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Abstract. In this paper, we introduce a new iterative scheme for finding a common element of the set of
solutions of an equilibrium problem and the set of common fixed points of a finite family of nonspreading
mappings and a finite family of nonexpansive multivalued mappings in Hadamard space. We state and
prove strong and ∆ convergence theorems of the proposed iterative process. The results obtained in this
paper extend and improve some recent known results.

1. Introduction

Let (X, d) be a metric space. Berg and Nikolaev [4] introduced the concept of quasilinearization in metric
spaces. A pair (a, b) ∈ X × X is denoted by

−→
ab and is called a vector. Let R be the set of real numbers. The

quasilinearization is the map 〈·, ·〉 : (X × X) × (X × X)→ R defined by

〈
−→
ab,
−→
cd〉 =

1
2

(
d2(a, d) + d2(b, c) − d2(a, c) − d2(b, d)

)
, (a, b, c, d ∈ X). (1)

It is obvious that 〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉, 〈

−→
ab,
−→
cd〉 = −〈

−→
ba,
−→
cd〉, 〈−→ax,

−→
cd〉 + 〈

−→
xb,
−→
cd〉 = 〈

−→
ab,
−→
cd〉 and

d2(a, b) = d2(a, x) + d2(b, x) − 2〈−→ax,
−→
bx〉 (2)

for all a, b, c, d, x ∈ X.
A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic triangle in X is at
least as thin as its comparison triangle in the Euclidean plane. For other equivalent definitions and basic
properties, we refer the reader to standard texts such as [3, 6]. Complete CAT(0) spaces are often called
Hadamard spaces.

Equilibrium problems were originally studied in [5] as a unifying class of variational problems. Let C
be a nonempty set and Φ : C × C → R be a bifunction. The equilibrium problem EP(C,F) is to find x ∈ C
such that

Φ(x, y) ≥ 0, ∀y ∈ C.
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Choosing different settings for Φ, one may include, e.g., minimization, minimax inequalities, variational
inequalities, and fixed point problems as special subclass of equilibrium problems. The set of all solutions
of EP(C,F) is denoted by E(C,F). Almost all of attempts of researchers in past years to solve EP(C,F) were
in Banach or Hilbert spaces [5, 9, 16, 26, 28, 30, 34] and recently in Hadamard manifolds [7, 8, 29]. As
Reich and Shafrir [32] have suggested, some kinds of hyperbolic spaces can be a suitable context for some
notions in nonlinear analysis. Despite the lack of linear structure, some fundamental concepts of nonlinear
analysis have been generalized from Hilbert spaces to Hadamard space; see, for instance, [2, 10, 19, 23] and
references therein.

Very recently, Kumam in [25] studied the KKM principle in Hadamard spaces and used this principle
to prove existence theorems for equilibrium problems in such spaces. Let X be a CAT(0) space, x, y ∈ X and
t ∈ [0, 1]. We write tx ⊕ (1 − t)y for the unique point z in the geodesic segment joining from x to y such that

d(z, x) = (1 − t)d(x, y) and d(z, y) = td(x, y). (3)

We also denote by [x, y] the geodesic segment joining from x to y, that is, [x, y] = {tx ⊕ (1 − t)y : t ∈ [0, 1]}.
A subset C of X is convex if [x, y] ⊆ C for all x, y ∈ C. A function f : C→ R, with C being convex, is called
convex if

f (tx ⊕ (1 − t)y) ≤ t f (x) + (1 − t) f (y)

for any x, y,∈ C and each t ∈ [0, 1].
In the literature, the following conditions on the bifunction Φ : C × C → R are natural for solving the
equilibrium problem:

(A1) Φ(x, x) = 0 for all x ∈ C,
(A2) Φ is monotone, i.e., Φ(x, y) + Φ(y, x) ≤ 0, for any x, y ∈ C,
(A3) Φ is upper-hemicontinuous, i.e. for each x, y, z ∈ C,

lim sup
t→0+

Φ(tz ⊕ (1 − t)x, y) ≤ Φ(x, y),

(A4) Φ(x, ·) is convex and lower semicontinuous for each x ∈ C.
For a subset C of a CAT(0) space X, we denote byCB(C),K (C) andP(C) the collection of all nonempty closed
bounded subsets, nonempty compact subsets, and nonempty proximal bounded subsets of C, respectively.
The Hausdorff metric H on CB(C) is defined by

