa+a = a, a+aa+ = a+, (aa+)∗ = aa+, (a+a)∗ = a+a.

If a+ exists, then it is unique [12–14]. Denote by R+ the set of all MP-invertible elements of R. If a∗ = a+, the
element a is called partial isometry. An element a ∈ R#

∩ R+ satisfying a# = a+ is said to be EP. We denote
the set of all EP elements of R by REP. If a ∈ REP and a∗ = a+, we say a is a strongly EP element. Denote by
RPEP the set of all strongly EP elements of R.

In [1], Baksalary, Styan and Trenkler explored various classes of matrices, such as partial isometries and
EP elements, by using the representation of complex matrices and the matrix rank described in [12]. Recent
researches on partial isometries have produced some interesting findings [6, 10].

At the same time, various characterizations of EP elements were investigated in [2, 4, 5, 7]. In general,
EP elements are considered in the contexts of semigroups, rings and C∗−algebras.

Motivated by the above results, this work is intended to provide some equivalent conditions for an
element to be an EP element and partial isometry by using solutions of some equations. Let a ∈ R#

∩R+ and
χa = {a, a#, a+, a∗, (a#)∗, (a+)∗}. We show that a ∈ RPEP if and only if the equation x = a+x(a+)∗ has at least one
solution in χa. Also, we show that a ∈ RPEP if and only if the equations xya∗ = xya# has at least a solution in
χ2

a .
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2. Main Results

Lemma 2.1. ([6, Lemma 1.1 and Theorem 1.2])Let a ∈ R#
∩ R+. Then the following conditions are equavilent:

1) a ∈ REP;
2) a+a = aa+;
3) a+a = a#a;
4) aa+ = aa#.

Observing the conditions 2) and 4) of Lemma 2.1, we obtain the following lemma.

Lemma 2.2. [11]Let a ∈ R#
∩ R+. Then the following conditions are equavilent:

1) a ∈ REP;
2) a+am+1 = am for some m ≥ 1;
3) am = am+1a+ for some m ≥ 1.

Lemma 2.3. [15, Corollary 2.14]Let a ∈ R#
∩ R+. Then the following conditions are equavilent:

1) a ∈ REP;
2) aa+a+ = a+;
3) a+a+a = a+.

Lemma 2.4. ([6, Theorem 1.1]; [8]; [9]) (1) If a ∈ R+, then a+aa∗ = a∗ = a∗aa+.
(2) If a ∈ R#

∩ R+, then a#a+a = a# = aa+a#.

Lemma 2.5. Let a ∈ R#
∩ R+. If a∗ = a+aa#, then a ∈ REP and a+ = a∗.

Proof. Since a∗ = a+aa#, we have a∗a = a+aa#a = a+a. Hence a∗ = a+ by [10, Theorem 2.1]. Consequently,
a+ = a∗ = a+aa#, one obtains a ∈ REP by [7, Theorem 2.1(xxii)].

Let a ∈ R#
∩ R+. Then a∗ = a+aa# if and only if aa∗ = aa#. Hence, Lemma 2.5 leads to the following

corollary which conditions 2-3 were proved in [10].

Corollary 2.6. Let a ∈ R#
∩ R+. Then the following conditions are equavilent:

1) a ∈ REP and a+ = a∗;
2) aa∗ = aa#;
3) a∗a = a#a;
4) a∗ = a#aa+;
5) a∗ = a+aa#.

Applying the involution ∗ on the condition 4) of Corollary 2.1, we have a = aa+(a#)∗. In this case, we
have a# = a+. Hence, a = a+a(a+)∗, which implies that we can construct the following equation

x = a+x(a+)∗. (1)

Let a ∈ R#
∩ R+. If a# = a+ = a∗, then a is called a strongly EP element of R. We write by RPEP to denote

the set of all strongly EP elements of R. Using the equation (1), we can characterize strongly EP elements
as follows.

Theorem 2.7. Suppose a ∈ R#
∩ R+, then a ∈ RPEP if and only if the equation (1) has at least one solution in

χa = {a, a#, a+, a∗, (a#)∗, (a+)∗}.

