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Existence of Positive Solutions to the Fractional Laplacian With
Positive Dirichlet Data

Lijuan Liu?

*Taiyuan Normal University

Abstract. We consider the fractional Laplacian with positive Dirichlet data

(-A)2u=AP inQ,
u>0 in Q,
u= (p in Rn\Q,

where p > 1,0 < a < min{2, n}, Q C R" is a smooth bounded domain, ¢ is a nonnegative function, positive
somewhere and satisfying some other conditions. We prove that there exists A* > 0 such that for any
0 < A < A%, the problem admits at least one positive classical solution; for A > A*, the problem admits no
classical solution. Moreover, for1 < p < %, there exists 0 < A < A* such that for any0 <A < X, the problem
admits a second positive classical solution. From the results obtained, we can see that the existence results

of the fractional Laplacian with positive Dirichlet data are quite different from the fractional Laplacian with
zero Dirichlet data.

1. Introduction
In this paper we consider the problem

(-A)2u= AP inQ,
u>0 in Q, @)
=g in R"\Q,

where 0 < a < min{2,n},p > 1, Q C R” is a smooth bounded domain and A is a positive parameter.

For a = 2, it is well known that if ¢ = 0, for2 < p +1 < 2* := 24 (n > 3), the problem (1) always admits
a positive solution; for p +1 > 2* := 25, the problem (1) admits no any positive solution provided Q is
star-shapped by using the Pohozaev identity [7]. Butif ¢ # 0, the situation is quite different. One important
result obtained by Caffarelli and Spruck [3] is that: if ¢ € C1*#(9Q) > 0(0 < B < 1) is positive somewhere,
then the problem (1) with p + 1 = 2* admits one positive solution for suitable chosen small positive number
A and any smooth bounded domain Q.

For0<a<2ifp=0and2 < p+1<2(a) = -2, then the problem (1) also admits a positive

solution (see for example [12, 14] and the references therne_i(;l); for p +1 > 2*(at), the problem (1) admits no
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any bounded positive solution provided Q is star-shapped due to a Pohozaev identity (see [10]). Thus it is
again interesting to consider the case ¢ # 0, which is the concern of this paper.
We first introduce the fractional Sobolev space:

2
. u(x) — u
H2(R"):=3u:R" > R: u(x)Pdx < oqf f %dydx < o0
]Rn ]Rn IRII |x — y|

endowed with the natural norm

a3 oy = (f |u(x)|2dx+f f |u(x) - ‘M ,1 ydx)?. )
-

The fractional Laplacian operator is defined as

(=A)2u(x) = cn,aP.V.f Mdy = Cpo lim f Mcly,

n+o n+a
R (x—y| £20" JR1\B, (x) |x y|

where P.V. stands for the Cauchy principal value, ¢, is a dimensional constant that depends on n and a.
We list some spaces introduced in [4]:

o(x) — v(y)

x _ y H+LX
H(Q)={ueV(R"): u=0 fora.e. x € R"\QJ}.
Define the norm in V(R") as (2). Then V(R") = H(R") = Hz(R"). If Q is a Lipschitz domain, we also

have H(Q) = HZ (Q)[4].
Define a bilinear form by

e(u,0) = fm n f ” wfiydaa 3)

-y

V(Q ={o:R" > R:0lg € L*(Q), e L2(QxRM),

For convenience, we assume Q is a smooth bounded domain here and hereafter. Assume f € H*(Q), the
dual space of H(Q)). The following two definitions are again from [4].

Definition 1.1. u € H(Q) is called a solution of

“Aeu=f inQ,
{ u=0 in R"\Q, )
if
ewp)=(f,9)  for all peHQ). (5)
Definition 1.2. Let g € V(Q). A function u € V(Q) is called a solution of
(~ANiu=f inQ,
{ u=g in R"\Q, (6)

if u — g € H(Q) and (5) holds.

The solution defined by Definition 1.1 is a weak solution [4].
We assume through this paper 0 < a < min{2, n} and that
(91)- p(x) € L°(R") N V(Q);
(2). p(x) € C**7(IR") for some y > 0 small, p(x) > 0 and positive somewhere.
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Theorem 1.1. Assume that (p1) and (¢2) hold. Then there exists A* > 0 such that for any 0 < A < A*, the problem
(1) admits a minimal positive classical solution; for A > A*, the problem (1) admits no positive classical solution.