H(A,B) := max

sup
x∈A

dist(y,A), sup
y∈B

dist(x,B)


for all A,B ∈ CB(C), where dist(y,A) = in f {d(y, x) : x ∈ A}. Let T : X → 2X be a multivalued mapping. An
element x ∈ X is said to be a fixed point of T, if x ∈ Tx. The set of all fixed points of T will be denote by F(T).
A multivalued mapping T : C→ CB(C) is called nonexpansive if

H(Tx,Ty) ≤ d(x, y) ∀x, y ∈ C.

Approximating fixed points (and common fixed points) of nonexpansive multivalued mappings using
iterative sequences have been investigated by various authors (see; e.g., [11, 15, 33]).

The class of nonspreading mappings as an important class of mappings in Banach spaces was introduced
and studied in [17, 24]. This definition can be rewritten in metric space setting. Let C be a subset of a CAT(0)
space, a mapping T : C→ C is said to be nonspreading if

2d2(Tx,Ty) ≤ d2(x,Ty) + d2(Tx, y) (4)

for all x, y ∈ C. By (1), this is equivalent to

d2(Tx,Ty) ≤ d2(x, y) + 2〈
−−→
xTx,

−−→
yTy〉. (5)
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Note that for nonspreading mapping T if F(T) , ∅, then T is quasi-nonexpansive, i.e., d(Tx, p) ≤ d(x, p) for
all x ∈ C and p ∈ F(T).

Inspired by [15] and [17] we introduce an iterative process for finding a common element of the set of
solutions of equilibrium problem and the set of common fixed points of a finite family of nonexpansive
multivalued mappings and a finite family of nonspreading mappings in the setting of Hadamard spaces.
Also, we establish the strong and ∆ convergence of the proposed iterative process.

2. Preliminaries

As we mentioned in the preceding section, many concepts of nonlinear analysis have been generalized
to CAT(0) metric spaces. Now, we recall some of them which are needed in the next section. The metric
space X is said to satisfy the Cauchy-Schwarz inequality if

〈
−→
ab,
−→
cd〉 6 d(a, b)d(c, d),

for all a, b, c, d ∈ X. It is known [4, Corollary 3] that a geodesically connected metric space is CAT(0) space
if and only if it satisfies the Cauchy-Schwarz inequality.

The concept of ∆-convergence introduced by Lim [27] in 1976 was shown by Kirk and Panyanak [22]
in CAT(0) spaces to be very similar to the weak convergence in Hilbert space setting. Next, we give the
concept of ∆-convergence and collect some basic properties. Let {xn} be a bounded sequence in a CAT(0)
space X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known from Proposition 7 of [12] that in a CAT(0) space, A({xn}) consists of exactly one point.
A sequence {xn} ⊂ X is said to ∆-converge to x ∈ X if A({xnk }) = {x} for every subsequence {xnk } of {xn}.
We say that a subset C of X is ∆-closed if for every sequence {xn} ⊂ C that ∆-converges to x we have
x ∈ C. Uniqueness of asymptotic center implies that CAT(0) space X satisfies Opial’s property, i.e., for given
{xn} ⊂ X such that {xn} ∆-converges to x and given y ∈ X with y , x,

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y). (6)

Let {v1, v2, . . . , vn} ⊂ X and {λ1, λ2, . . . , λn} ⊂ (0, 1) with
∑n

i=1 λi = 1. Dhompongsa et al. in [11] introduced
the following concept by induction,

n⊕
i=1

λivi := (1 − λn)
(
λ1

1 − λn
v1 ⊕

λ2

1 − λn
v2 ⊕ · · · ⊕

λn−1

1 − λn
vn−1

)
⊕ λnvn. (7)

Note that the definition of ⊕ in (7) is an ordered one in the sense that it depends on the order of points
v1, v2, . . . , vn.

