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aFaculty of Sciences and Mathematics, University of Niš,
Višegradska 33, 18000 Niš, Serbia

Abstract. We consider an analytic iterative method to approximate the solution of the backward stochastic
differential equation of general type. More precisely, we define a sequence of approximate equations and
give sufficient conditions under which the approximate solutions converge with probability one and in pth
moment sense, p ≥ 2, to the solution of the initial equation under Lipschitz condition. The Z-algorithm for
this iterative method is introduced and some examples are presented to illustrate the theory.

1. Introduction

The theory of backward stochastic differential equations (shorter BSDEs) was developed in the early
1990s, by Pardoux and Peng. They established some results on the existence and uniqueness of the adapted
solutions in their founder paper [20]. Since then, BSDEs have been intensively developed both theoretically
and in various applications. In papers of Pardoux and Peng [20] and Pardoux [21], they gave a probabilistic
representation for the solutions of some semilinear and quasilinear parabolic partial differential equations
in terms of solutions of BSDEs by obtaining a generalization of the well-known Feynman-Kac formula.
Likewise, BSDEs are encountered in many fields of applied mathematics such as finance [14, 15], stochastic
games and optimal control [6, 17], as well as partial differential equations and homogenization, for instance.
There exists an extensive literature on BSDEs. We mention here the collected papers [16] edited by El Karoui
and Mazliak, which contain a useful introduction into the theory of BSDEs and their applications.

Author by herself have dealt with different problems related to several type of backward differential
equations. Problem of additive perturbations was considered by Janković, Jovanović and Ðord̄ević in
their paper [12] for nonhomogeneous BSDEs, and later on by Ðord̄ević and Janković in [2] for Volterra
BSDEs. Ðord̄ević [5] proved the closeness result for the general type of perturbations for reflected BSDEs.
For backward doubly stochastic differential equations Ðord̄ević et al. [3, 4, 11] proved existence result for
nonhomogeneous class od equations, Lp stability and obtained a generalization of the well-known Feynman
Kac formula for those equations (all those problems are proved under several different conditions).

The topic of the present paper is an analytic method named the Z-algorithm that is used for solving
backward stochastic differential equations. The essentials of the problem have their origin in papers [23, 24]
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by Zuber, who treated one of the general analytic iterative methods for solving the Cauchy problem for
an ordinary differential equation x′ = f (t, x), x(t0) = x0. With this equations he analyzed solutions to the
equations x′n+1 = fn(t, xn+1), xn+1(t0) = x0,n ∈ N0, all defined on the interval [t0 − a, t0 + a]. In [23] Zuber
showed that if

∑
∞

n=1 sup
|t−t0 |<a | f (t, xn(t) − fn(t, xn(t))| < ∞, then there exists a constant h, h ∈ (0, a], so that

the sequence of the solutions {xn,n ∈ N} uniformly converges to the solution x of the initial equation on
the interval [t0 − h, t0 + h]. If the functions fn are chosen well so that the approximate equations can be
effectively solved, then an ε-approximation of the solution x can be effectively found in the sense that there
exists natural number n(ε) such that sup[t0−h,t0+h] |x(t) − xn(t)| < ε for all n ≥ n(ε).

The Z-algorithm in [23], represents a general algorithm for solving ordinary differential equations
because many well-known, historically and practically important analytic and numerical methods are its
special cases: the Picard method of successive approximations, Chaplygin methods of chords and tangents,
Newton Kantorovich method and some interpolation methods, as Euler one, among other things. The
specific fact is that the function fn determines the solution xn+1 and depend on certain sense on xn, the
previous solution. For this reason the sequence { fn,n ∈ N} is called the determining sequence for the
Z-algorithm.

Zuber’s idea for iteration inspired authors to observe similar analytic method for solving other types of
equations. Janković [7, 8] presented an analogous analytic method for the forward stochastic differential
equation of the Itô type, while Janković and Jovanović [9] extended Zuber’s approach to various classes
of stochastic hereditary differential equations. Recently, Janković, Vasilova and Krstić [10] adapted Z-
algorithm for neutral stochastic functional differential equations.

It should be noted that in all those papers the choice of the determining sequence for the Z-algorithm has
the most important role, because it provides the adequate approximation of the solution of given equation.
Even though there has been several papers on numerical methods for BSDEs before (see[22]), all those
papers observed a type of BSDE which has function 1 in diffusion coefficient equals to zero (see Eq.(1)).
Comparing to this, in our paper a general type of BSDE (so called "nonhomogenuous") with function 1
different from zero is observed. Even more, this iterative method is more general compering to all that
were proven until now (see more in the section Remarks and Conclusion).