Here we say u is a classical solution to (1) if u is regular in the interior of €}, continuous up to the
boundary, and (1) holds pointwise.

Theorem 1.2. Assume that (1) and (pz) hold. Then for A = A* the problem (1) admits at least one positive weak
solution.

Theorem 1.3. Assume that (¢1) and (@2) hold. If 1 < p < 2*(a) — 1, then there exists 0 < A < A* such that for any

0 < A < A, the problem (1) admits a second positive classical solution. If p = 2*(a) — 1, then for any 0 < A < A*, the
problem (1) admits a second positive classical solution.

Remark 1.1. Ros-Oton, Serra[9] considered the problem (1) as ¢ = 0 and f : [0, o0) — R satisfying

flw) _
==

fe Cl,nondecreasing, £(0) >0, im ——= = +oo,
U—00

and obtained similar results as Theorem 1.1 and Theorem 1.2. But the problem considered in [9] is different from that
considered here.

2. Proof of Theorems 1.1 and 1.2

We first give a Poincaré-Sobolev inequality (see [6]).

Lemma 2.1. Let 0 < @ < min{2, n}. Then there exists a positive constant C(n, &) such that, for any measurable and
compactly supported function u(x) : R" — IR, there holds

_ 2
14l ey < C f @) ~ vy g %)

n+a
IRYl RH ‘x —_ y‘
where g € [1,2*(a)].

Lemma 2.2. Assume 0 < a < min{2,n}, QO ¢ R" is an open smooth bounded domain, ¢ € V(Q) satisfies (p1) and
(2). Then the problem

(-A):u=0 inQ,
u>0 inQ, 8)
u=q in R"\Q,

admits one positive classical solution u € C**P(IR") for some B > 0.

Proof. Firstly, from [4] we know that (8) admits a weak solution u € V(Q). Secondly, we have u € L*(IR")
by ¢ € L*(R"), and thus u € C**#(IR") for some f > 0 by standard argument, see for example [8]. [

Proof of Theorem 1.1.
(1) We first show that (1) admits no classical solution if A > 0 large enough. In fact, we can choose the

eigenfunction ¢(x) corresponding to the first eigenvalue p; to

(A =pudp inQ,
¢ >0 in Q, ©)
¢=0 in R"\Q.
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It is easy to know that 11 > 0 and 5(x) > 0in Q from [13]. Multiplying (1) by 5 and integrating it we have

f (A f u(x)p(x)dx = f AP (X)p(x)dx. (10)
Q Q
Notice that
[ cotumde = [ uw-0i5wd = [ i (1)
Q R" Q

Combining (10) with (11) we know
| e - ruoneo = o (12)

Choose a smooth bounded domain Q cc Q. By maximum principle there exists ¢y > 0 such that
u=cy>0 xeQ. (13)

Then
fQ M) — ()P

= f~ (A (x) = pyu(x))Pp(x)dx + f (AP (%) — () (x)dx
Q o\Q

> fﬁ (AP (x) — p11(x))p(x)dx — fg . ()P (x)dx
>0

as A > 0 large enough, which is a contradiction to (12).
(2) Choose a bounded smooth domain €2; 5> (). Take the eigenfunction ¢(x) corresponding to the first
eigenvalue /] to

(-A)i¢p=up inQy,
¢ >0 in Qy, (14)
$=0 in R"\Q.

By Lemma 2.2 we know that the problem

(-A)?h=0 inQ,
h>0 inQ, (15)
h=¢ in R"\Q
admits a classical solution /(x). _
Take k large enough such that u(x) := k(¢p(x) + h(x)) = @(x), x € R"\Q2. Now take A > 0 small enough
such that

(=A)270(x) = k(=A)2 p(x) = ki p(x) > A(k(P(x) + h(x))), x € Q, (16)

which implies that u(x) is a supersolution to (1). On the other hand, taking uy(x) = h(x) as a subsolution to
(1) we consider the problem

(=) 2y = M, in Q,
Uy >0 in Q, (17)
Uy =@ in R"\Q.
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By using the maximum principle we conclude
h=uy<uy <------ Sy <-oeeee <us<cC

To prove the existence of weak solution we frist rewrite the problem (1) as

(=) (yy — ) = M, inQ,
Uy — h>0 in Q/ (18)
U —h =0 in R"\Q.