We need following lemmas in the sequel.

Lemma 2.1. [22] Every bounded sequence in a complete CAT(0) space always has a ∆-convergent subsequence.

Lemma 2.2. [13] If C is a closed convex subset of a complete CAT(0) space and if {xn} is a bounded sequence in C,
then the asymptotic center of {xn} is in C. In the other words, every closed convex subset of a complete CAT(0) space
is ∆-closed.
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Lemma 2.3. [18] Let X be a complete CAT(0) space, {xn} be a bounded sequence in X and x ∈ X. Then {xn}

∆-converges to x if and only if lim supn→∞〈
−−→xxn,
−→xy〉 ≤ 0 for all y ∈ X.

Lemma 2.4. [14, Lemma 2.4] Let X be a CAT(0) space. Then

d(tx ⊕ (1 − t)y, z) ≤ td(x, z) + (1 − t)d(y, z) (8)

for all x, y, z ∈ X and t ∈ [0, 1].

Utilizing (8) we can see that

d

 n⊕
i=1

λivi, z

 ≤ n∑
i=1

λid(vi, z) (9)

for each z ∈ X.

Lemma 2.5. [14, Lemma 2.5] A geodesic space X is a CAT(0) space if and only if the following inequality

d2(tx ⊕ (1 − t)y, z) ≤ td2(x, z) + (1 − t)d2(y, z) − t(1 − t)d2(x, y), (10)

is satisfied for all x, y, z ∈ X and t ∈ [0, 1].

Considering (7) and twice using (10) we have the following lemma.

Lemma 2.6. Let X be a CAT(0) space, x, y, z, q ∈ X and α, β, γ ∈ [0, 1] be such that α + β + γ = 1. Then

d2(αx ⊕ βy ⊕ γz, q) ≤αd2(x, q) + βd2(y, q) + γd2(z, q)

−
αβ

1 − γ
d2(x, y) − γ(1 − γ)d2

(
α

1 − γ
x ⊕

β

1 − γ
y, z

)
. (11)

Let C be a nonempty closed convex subset of a complete CAT(0) space X. It is known that for any x ∈ X
there exists a unique point u ∈ C such that

d(x,u) = inf
y∈C

d(x, y).

The mapping PC : X → C defined by PCx = u is called the metric projection from X onto C. Dehghan and
Rooin [10] obtained the following characterization of metric projection in CAT(0) metric spaces.

Theorem 2.7. [10, Theorem 2.2] Let C be a nonempty closed convex subset of a complete CAT(0) space X, x ∈ X
and u ∈ C. Then

u = PCx if and only if 〈−→ux,−→yu〉 ≥ 0, for all y ∈ C.

Lemma 2.8. [1, Lemma 4.3] Let C be a nonempty closed convex subset of a complete CAT(0) space X and {zn} be a
sequence in X such that

d(zn+1, z) ≤ d(zn, z)

for all z ∈ C and n ≥ 0. Then, {PCzn} converges to some u ∈ C.

Lemma 2.9. [2, Lemma 3.2.3] Let X be an Hadamard space and ϕ : X → R be a lower semicontinuous and convex
function. If the sequence {xn} in X, ∆-converges to x0, then

ϕ(x0) ≤ lim inf
n→∞

ϕ(xn). (12)
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Definition 2.10. [20] Suppose that C ⊂ X is closed and convex, and Φ : C × C → R. The resolvent of Φ is the
mapping JΦ : X⇒ C defined by

JΦ(x) = {z ∈ C : Φ(z, y) − 〈−→zx,−→zy〉 ≥ 0, ∀y ∈ C}, ∀x ∈ X.

Theorem 2.11. [25, Theorem 5.2] Suppose that Φ has the properties (A1) − (A4). Then dom(JΦ) = X and JΦ is
single-valued.

The following proposition gives several valuable properties for a resolvent of a monotone bifunction.