Proof. =⇒ Assume that a ∈ RPEP. Then a# = a+ = a∗. It follows that x = a is a solution of Equation (1) in χa.
⇐= 1) If x = a is a solution, then a = a+a(a+)∗. Multiplying the equality on the left by 1 − a+a, we have

a = a+a2, it follows that a ∈ REP by Lemma 2.2. Hence a = a+a(a+)∗ = aa+(a+)∗ = (a+)∗, which implies a ∈ RPEP;
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2) If x = a# is a solution, then a# = a+a#(a+)∗. Multiplying the equality on the left by a, we have aa# = a#(a+)∗

by Lemma 2.4(2). Noting that (1 − a+a)a# = (1 − a+a)a+a#(a+)∗ = 0. Then a# = a+aa#, one has a ∈ REP by [7,
Theorem 2.1(xix)], it follows that a = a2a# = aa#(a+)∗ = a#a(a+)∗ = a+a(a+)∗. Hence a ∈ RPEP by 1);

3) If x = a+ is a solution, then a+ = a+a+(a+)∗. Multiplying the equality on the right by 1 − a+a, we have
a+ = a+a+a, it follows that a ∈ REP by Lemma 2.3. Hence a# = a+ = a+a+(a+)∗ = a+a#(a+)∗, which gives a ∈ RPEP

by 2);
4) If x = a∗ is a solution, then a∗ = a+a∗(a+)∗, that is a∗ = a+a+a. Applying the involution on the equality,

we have a = a+a(a+)∗, which leads to a ∈ RPEP by 1);
5) If x = (a#)∗ is a solution, then (a#)∗ = a+(a#)∗(a+)∗. Applying the involution on the equality, we have

a# = a+a#(a+)∗. Hence a ∈ RPEP by 2);
6) If x = (a+)∗ is a solution, then (a+)∗ = a+(a+)∗(a+)∗, which gives a+ = a+a+(a+)∗ by applying the involution.

Hence a ∈ RPEP by 3);

By the symmetricity of equation (1), we have the following equation

x = (a+)∗xa+. (2)

Similarly, we have the following theorem.

Theorem 2.8. Suppose a ∈ R#
∩ R+, then a ∈ RPEP if and only if the equation (2) has at least one solution in χa.

Corollary 2.9. Let a ∈ R#
∩ R+. Then the following conditions are equavilent:

1) a ∈ RPEP;
2) a = a+a(a#)∗;
3) a# = a+a#(a#)∗;
4) (a+)∗ = a+(a+)∗(a#)∗.

Proof. 1) =⇒ i), (i = 2, 3, 4) It is routine.
2) =⇒ 1) Assume that a = a+a(a#)∗. Then (1 − a+a)a = (1 − a+a)a+a(a#)∗ = 0, one has a ∈ REP by Lemma

2.2. Hence a = a+a(a+)∗ because a+ = a#. By the case 1) of proof of Theorem 2.1, we have a ∈ RPEP.
3) =⇒ 2) Suppose that a# = a+a#(a#)∗. Then a = aa#(a#)∗ by multiplying a2 on the left. Noting that

(a#)∗(1 − aa+) = 0. Then we have a(1 − aa+) = 0, it follows that a ∈ REP by Lemma 2.2. Hence a = aa#(a#)∗ =
a#a(a#)∗ = a+a(a#)∗.

4) =⇒ 1) Assume that (a+)∗ = a+(a+)∗(a#)∗. Then a+ = a#a+(a+)∗ by applying involution on the equality,
so one has (1 − aa+)a+ = (1 − aa+)a#a+(a+)∗ = 0 by Lemma 2.4(2), which gives a ∈ REP by Lemma 2.3. Hence
a+ = a#a+(a+)∗ = a+a#(a+)∗ = a+a+(a+)∗, by the case 3) of the proof of Theorem 2.1, we have a ∈ RPEP.

Corollary 2.10. Let a ∈ R#
∩ R+. Then the following conditions are equavilent:

1) a ∈ RPEP;
2) a+ = a#a+(a+)∗;
3) a∗ = a#a∗(a+)∗;
4) (a#)∗ = a#(a#)∗(a+)∗.

Proof. 1) =⇒ i), (i = 2, 3, 4) It is evident.
2) =⇒ 1) Assume that a+ = a#a+(a+)∗. Then (1 − aa+)a+ = (1 − aa+)a#a+(a+)∗ = 0 by Lemma 2.4(2), one has

a ∈ REP by Lemma 2.3, which gives a+ = a#. Hence a+ = a+a+(a+)∗. By the case 3) of proof of Theorem 2.1,
we have a ∈ RPEP.