Multiplying (18) by u,,(x) — h(x) and integrating it we have

(=) (1 (%) = () (1t () = B(x))dlx = A f (%) = h()dx < C,
Q

R”

where C > 0 is a constant, which then implies that

[ [ M) =~ Gt - LE)

n+a

k-]
2
_ f () = B = 0 (3) — WOV (9) = WD) (19)
n IR” |x J— y|
=Cn,a) | (=) (s x) = ) (tt(x) = H())dx < C(n, ).
R’I

Thus we have u,,(x) — h(x) is uniformly bounded in Hg (Q). Assume that u,,(x) — h(x) converges weakly

to uy(x) — h(x) in H(;EX (Q). Then it is easy to see that u,(x) € H?(R") is a weak solution to (1). This weak
solution is obviously classical by standard argument by the assumptions (¢1) and (¢»).

It is also easy to see that u,(x) is the minimal solution to (1). Otherwise, if #i(x) is another solution to
(1), we can take #i(x) and 1 = h as supersolution and subsolution to (1), respectively. And then it is easy to
prove that 1 (x) < fi(x).

Now define

A ={AlA >0, (1) has a classical solution} .

We show that A* is a nontrivial bounded interval. In fact, if A € A" and u,, is the corresponding classical
solution to (1) at A = Ay, then for any 0 < A < Ay, uy, is a supersolution to (1) at A, which implies the
existence of solution to (1) at A by the same procedure as above. And then A € A*. Define

A" =sup{A € A"} > 0.

Then the above arguments show that for any 0 < A < A", the problem (1) admits at least one positive
classical solution; for A > A%, the problem (1) admits no positive classical solution. This completes the proof
of Theorem 1.1.

Proof of Theorem 1.2.
For any A € A", we have
(—A)? (uy — h) = Auy in Q,
uy—h>0 in Q, (20)
uy—h=0 in R"\Q.

As in the proof of Theorem 1.1 we know that |lu; — hIIH% (@) < C uniformly, where C is independent of A.
0

Now assume that u; — h converges weakly to u,-(x) — h(x) in Hgl (Q).
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Then for any ¢ (x) € HO% (Q),

[ [ 0 i)y -,

Jwe -

. (1) = 1) = (- () = W)
w i =]

and
L A ip(x)dx — fQ A"l p(x)dx

as A — A*, which then implies that u,- is a weak solution to (1) as A = A”.

3. Proof of Theorems 1.3

We first prove Theorem 1.3 when 1 < p < & = 2*(a) -
Proof of Theorem 1.3 when 1 < p < 2*(a) — 1. We look for a second solution to (1) of the form u = u* + v,
where u* is the first weak solution found in the above section, v > 0, and v satisfies

{ (=A)20 = A" +0)f = Ay inQ,

v=0 in R"\Q. (21)

The energy functional corresponding to (21) is

3 2
J (@) =£11 IR —(v(x) vn(i)) dydx — F% fﬂ ' + 0" dx

e -y o)

A
\P .+ *\p+1
+A ]Rn(u)vdx+—p+1fn(u) dx.

Notice that if v is a nontrivial critical point of J, then v is a weak solution to (21). It is obvious that

J(0) =

1, eW-o@)? A -
J(tv) = tf]R”fRn (x—y(nm dydx p+1fw(u +to") " dx

A
#\P o+ #\p+1
+Atfn(u)odx+p+1fw(u) dx (23)

— 2 p+1
itz f f () 0,1(2) alydx—MJrl f (" ldx
R JR? (x—y‘ P "

— —0o0 (t— o).

We rewrite (22) as

J(v) (24)

_ f f Ul(x) - Tngz) dx _ % f (v+)p+1dx
N "
p+l (f (' + 0" dx - f @)Y ldx - (p+1) f (Y vtdx — f (u* )P“dx
- f f U|(x) - 'Un_;zz) dyd ; i - f (v+)p+1dx L
IR |y —
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Now we divide into two cases.
(). p+1=3. We have
I si( f (p + Du @ Ydx + C f W) Y w)2dx + C f () (0*)P~dx)
p+1Ja Q Q

<A maxu’ f (@ dx + L f () * 1) f (0" dx) 7T
Q p+1 Ja o

xeQ

AC *\2 +yp-1
+p+1r)1€';e£1)x(u)f0(v) dx

A [[@]] s o, AC @]

%
0 ©

2
a
Hi (©)

G [0,

where we use the following elementary inequality for p + 1 > 3, (see for example [5])

(@+by =g’ — P — (p+ 1)ab — (p + 1)ab? < C(@®b"" +a’~'b?), fora,b > 0.