Proposition 2.12. [25, Proposition 5.4] Suppose that Φ is monotone and dom(JΦ) , ∅.Then, the following properties
hold:

(i) JΦ is single-valued,
(ii) if dom(JΦ) ⊃ C, then JΦ is nonexpansive restricted to C,
(iii) if dom(Jµ f ) ⊃ C for any µ > 0, then F(JΦ) = E(C, Φ).

Although not mentioned in [25, Proposition 5.4], its proof shows that JΦ is firmly nonexpansive, i.e.,

d2(JΦx, JΦy) ≤ 〈
−−−−−→
JΦxJΦy,−→xy〉, ∀x, y ∈ C. (13)

3. Main results

We begin with an example of nonspreading mapping which is not nonexpansive.

Example 3.1. Consider R2 with the usual Euclidean norm ‖ · ‖. Let X = R2 be an R-tree with the radial metric
dr where dr(x, y) = d(x, y) = ‖x − y‖ if x and y are situated on a Euclidean straight line passing through the
origin 0 = (0, 0) and dr(x, y) = d(x, 0) + d(y, 0) := ‖x‖ + ‖y‖ otherwise ( see [21] and [31] page 65). Let
A = {x ∈ X : ‖x‖ ≤ 1},B = {x ∈ X : ‖x‖ ≤ 2}, and define the mapping T : X→ X as follows:

Tx =

{
0 (x ∈ B) ;
PA(x) = x

‖x‖ (x ∈ X\B) .

We show that T is nonspreading mapping. We write the inequality (4) as

d2
r (x, Ty) + d2

r (Tx, y) − 2d2
r (Tx, Ty) ≥ 0. (14)

(i) In the case that x, y ∈ B we have dr(Tx, Ty) = 0 and so (14) clearly holds.

(ii) (a) In the case that x, y ∈ X\B are on a straight ray initiating from the origin, again we have dr(Tx, Ty) = 0
and so (14) holds.

(b) If x, y ∈ X\B are not on a straight ray initiating from the origin, then

d2
r (x, Ty) + d2

r (Tx, y) − 2d2
r (Tx, Ty) = (‖x‖ + 1)2 + (‖y‖ + 1)2

− 4

≥ 32 + 32
− 4 ≥ 0.

(iii) (a) Let x ∈ B and y ∈ X\B be on a straight ray initiating from the origin. Then,

d2
r (x, Ty) + d2

r (Tx, y) − 2d2
r (Tx, Ty) = ‖x − Ty‖2 + ‖y‖2 − 2

≥ ‖x − Ty‖2 ≥ 0.

(b) If x ∈ B and y ∈ X\B are not on a straight ray initiating from the origin, then

d2
r (x, Ty) + d2

r (Tx, y) − 2d2
r (Tx, Ty) = (‖x‖ + 1)2 + ‖y‖2 − 2

≥ (‖x‖ + 1)2
≥ 0.
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Note that T is not nonexpansive mapping. In fact, if x = (2 − 1/4, 0) and y = (2 + 1/4, 0), then we have

dr(Tx,Ty) = 1 >
1
2

= dr(x, y).

Next, we show the demiclosedness of nonspreading mapping which is essentially used in the proof of
our main theorem.

Lemma 3.2. Let X be an Hadamard space, C be a nonempty closed convex subset of X and T : C → X be a
nonspreading mapping. Then, I − T is demiclosed, i.e., {xn}∆- converges to z and d(xn, Txn)→ 0 imply z ∈ F(T).

Proof. Since T : C→ X is a nonspreading mapping, we have

d2 (Tx, Ty) ≤ d2(x, y) + 2〈
−−→
xTx,

−−→
yTy〉 (15)

for all x, y ∈ C. Suppose {xn}∆-converges to z and d(xn, Txn) → 0. Since {xn} is bounded, then {Txn} is too.
Also, using the Cauchy-Schwarz inequality, we obtain

lim
n→∞
〈
−−−−→
xnTxn,

−→
ab〉 = 0, (16)

lim
n→∞
〈
−−−−→
xnTxn,

−−−→
Txnb〉 = 0, (17)

for all a, b ∈ X. Replacing x and y respectively by xn and z in (15) we get

d2 (Txn, Tz) ≤ d2(xn, z) + 2〈
−−−−→
xnTxn,

−−→
zTz〉. (18)