3) =⇒ 1) Suppose that a∗ = a#a∗(a+)∗. Then (1 − aa+)a∗ = (1 − aa+)a#a∗(a+)∗ = 0. Applying the involution
on the equality, one has a = a2a+, so a ∈ REP by Lemma 2.2. Hence a∗ = a#a∗(a+)∗ = a+a∗(a+)∗, by the case 4)
of proof of Theorem 2.1, we have a ∈ RPEP.

4) =⇒ 1) Assume that (a#)∗ = a#(a#)∗(a+)∗. Then a# = a+a#(a#)∗ by applying involution on the equality.
Hence a ∈ RPEP by Corollary 2.2.
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Observing Corollary 2.3, we can easy obtain the following equation

x = a#x(a+)∗. (3)

Modifying this equation as follows

x = xa#(a+)∗. (4)

Theorem 2.11. Suppose a ∈ R#
∩ R+, then a ∈ RPEP if and only if the equation (4) has at least one solution in

χa = {a, a#, a+, a∗, (a#)∗, (a+)∗}.

Proof. =⇒ Assume that a a partial isometry, then a+ = a∗. It follows that x = a is a solution of Equation (4)
in χa.
⇐= 1) If x = a is a solution, then a = aa#(a+)∗. Multiplying the equality on the right by a∗, we have

aa∗ = aa#aa+ = aa+, it follows that a is a partial isometry by [6, Theorem 2.1];
2) If x = a# is a solution, then a# = a#a#(a+)∗. Multiplying the equality on the left by a2, we have

a = aa#(a+)∗. Hence, by 1), we have a is a partial isometry;
3) If x = a+ is a solution, then a+ = a+a#(a+)∗. Multiplying the equality on the left by a, we have

aa+ = a#(a+)∗. Noting that (a+)∗(1 − a+a) = 0. Then one has aa+(1 − a+a) = 0. Applying the involution on
the last equality, we have aa+ = a+a2a+, which gives a = a+a2. Hence a ∈ REP by Lemma 2.2, which leads to
a = a2a+ = a2a+a#(a+)∗ = aa#(a+)∗. Therefore a is a partial isometry by 1);

4) If x = a∗ is a solution, then a∗ = a∗a#(a+)∗. Multiplying the equality on the left by (a+)∗, one obtains
aa+ = aa+a#(a+)∗ = a#(a+)∗ by Lemma 2.4. Multiplying the last equality on the right by 1 − a+a, one has
aa+(1 − a+a) = 0, applying the involution, we have aa+ = a+a2a+, which implies a = aa+a = a+a2a+a = a+a2.
Hence a ∈ REP by Lemma 2.3, it follows that a+ = a+a+a = a+a#(a+)∗ = a#a+(a+)∗, one obtains a ∈ RPEP by
Corollary 2.3;

5) If x = (a+)∗ is a solution, then (a+)∗ = (a+)∗a#(a+)∗. Applying the involution on the equality, we have
a+ = a+(a#)∗a+. It follows that a = aa+a = aa+(a#)∗a+a = (a+aa#aa+)∗ = (a+)∗. Hence a = (a+)∗ = (a+)∗a#(a+)∗ =
aa#(a+)∗, one obtains a is a partial isometry by 1);

6)If x = (a#)∗ is a solution, then (a#)∗ = (a#)∗a#(a+)∗, it follows that (a#)∗(1−a+aa) = (a#)∗a#(a+)∗(1−a+aa) = 0.
Applying the involution on the equality, we have a# = a+aa#, which gives a ∈ REP. Hence (a+)∗ = (a#)∗ =
(a#)∗a#(a+)∗ = (a+)∗a#(a+)∗, which implies a ∈ RPEP by 5).

Multiplying the equation (4) on the right by a∗, we have the following equation

xa∗ = xa#aa+. (5)

In Equation (5), exchange a with a+, or a+ with a#, we can obtain the following equation

xa∗ = xa#. (6)

Theorem 2.12. Suppose a ∈ R#
∩ R+, then a ∈ RPEP if and only if the equation (6) has at least one solution in

χa = {a, a#, a+, a∗, (a#)∗, (a+)∗}.