Thus
J(©)
; ‘11 ||v||;0% @ A 1|(v+)1|2+0§@) ~ G @) Z& @ e ”(f)”;? ©
A6 @l

(i).2<p+1<3.
I< ;% fQ WY w)2dx < ACy ||(v+)||i1 S0y’
where another elementary inequality is used for2 < p+1 < 3,
(@a+by* — g’ — P — (p + 1)aPb < Ca’'b?, fora,b > 0,
where C > 0 some large positive constant. Hence

p+1

-Gl

1, . 5
szwﬁ@—mmwﬂ o

So for both of the above two cases, if A > 0 small enough, then there exists p > 0 small such that
1, 1y, 2 1, ~
J0) 2 gl =g @0 2 go% forliols, =p-

Thus by using the Mountain Pass Lemma, J(v) admits a nontrivial critical point, that is, the problem (21)
admits a nontrivial weak solution. Standard arguments give that this weak solution is also classical. The
maximum principle implies that v > 0 in Q. So we know that the problem (1) admits the second positive
classical solution. O

We now consider the case p = %% = 2*(a) — 1. We first list some lemmas.

n—,

Lemma 3.1. If {v,} is a Palais-Smale sequence of J(v) in HO% (Q), that is, J(v,) — ¢, D](v,) — O, then {v,} are
bounded in H_ (Q)).
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Proof. Since J(v,) — ¢, D]J(v,) — 0, we have

_ (On(x) — vn(y) _ 2 (@)
J(,) = ff nm dydx 2*()f(u + (0f))” Vdx

. . (25)
+A u)F@-1 v )dx + u)> @y
@ o+ 5 [ )
-,
2
DJ(v,)v} 2f f —(Un(x) v;fay)) dydx—Af (u*+v;)2*(“)_1v;dx
n RH |x _— y| ]RTI
(u*)z*(af)—lv:l—dx (26)
— +
_0(”0’1”Hf(0))'
By (25) and (26) we have
c+o(logll ¢ ) (27)

"THZ Q)
A

“(a)— A ()=
= 2| @+oy O otdx + —f ()* O ot dx
2 Je 2 e

- u + o) Y@y 4 2
7@ o O 1T 2@

1 2 @-1+
= (z- U +v vdx —
(2 2"(0{)) R ( ) 2*(55) R

& 2 (a)-1, .+ A 2" (@)
+2fn(u) vndx+2*(a) ]Rn(u) dx

al +12°(@)
2n R (Un) 2% (a) R

w#ww

W + 0> O rdx

\%

W +95)? Oy,

Notice that

(u* +v+)2 @1 dx
R"

(22*(0{)—1(1/[*)2*(6\()—1 + 22*(&)—1(02)2*(0()—1)u*dx
Rﬂ

=27 @1 [ ()2 @ gy 4 2@ [y F @7y
IRVI ]RH

. . . . 1 . 2(@)-1
<F@7 () @y + 27 @7 w?WMMMfXﬁowVW,
R)l ]Rn Rﬂ

which combining with (27) gives

fXﬁfWusc
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Since
‘/\ f W +0)? M ordx A | @) O ot dx
Rn

R"

A | @+ e+ A | @)F O otdx
R R

*(a)— ¢ 2*(o =2 (a)—
<22 @-1 N (@ O + H) > @D)dx + A fQ w)* O~ utdx

SA(zZ*(a)—l +1)( W )2 (“)dx)““)(f (U+)2 (a)dx) 2(a )+/\22 (a)- 1f(vz)2*(a)dx
Q

R"
<C,

by (26) we then know

_ 2
[ [ oy
R JR |x—y|

that is, {v,} are bounded in H§ Q). O

Lemma 3.2. If {v,} is a Palais-Smale sequence of J(v) in Hg (Q), then there exists v € Hg (Q) such that v, — vin
Hg‘ (Q)asn — oo, DJ(v) = 0; and if

n-—a . n

) = € 0, ()% 5)

[o()—o(y |

we—dydx is the best constant of the fractional Sobolev

as n — oo, where S = inf R J;R”

H% R” " =1 _y|
ve ( )r ”UHLZ (a)(]Rn)

inequality, then v # 0 and v is a nontrivial weak solution to (21).