Suppose that Tz , z. From (6), (2) and (16)-(18), we have

lim sup
n→∞

d2(xn, z) < lim sup
n→∞

d2(xn,Tz)

= lim sup
n→∞

(d2(xn, Txn) + d2(Tz, Txn) + 2〈
−−−−→
xnTxn,

−−−−→
TxnTz〉)

= lim sup
n→∞

(
d2(xn, Txn) + d2(z, xn) + 2〈

−−−−→
xnTxn,

−−→
zTz〉 + 2〈

−−−−→
xnTxn,

−−−−→
TxnTz〉

)
= lim sup

n→∞
d2(xn, z).

From this contradiction we get the conclusion.

We also need demiclosedness of multivalued nonexpansive mapping which can be found in [11, Lemma
3.2].

Lemma 3.3. Let X be an Hadamard space, C be a nonempty closed convex subset of X and T : C → K (X) be a
nonexpansive mapping. If {xn} is regular, ∆-converges to z and dist(xn, Txn)→ 0, then z ∈ F(T).

Note that very bounded sequence in Hadamard spaces has a regular subsequence (see [22, p. 3690]) and
so we can omit the regularity assumption on {xn} from original Lemma [11, Lemma 3.2]. We are now in a
position to prove our main theorem for finding common element of the set of solutions of an equilibrium
problem and fixed points of nonexpansive mappings and nonspreading mappings in an Hadamard space.

Theorem 3.4. Let C be a nonempty closed convex subset of an Hadamard space X and N ≥ 1 be an integer, Φ
be a bifunction of C × C into R satisfying (A1) − (A4). Let, for i = 1, 2, . . . ,N, fi : C → C be a finite family of
nonspreading mappings and Ti : C→ K (C) be a finite family of nonexpansive multivalued mappings. Assume that
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F =
⋂N

i=1 F(Ti)∩F( fi)∩E(C, Φ) , ∅ and Ti(p) = {p}, (i = 1, 2, . . . ,N) for each p ∈ F . Let {xn} and {un} be sequences
generated initially by an arbitrary element x1 ∈ C and then by{

Φ(un, y) − 〈−−−→unxn,
−−→uny〉 ≥ 0, ∀y ∈ C

xn+1 = αnun ⊕ βn fnun ⊕ γnzn, ∀n ≥ 1

where zn ∈ Tnun, Tn = Tn(mod(N)), fn = fn(mod(N)) and αn + βn + γn = 1 for all n ≥ 1, and {αn}, {βn}, {γn} satisfy the
condition {αn}, {βn}, {γn} ⊂ [a, b] ⊂ (0, 1) . Then, the sequences {xn} and {un}∆- converge to an element of q ∈ F ,
where q = limn→∞ PF xn.

Proof. We present the proof in five steps.
Step 1. We first prove that lim

n→∞
d(xn, q) exist for all q ∈ F . Indeed, for each q ∈ F , from the definition of JΦ

in Definition 2.10, we have un = JΦxn. This together with Proposition 2.12 implies that

d(un, q) = d(JΦxn, JΦq) ≤ d(xn, q), (19)

for all n ≥ 1. Also, since every nonspearding mapping is quasi-nonexpansive, then

d( fnun, q) = d( fnun, fnq) ≤ d(un, q). (20)

Moreover, nonexpansiveness of Tn implies that

d(zn, q) = dist(zn, Tq) ≤ sup
y∈Tnun

dist(y, Tq) ≤ H(Tnun, Tnq) ≤ d(un, q). (21)

The inequalities (19)-(21) together with (9) imply that

d(xn+1, q) = d(αnun ⊕ βn fnun ⊕ γnzn, q)
≤ αnd(un, q) + βnd( fnun, q) + γnd(zn, q)
≤ d(un, q) (22)
≤ d(xn, q).

Thus, lim
n→∞

d(xn, q) exists for all q ∈ F .