Proof. =⇒ Assume that a ∈ RPEP, then a+ = a∗ = a#. It follows that x = a is a solution of Equation (6) in χa.
⇐= 1) If x = a is a solution, then aa∗ = aa#. It follows that a ∈ RPEP by [6, Theorem 2.2(iv)];
2) If x = a# is a solution, then a#a∗ = a#a#. Multiplying the equality on the left by a2, we have aa∗ = aa#.

Hence, by 1), we have a ∈ RPEP;
3) If x = a+ is a solution, then a+a∗ = a+a#. It follows from [10, Theorem 2.3] that a ∈ RPEP;
4) If x = a∗ is a solution, then a∗a∗ = a∗a#. Multiplying the equality on the left by (a+)∗, one obtains

aa+a∗ = aa+a# = a# by Lemma 2.4. By the proof of 3), one obtains a ∈ RPEP;
5) If x = (a#)∗ is a solution, then (a#)∗a∗ = (a#)∗a#. It follows that aa# = (a#)∗a# by applying the involution

on the two-sided. Noting that (1 − a+a)(a#)∗ = 0. Then we have (1 − a+a)aa# = 0, which gives a ∈ REP. So
a = aa#a = (a#)∗a#a = (a+)∗a+a = (a+)∗, which implies a ∈ RPEP.

6) If x = (a+)∗ is a solution, then (a+)∗a∗ = (a+)∗a#, that is, aa+ = (a+)∗a#. It follows that a∗ = a∗aa+ =
a∗(a+)∗a# = a+aa#. Hence a ∈ RPEP by Corollary 2.1.
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Corollary 2.13. Let a ∈ R#
∩ R+. Then the following conditions are equavilent:

1) a ∈ RPEP;
2) aa+a∗ = a#;
3) a∗a+a = a#;
4) aa# = (a#)∗a#;
5) aa# = a#(a#)∗.

Modifying the equation (5) as follows

xa∗ = a#xaa+. (7)

Theorem 2.14. Suppose a ∈ R#
∩ R+, then a is a partial isometry if and only if the equation (7) has at least one

solution in ρa = {a, a#, a+, a∗, (a#)∗}.

Proof. =⇒ Assume that a is partial isometry, then a+ = a∗. It follows that x = a is a solution of Equation (7)
in χa.
⇐= 1) If x = a is a solution, then aa∗ = a#a2a+. It follows that aa∗ = aa+. Hence a partial isometry by [6,

Theorem 2.1];
2) If x = a# is a solution, then a#a∗ = a#a#aa+ = a#a+. By [10], a is partial isometry;
3) If x = a+ is a solution, then a+a∗ = a#a+aa+ = a#a+. It follows that a is partial isometry from [10];
4) If x = a∗ is a solution, then a∗a∗ = a#a∗aa+ = a#a∗. Multiplying the equality on the right by (a+)∗, one

obtains a∗a+a = a#a+a = a# by Lemma 2.4. Thus a ∈ RPEP by Corollary 2.4;
5) If x = (a#)∗ is a solution, then (a#)∗a∗ = a#(a#)∗aa+ = a#(a#)∗. It follows that aa# = a#(a#)∗ by applying the

involution on the two-sided. Hence a ∈ RPEP by Corollary 2.4.

Remark 2.15. In Equation (7), choose x = (a+)∗, then we have aa+ = a#(a+)∗aa+, so a = a#(a+)∗a, which leads to the
following problem.

Problem 2.16. Let a ∈ R#
∩ R+. If a = a#(a+)∗a, is a partial isometry?

However, we have the following proposition.

Proposition 2.17. Let a ∈ R#
∩ R+. Then the following conditions are equivalent:

(1) a is partial isometry;
(2) a = a#(a+)∗a and a∗a+ = a+a∗;
(3) a = a(a+)∗a# and a∗a+ = a+a∗.

Proof. (1) =⇒ (2) It is clear.
(2) =⇒ (1) Assume that a = a#(a+)∗a and a∗a+ = a+a∗. Then a∗ = a∗a+(a#)∗ = a+a∗(a#)∗ = a+(a#a)∗, it follows

that aa∗ = aa+(a#a)∗ = (a#aaa+)∗ = (aa+)∗ = aa+. Hence a partial isometry by [6, Theorem 2.1]
Similarly, we can show that (1)⇐⇒ (3).