Proof. By Lemma 3.1 we know

v, — vin H (Q), asn — co. (28)
So for any ¢ € C°(Q),
DJ(vn)e
_1\/‘ (vAx)—zmQﬂxfﬁf)—qu»dydx
2w e T ey

—/\f" W + v (@)= 1(pdx+/\fR” W) O pdx
1 (v(x) — () (P(x) — ¢(y))

—= dydx
fﬂ fﬂ

2 |x _ y)n"'a
-A f W + 0" O pdx + A jl; W) O pdx
=DJ(@w)p =0,
which then gives that D] (v) =
Now we show v # 0if ¢ € (0, £(55)* S¢). Assume by contradiction that v = 0. Since DJ(v,)(v}; + u*) =
o(1), we have
1 f f (Un(x) — U:Jr(i/)) dydx + f (Un(x) — Un(]/))(liff) - u (y))dydx
20 Jre ey 2 Jo I ey
A @+ a2 | @) O W+ vh)dx
RVI R"

=o0(1).
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By (28),as n — oo,

1 f f (Un(x) — Un(]/))(”ifj) —u (y))dydx (29)
2 n n ‘_x —_ y|
. f f (o) — o)W’ (ii? —w(y) dydx = 0.
n n |x y|
Notice that for 1 < g < -2,
vy — 0, in L1(Q), as n — co.
Hence
/\f @Y O+ oh)dx — /\f w)* @dx, as n — co. (30)

Since v,(x) is bounded, by Brézis-Lieb Lemma [1] we have

f W +07) Ddx - f W) Ddx — f @H* @dx = o(1). (31)
n n IRM
Thus by (29), (30), (31), we have
1 Uu(x) — v, 2 -
Z f ) = 0l 4 A f @) Ddx = o(1). (32)
2w i -y R
Therefore

2 ” — 2 -1
o) > f f Mdydx(%_ AS-2( f f @0~ 0
n n |x — y| Rﬂ ]RPZ |x p— y|

where S is the best constant of the fractional Sobolev inequality, that is,

ox)—o
S= inf ff )() n(+yb3| dydx.
veHE (R, ol 2o ey =1 SR SR |3 = ]
_ 2
f f (0u(x) v:+(i/)) dydx > 0,
e fr-y]

@) =0 | 1
jl‘{” fn |x_y|n+a (2/1) S +0(])

Now to continue we con51der two cases.
(0(%)=0( )
i). f]Rn fRn oy n+¥ dydx — 0.

Hence asn — oo,

or

J(vy) = 0, asn — oo,

which contradicts to | (vn) —c>0.
ii). f]R,, fRn v”(ji v;,g)) > (3)7 St +o(1).
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By (32), as n — oo we have

1 (0a(x) = 0a(¥))° A 2@
](Z)n) > Z fn . Wdydx - m f” ("Un) dx + 0(1)

- f f @ =0 oy
i " |x y|71+0{

> E(ﬁ)is“ +0(1),

which contradicts to

E(ZA)
Hence we conclude that v # 0, that is, v is a nontrivial solution to the problem (21). O

Lemma 3.3. The functional [(v) admits a Palais-Smale sequence in Hg (Q) at level 0 < ¢ < ﬁ(%)%sf.

Proof. By the fractional Sobolev inequality,

1 (0(x) - v(y))’® A 2@
](U) ZZ‘/H; —n-i-adyd —mf (M +0 ) dx

e e
(v(x) —v(y)) CA (0(x) - o(y))*
>— 7 dydx
4 jl;” IR” |x y|n+0{ N )x y)n+a y )
1o CA o
=1p 2*(a)p ( Yv € dB,(0)
>0,

1805

for p small enough. Thus by using Theorem 2.2 in [2], we know that the functional J(v) admits a Palais-Smale

sequence at level ¢ > 0. Again by using Theorem 2.2 in [2], it is left to prove for some v # 0,v € H(;% (Q) that

a g
max](tv) < 4_(ﬁ)