Step 2. We claim that lim
n→∞

d(xn+i, xn) = lim
n→∞

d(un+i, un) = 0 for all i ∈ {1, 2, . . . , N}.Using (11) and inequalities
(19)-(21) we get

d2(xn+1, q) =d2 (αn ⊕ βn fnun ⊕ γnzn, q)

≤αnd2(un, q) + βnd2( fnun, q) + γnd2(zn, q)

−
αnβn

1 − γn
d2(un, fnun) − γn(1 − γn)d2

(
αn

1 − γn
un ⊕

βn

1 − γn
fnun, zn

)
≤ d2(xn, q) −

αnβn

1 − γn
d2(un, fnun)

−
αnβn

1 − γn
d2(un, fnun) − γn(1 − γn)d2

(
αn

1 − γn
un ⊕

βn

1 − γn
fnun, zn

)
. (23)

Therefore

a2

1 − b
d2(un, fnun) ≤

αnβn

1 − γn
d2(un, fnun) ≤ d2(xn, q) − d2(xn+1, q) (24)

and

a(1 − b)d2

(
αn

1 − γn
un ⊕

βn

1 − γn
fnun, zn

)
≤ γn(1 − γn)d2

(
αn

1 − γn
un ⊕

βn

1 − γn
fnun, zn

)
≤ d2(xn, q) − d2(xn+1, q). (25)
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Using Step 1 and taking the limit as n→∞ yields that

lim
n→∞

d(un, fnun) = 0, (26)

lim
n→∞

d
(
αn

1 − γn
un ⊕

βn

1 − γn
fnun, zn

)
= 0. (27)

Considering (3) we obtain

d(un, zn) ≤ d
(
un,

αn

1 − γn
un ⊕

βn

1 − γn
fnun

)
+ d

(
αn

1 − γn
un ⊕

βn

1 − γn
fnun, zn

)
=

βn

1 − γn
d(un, fnun) + d

(
αn

1 − γn
un ⊕

βn

1 − γn
fnun, zn

)
≤

b
1 − a

d(un, fnun) + d
(
αn

1 − γn
un ⊕

βn

1 − γn
fnun, zn

)
.

It follows from (26) and (27) that

lim
n→∞

d(un, zn) = 0. (28)

Also, from (8) we have

d(xn+1, un) ≤ (1 − γn)d
(
αn

1 − γn
un ⊕

βn

1 − γn
fnun, un

)
+ γnd(zn, un)

= βnd(un, fnun) + γnd(zn, un)→ 0 (as n→∞). (29)

Let q ∈ F . Since JΦ is firmly nonexpansive, then

d2(un, q) = d2(JΦxn, JΦq)

≤ 〈
−−−−−−→
JΦxn JΦq,−−→xnq〉

= 〈−−→unq,−−→xnq〉

=
1
2

(d2(un, q) + d2(xn, q) − d2(un, xn))

and hence
d2(un, q) ≤ d2(xn, q) − d2(un, xn).

This inequality and (22) give us

d2(xn+1, q) ≤ d2(un, q) ≤ d2(xn, q) − d2(un, xn)

and hence
d2(un, xn) ≤ d2(xn+1, q) − d2(xn, q).

Since the limit of d(xn, q) exists, then

lim
n→∞

d(un, xn) = 0. (30)

Utilizing (29) and (30) we get

d(un+1, un) ≤ d(un+1, xn+1) + d(xn+1, un)→ 0 (as n→∞).
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Clearly, this shows that

lim
n→∞

d(un+i, un) = 0, ∀i ∈ {1, 2, . . . , N}. (31)

Applying (30) and (31) we obtain that

d(xn+1, xn) ≤ d(xn+1, un+1) + d(nn+1, un) + d(un, xn)→ 0 (as n→∞).

This also implies that

lim
n→∞

d(xn+i, xn) = 0, ∀i ∈ {1, 2, . . . ,N}. (32)

Step 3. Now, we prove for each i ∈ {1, 2, . . . ,N},

lim
n→∞

dist(un, Tiun) = lim
n→∞

d(un, fiun) = 0

and
lim
n→∞

dist(xn, Tixn) = lim
n→∞

d(xn, fixn) = 0.