Proposition 2.18. Let a ∈ R#
∩ R+. Then the following conditions are equivalent:

(1) a is partial isometry;
(2) a = a#(a+)∗a and (a+)∗ ∈ comm(aa#);
(3) a = a(a+)∗a# and (a+)∗ ∈ comm(aa#).

Proof. (1) =⇒ (2) It is clear.
(2) =⇒ (1) Assume that a = a#(a+)∗a and (a+)∗ ∈ comm(aa#). Then aa# = a#(a+)∗aa# = a#aa#(a+)∗ = a#(a+)∗. It

follows that a = a2a# = aa#(a+)∗, so aa∗ = aa#(a+)∗a∗ = aa#aa+ = aa+. Hence a partial isometry by [6, Theorem
2.1]

Similarly, we can show that (1)⇐⇒ (3).
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Proposition 2.19. Let a ∈ R#
∩ R+. Then the following conditions are equivalent:

(1) a is partial isometry;
(2) a = a#(a+)∗a and (a+)∗ ∈ comm(an) for some n > 1;
(3) a = a(a+)∗a# and (a+)∗ ∈ comm(an) for some n > 1.

Proof. (1) =⇒ (2) It is clear.
(2) =⇒ (1) Assume that a = a#(a+)∗a and (a+)∗ ∈ comm(an) for some n > 1. Then a = a#(a+)∗an(a#)n−1 =

a#an(a+)∗(a#)n−1 = an−1(a+)∗(a#)n−1, which gives a2 = an(a+)∗(a#)n−1 = (a+)∗an(a#)n−1 = (a+)∗a. It follows that
a∗a2 = a∗(a+)∗a = a+a2. Multiplying the above equation on the right by a#, we have a∗a = a+a. So aa∗ =
aa#(a+)∗a∗ = aa#aa+ = aa+. Hence a partial isometry by [6, Theorem 2.1]

Similarly, we can show that (1)⇐⇒ (3).

Obversing the equation (6), we can obtain the following equation

yxa∗ = yxa#. (8)

Theorem 2.20. Suppose a ∈ R#
∩ R+, then a ∈ RPEP if and only if the equation (8) has at least one solution in

χ2
a = {(c, d)|c, d ∈ χa}.

Proof. =⇒ It is an immediate corollary of Theorem 2.4.
⇐= (1) If y = a, then axa∗ = axa#.
(a) If x = a, then a2a∗ = a2a#, it follows that aa∗ = a#a2a∗ = a#a2a# = aa#. Hence a ∈ RPEP by [6, Theorem

2.2(iv)];
(b) If x = a#, then aa#a∗ = aa#a#, Multiplying the equality on the left by a, we have aa∗ = aa#. Hence

a ∈ RPEP;
(c) If x = a+, then aa+a∗ = aa+a#. That is, aa+a∗ = a#, which gives a+a∗ = a+a# by multiplying a+ on the left.

Hence a ∈ RPEP by the proof of case (3) of Theorem 2.4;
(d) If x = a∗, then aa∗a∗ = aa∗a#. One has a∗a∗ = a+aa∗a∗ = a+aa∗a# = a∗a#. Hence a ∈ RPEP by the proof of

case (4) of Theorem 2.4;
(e) If x = (a#)∗, then a(a#)∗a∗ = a(a#)∗a#. Multiplying the equality on the left by a+, one has (a#)∗a∗ = (a#)∗a#.

Hence a ∈ RPEP by the proof of case (5) of Theorem 2.4;
( f ) If x = (a+)∗, then a(a+)∗a∗ = a(a+)∗a#. That is, a2a+ = a(a+)∗a#, so a2a+(1 − a+a) = a(a+)∗a#(1 − a+a) = 0.