Assume B(xp,40) C Q. As in [11], we take V.(x) = n(x)U.(x), where 1(x) € C*(R"), 0 < n(x) < 1,x € R,

n(x) = 1 when x € B(xo, 6), (x) = 0 when x € R"\B(xy, 20), and

€ n—a

U (x) = x( )2, k>0,

€2 + |x — xo|?
is a positive solution to the problem

(—A)%u = [uf @2y, in R

U, () - U (y)P * n
f f o) = L = f U ()P @dx = St
R JRe =yt R

By [11], we know as € — 0,

2
f f |V (X) V. (y)| dydx < S;l _ O(Gnia),

|x y|n+a

and satisfying

[Ve@)? @dx = Sz — O(e™).
Rn

(33)

(34)
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Now we only need to prove for some € > 0 that

n—a . n

max](tV ) < —(—) « Sa,

Suppose for any ¢ > 0, there exists ¢, > 0 such that

1 n-—a n
(o) st

Claim: t, - to > 0.
In fact, if up to a subsequence, f, — +o0 or t, — 0, we know by using (23), (33) and (34) that

J(teVe) > —oo, or J(t:Ve) — 0,

respectively, which contradicts to J(t. V) > 7 ( 2/\)% Sa.

Notice that
1 (tsVs(x) - tsVs(]/))z A f 2 (a)
t V) == — dydx — U+t Ve dx
ievo=; [ [ o g f v

W) O v, + (u)? Dix.

A
R" e 2% (a) R"

Then by using an elementary inequality

(@ +Db)%@ - g% @ _p?@ _2%(2)a> @Dy >0, a,b>0,

1 t?(Vg(x) - Vs(y))z A f 2*(r)
Ve) <= eVe dx.
JteVe) <3 fmn f e - g™ 72 @) e (fevey e

Then by using (33) and (34),

we have

J(t: V) s(lti 2S5 + O(e") — O(e"™9)

2*( )

42/\ 5

as € > 0 small enough, where the last inequality holds since the function

A @
f(tS):%é‘ 2*( )tZ()

attains its maximum at f, = (ﬁ) w2, Thus we obtain a contradiction. [J

Proof of Theorem 1.3 when p = 2°(a) — 1. By Lemma3.1, Lemma 3.2 and Lemma 3.3 we conclude that
the problem (21) has a nontrivial weak solution. Thus as the case p = 2*(a) -1, we conclude that the problem
(1) admits the second positive classical solution. m|
Acknowledgments The author thanks to Wenxiong Chen for his useful discussions on the regularity of
solutions in this paper. I also thank Qiangiao Guo for interesting discussions on the topic of this paper.



L. Liu / Filomat 34:6 (2020), 1795-1807 1807

References

(1]
[2]
3]

[4]
(5]

[6]
[7]
(8]
[9]

[10]
[11]
[12]
[13]

[14]

H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math.
Soc., 88 (1983), 486-490.

H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl.
Math., 36 (1983), 437-477.

L.A. Caffarelli, J. Spruck, Variational problems with critical Sobolev growth and positive Dirichlet data, Indiana Univ. Math. J.
39(1)(1990)1-18.

M. Felsinger, M. Kassmann, P. Voigt, The Dirichlet problem for nonlocal operators, Math. Z., 279 (2015), 779-809.

N. Ghoussoub, C. Yuan, Multiple solutions for quasi-linear PDES involving the critical Sobolev and Hardy exponents, Trans.
Amer. Math. Soc., 352 (2000), 5703-5743.

E.D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
S. Pohozaev, Eigenfunctions of the equation Au + A f(u) = 0, Soviet Math. Dokl. 6 (1965) 1408-1411.

X. Ros-Oton, Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat., 60 (2015), 175-214.

X. Ros-Oton, J. Serra, The extremal solution for the fractional Laplacian, Calc. Var. Partial Differential Equations, 50 (2014),
723-750.

X. Ros-Oton, J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal. 213 (2014), 587-628.

R. Servadei, E. Valdinoci, The Brézis-Nirenberg result for the Fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.
R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012) 887-898.

R. Servadei, E. Valdinoci, On the Spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014),
831-855.

R. Servadei, E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013)
2105-2137.