It follows from (28) that
lim
n→∞

dist(un, Tnun) ≤ lim
n→∞

d(un, zn) = 0.

Observe that

dist(un, Tn+iun) ≤ d(un, un+i) + dist(un+i, Tn+iun+i) + H(Tn+iun+i, Tn+iun)
≤ 2d(un, un+i) + dist(un+i, Tn+iun+i)→ 0

which implies that the sequence

N⋃
i=1

{dist(un, Tn+iun)}n≥0 → 0 as n→∞.

Furthermore, observe that for i = 1, 2, . . . ,N we have

{dist(un, Tiun)}n≥0 = {dist(un, Tn+(i−n)un)}n≥0

= {dist(un, Tn+in un)}n≥0 ⊂

N⋃
i=1

{dist(un, Tn+iun)}n≥0,

where i − n =: in ( mod N) and in ∈ {1, 2, . . . ,N}. Therefore lim
n→∞

dist(un, Tiun) = 0, for i = 1, 2, . . . ,N. Since

fn+i is nonspreading, we have

d2( fn+iun+i, fn+iun) ≤ d2(un+i, un) + 2〈
−−−−−−−−−→
un+i fn+iun+i,

−−−−−−→
un fn+iun〉

≤ d2(un+i, un) + 2d(un+i, fn+iun+i)d(un, fn+iun)→ 0 (33)

as n→∞. This together with (26) and (31) implies that

d(un, fn+iun) ≤ d(un, un+i) + d(un+i, fn+iun+i) + d( fn+iun+i, fn+iun)→ 0 (as n→∞)

for any i ∈ {1, 2, . . . ,N}, which gives us

lim
n→∞

d(un, fiun) = 0, ∀i ∈ {1, 2, . . . ,N}. (34)
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For each i = 1, 2, . . . ,N, we obtain that

dist(xn, Tixn) ≤ d(xn, un) + dist(un, Tiun) + H(Tiun, Tixn)
≤ 2d(un, xn) + dist(un, Tiun)→ 0.

By a similar argument as in (33) and considering (34) we have

lim
n→∞

d( fiun, fixn) = 0. (35)

Hence

d(xn, fixn) ≤ d(xn, un) + d(un, fiun) + d( fiun, fixn)

Using (30), (34) and (35) we conclude that

lim
n→∞

d(xn, fixn) = 0.

Step 4. In this step, we show that if {xni } is a subsequence of {xn} that ∆-converges to q, then q ∈ F . Applying
(30) we see that {uni } also ∆-converges to q. First, we show q ∈ E(C, Φ). Since un = JΦxn we have

Φ(un, y) − 〈−−−→unxn,
−−→uny〉 ≥ 0, ∀y ∈ C.

From (A2), we have

Φ(y, un) ≤ 〈−−−→xnun,
−−→uny〉

and hence

Φ(y, uni ) ≤ 〈
−−−−→xni unl ,

−−→uni y〉 ≤ d(xni , uni )d(uni , y).

It follow from (30), (A4) and Lemma 2.9 that

Φ(y, q) ≤ 0, ∀y ∈ C.

For t ∈ (0, 1] and y ∈ C, let yt = ty ⊕ (1 − t)q. Since C is convex we have yt ∈ C and hence Φ(yt, q) ≤ 0. So,
from (A1) and (A4) we have

0 = Φ(yt, yt) ≤ tΦ(yt, y) + (1 − t)Φ(yt, q) ≤ tΦ(yt, y),

which gives Φ(yt, y) ≥ 0. From (A3) we have Φ(q, y) ≥ 0,∀y ∈ C and hence q ∈ E(C, Φ). Also, demiclosed
principles in Lemmas 3.3 and 3.2 imply that q ∈

⋂N
i=1 F(Ti) ∩ F( fi). Therefore, q ∈ F .