Multiply the last equality on the left by a+a#, one has a+(1 − a+a) = 0, it follows that a ∈ REP by Lemma
2.3. Hence a = a2a+ = a(a+)∗a# and a2 = a(a+)∗a#a = a(a+)∗a+a = a(a+)∗, it follows that a∗a∗ = a+a∗ = a#a∗

by applying the involution on the last equality. Similar to the proof of Case (4) of Theorem 2.4, we have
a ∈ RPEP;

(2) If y = a#, then a#xa∗ = a#xa#. Multiply the equation on the left by a2, we have axa∗ = axa#. Hence
a ∈ RPEP by (1);

(3) If y = a+, then a+xa∗ = a+xa#.
(a) If x = a, then a+aa∗ = a+aa#. It follows that aa∗ = aa+aa∗ = aa+aa# = aa#. Hence a ∈ RPEP by [6, Theorem

2.2(iv)];
(b) If x = a#, then a+a#a∗ = a+a#a#. Multiplying the equality on the left by a, we have a#a∗ = a#a#. Hence

a ∈ RPEP by the proof of case (2) of Theorem 2.4;
(c) If x = a+, then a+a+a∗ = a+a+a#, which gives a+a+a#(1 − aa+) = 0. Multiply the equality on the left by

a∗a, one has a∗a+a#(1− aa+) = 0, applying the involution on the last equality, we have (1− aa+)(a#)∗(a+)∗a = 0.
Now we claim that (a+)∗aR = aR. (In fact, a+R = a∗R and a+a2R = a+R implies (a+)∗aR = (a+aa+)∗aR =
(a+)∗a+a2R = (a+)∗a+R = (a+)∗a∗R = aa+R = aR). Hence 0 = (1 − aa+)(a#)∗(a+)∗aR = (1 − aa+)(a#)∗aR =
(1 − aa+)(a#)∗aa+R = (1 − aa+)(aa+a#)∗R = (1 − aa+)(a#)∗R = (1 − aa+)a∗R, which implies a ∈ REP. Hence
a+a∗ = aa+a+a∗ = aa+a+a# = a+a# and so a ∈ RPEP by the proof of case (3) of Theorem 2.4;

(d) If x = a∗, then a+a∗a∗ = a+a∗a#. Noting that Ra+ = Ra+(a+)∗a∗ ⊆ Ra∗ = Ra∗aa+ ⊆ Ra+ = Ra+(a+)∗(a#)∗a∗a∗ ⊆
Ra∗a∗ ⊆ Ra∗. Then Ra+ = Ra∗ = Ra∗a∗, Ra∗(1− a+a) = Ra∗a∗a∗(1− a+a) = Ra+a∗a∗(1− a+a) = Ra+a∗a#(1− a+a) = 0,
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one has a ∈ REP. Hence a∗a∗ = a+aa∗a∗ = aa+a∗a∗ = aa+a∗a# = a∗a#, which implies a ∈ RPEP by the proof of case
(4) of Theorem 2.4;

(e) If x = (a#)∗, then a+(a#)∗a∗ = a+(a#)∗a#. Multiplying the equality on the right by 1 − aa+, one has
a+(a#)∗a#(1 − aa+) = 0. Multiplying the last equality on the left by a∗a∗a, one obtains a∗a#(1 − aa+) = 0. Hence
a#(1 − aa+) = aa+a#(1 − aa+) = (a+)∗a∗a#(1 − aa+) = 0, this gives a ∈ REP, it follows that a+ = a+(a+)∗a∗ =
a+(a#)∗a# = a+(a+)∗a+ and a = aa+a = aa+(a+)∗a+a = (a+)∗a+a = (a+)∗. Therefore a ∈ RPEP.

( f ) If x = (a+)∗, then a+(a+)∗a∗ = a+(a+)∗a#, that is, a+ = a+(a+)∗a#, so a+a+a = a+(a+)∗a#a+a = a+(a+)∗a# = a+,
which implies a ∈ REP. Hence x = a+ = a# is a solution, by (3)(e), we have a ∈ RPEP;

(4) If y = a∗, then a∗xa∗ = a∗xa#. Multiplying the equation on the left by a+(a+)∗, we have a+xa∗ = a+xa#.
Hence a ∈ RPEP by the case (3);

(5) If y = (a#)∗, then (a#)∗xa∗ = (a#)∗xa#. Multiplying the equation on the left by (a∗)2, one has a∗xa∗ = a∗xa#,
which implies a ∈ RPEP by the case (4);

(6) If y = (a+)∗, then (a+)∗xa∗ = (a+)∗xa#. Multiplying the equation on the left by aa∗, we have axa∗ = axa#.
Hence a ∈ RPEP by the case (1).
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