Step 5. Finally, we show that {xn} and {un} are ∆-convergent to an element of F . Since {xn} is bounded,
there exists a subsequence {xni } of {xn} such that ∆-converges to q. Let {xni } and {xn j } be two subsequences of
{xn} such that ∆-converges to q1 and q2. To complete the proof, we show q1 = q2. We know from preceding
step that q1, q2 ∈ F and from step 1 that lim

n→∞
d(xn, q1) and lim

n→∞
d(xn, q2) exist. If q1 , q2, then from (6) we

conclude that

lim
n→∞

d(xn, q1) = lim
i→

sup
∞

d(xni , q1) < lim
i→

sup
∞

d(xni , q2)

= lim
n→∞

d(xn, q2) = lim
j→

sup
∞

d(xn j , q2)

< lim
j→

sup
∞

d(xn j , q1) = lim
n→∞

d(xn, q1),

which is a contradiction. Hence, q1 = q2. Thus {xn} ∆-converges to q. It follows from (30) that {un} also
∆-converges to q.



D. Afkhamitaba, H. Dehghan / Filomat 34:6 (2020), 1863–1874 1873

Put yn = PF xn. We show that q = limn→∞ yn. Since q ∈ F , it follows from Theorem 2.7 that

〈
−−−→ynxn,

−−→qyn〉 ≥ 0.

By Lemma 2.8, {yn} converges strongly to some y ∈ F . Also,

0 ≤ 〈−−−→ynxn,
−−→qyn〉

= 〈−−→ynq,−−→qyn〉 + 〈
−−→qxn,
−→qy〉 + 〈−−→qxn,

−−→yyn〉

≤ 〈
−−→ynq,−−→qyn〉 + 〈

−−→qxn,
−→qy〉 + d(q, xn)d(y, yn).

Taking lim supn→∞, using Lemma 2.3 and the fact that xn ∆-converges to q and yn → y, we obtain

0 ≤ 〈−→qy,−→yq〉 = −d2(q, y) ,

which gives us q = y and the proof is complete.

Theorem 3.5. Let C be a nonempty closed convex subset of an Hadamard space X and N ≥ 1 be an integer. Let,
for i = 1, 2, . . . ,N, fi : C → C be a finite family of nonspreading mappings and Ti : C → K (C) be a finite family of
nonexpansive multivalued mappings. Assume that F =

⋂N
i=1 F(Ti) ∩ F( fi) , ∅ and Ti(p) = {p}, (i = 1, 2, . . . ,N) for

each p ∈ F . Let {xn} be the sequence generated initially by an arbitrary element x1 ∈ C and then by

xn+1 = αnxn ⊕ βn fnxn ⊕ γnzn, ∀n ≥ 1

where zn ∈ Tnxn,Tn = Tn(mod(N)), fn = fn(mod(N)) and αn + βn + γn = 1 for all n ≥ 1, and {αn}, {βn}, {γn} satisfy
the condition {αn}, {βn}, {γn} ⊂ [a, b] ⊂ (0, 1). Then, the sequence {xn} is ∆-convergent to an element of q ∈ F , where
q = lim

n→∞
PF xn.

Proof. Putting Φ(x, y) = 0 for all x, y ∈ C in Theorem 3.4, we have un = xn. Then the sequence {xn} is
∆-convergent to an element of q ∈ F , where q = limn→∞ PF xn.

If in Theorem 3.5 X = H is a Hilbert space, N = 1 and T1 be singe valued mapping we have the following
theorem as a corollary.

Theorem 3.6. [17, Theorem 4.1] Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let S be
a nonspreading mapping of C into itself and let T be a nonexpansive mapping of C into itself such that F(S)∩F(T) , ∅.
Define the sequence {xn} as follows:{

x1 ∈ C
xn+1 = (1 − αn)xn + αn(βnSxn + (1 − βn)Txn)

for all n ∈ N, where {αn}, {βn} ⊂ [0, 1]. If lim infn→∞ αn(1 − αn) > 0 and lim infn→∞ βn(1 − βn) > 0, then {xn}

converges weakly to v ∈ F(S) ∩ F(T).
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