Before stating the main problems and results to be explained and proved, we briefly reproduce only the
essential notations and definitions which are necessary in our investigation. The initial assumption is that all
random variables and processes are defined on a filtered probability space (Ω,F , {Ft}t≥0,P) with a filtration
{Ft}t≥0 generated by an m-dimensional Brownian motion w = {w(t)}t≥0, i.e., Ft = σ{w(s), 0 ≤ s ≤ t}. As usual,
let | · | denote the Euclidean norm in Rn. The trace norm of a matrix B is denoted by |B| =

√
trace[BTB],

where BT is the transpose of a matrix or vector. Likewise, Lr
FT

(Ω; Rd), r > 0, is the family of FT-measurable
Rd-valued random variables X such that E|X|r < ∞, whileMr([0,T]; Rd), r > 0, is the family of Rd-valued
Ft-adapted processes {ϕ(t)}0≤t≤T such that E

∫ T

0 |ϕ(t)|r dt < ∞.
In this paper, we consider the following nonhomogeneous BSDE

x(t) = ξ −

∫ T

t
f (x(s), y(s), s)ds −

∫ T

t

[
1(x(s), s) + y(s)

]
dw(s), t ∈ [0,T], (1)

with a terminal conditionξ ∈ L2
FT

(Ω; Rd). The mappings f : Rd
×Rd×m

×[0,T]×Ω→ Rd and 1 : Rd
×[0,T]×Ω→

Rd×m are assumed to beBd⊗Bd×m⊗P-measurable andBd⊗P-measurable, respectively, whereP is a σ-algebra
of Ft-progressively measurable subsets of [0,T] ×Ω.

A pair of stochastic processes

{x(t), y(t)}0≤t≤T ∈ M
2([0,T]; Rd) ×M2([0,T]; Rd×m)

is said to be a solution of Eq. (1) if f (x(·), y(·), ·) ∈ M2([0,T]; Rd), 1(x(·), ·) ∈ M2([0,T]; Rd×m) and Eq. (1) holds
a.s. for every t ∈ [0,T]. A solution {x(t), y(t)}0≤t≤T is said to be unique if for any other solution {x̄(t), ȳ(t)}0≤t≤T
we have P{x(t) = x̄(t), 0 ≤ t ≤ T} = 1.
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In the field of control, y(·) is regarded as an adapted control and x(·) as the state of the system, in the
sense that the choice of a control y(·) drives the state x(·) to the given target x(T) at terminal time t = T.

As it was already mentioned, BSDEs are applied in finance where the pricing of a European claim is
equivalent to solving the linear BSDE

x(t) = ξ −

∫ T

t

[
r(s)x(s) + θ(s)y(s)

]
ds −

∫ T

t
y(s) dw(s), t ∈ [0,T],

for x(T) representing the contingent claim, r(t) the interest rate, θ(t) the risk premium and T the maturity
time. However, the pricing of a European claim can be dependent on real parameters and on random
excitations, and it can be modeled by the nonlinear BSDEs of the nonhomogeneous form. Because of this
application also, it is important to estimate some approximation of the solution of BSDEs.

In [19, 20] the fundamental conditions of the existence and uniqueness of the solution to Eq. (1) are
given.

Proposition 1.1. If f (0, 0, ·) ∈ M2([0,T]; Rd), 1(0, ·) ∈ M2([0,T]; Rd×m) and if f and 1 satisfy the uniform Lipschitz
condition, that is, if there exists a positive constant L > 0 such that

| f (x, y, t) − f (x′, y′, t)|2 ≤ L(|x − x′|2 + |y − y′|2) a.s. (2)
|1(x, t) − 1(x′, t)|2 ≤ L|x − x′|2 a.s., (3)

for all x, x′ ∈ Rd, y, y′ ∈ Rd×m and t ∈ [0,T], then there exists a unique solution {x(t), y(t)}0≤t≤T ∈ M
2([0,T]; Rd) ×

M2([0,T]; Rd×m) to Eq. (1).

Moreover, if the following holds for final condition x(T) ∈ Lp
FT

(Ω; Rd) and functions f (0, 0, ·) ∈ Mp([0,T]; Rd),

1(0, ·) ∈ Mp([0,T]; Rd×m) for some p ≥ 2, then E|x(t)|p < ∞ for all t ∈ [0,T] and E
∫ T

0 |x(t)|p−2
|y(t)|2dt < ∞.

Recall that the existence and uniqueness problems have been investigated under some other conditions,
under non-Lipschitz conditions [18], for instance.

It is now well know that this Proposition 1.1 can be proved by the Picard iterative method which
is based on the following. Let set x0(t) = y0(t) ≡ 0, t ∈ [0,T], and for every n ≥ 1 an consider a pair
(xn(t), yn(t)) ∈ M2([0,T]; Rd) ×M2([0,T]; Rd×m) defined recursively defined by

xn+1(t) = x(T) −
∫ T

t
f (xn(s), yn(s), s) ds −

∫ T

t
[1(xn(s), s) + yn+1(s)] dw(s), t ∈ [0,T]. (4)

Next, it proved that this sequence of processes (xn, yn)n≥1 converges to the process solution of (1).
This paper is devoted to generalized this method by some general approximation method which permit

us to derive as special case a Z-algorithm. The paper is organized in the following way: In Section
2, we first formulate the problem, that is, we define a sequence of equations which solutions represent
approximations of the solution to the initial Eq. (1). Then, we present our main results-sufficient conditions
under which the approximate solutions converge with probability one to the solution of Eq. (1). We also
obtain straightforwardly an auxiliary result, i.e. the sequence of the approximate solutions converges in
second order sense to the solution of the initial Eq. (1). In the same section, by similar methodology, but
under some additional condition, the convergence of the approximate solutions in pth moment sense, p ≥ 2,
to the solution of the initial Eq. (1) is proven. In Section 3, we give some comments about algorithm and
conclusions by which we introduce the notion of the Z–algorithm for Eq. (1). Section 4 is dedicated to
remarks and examples which illustrate the previous theoretical considerations. At the end, we point out
that the Picard method of iterations (4) is a special Z-algorithm.

2. Main results and their proofs

Together with Eq. (1) we consider the sequence of equations
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xn+1(t) = ξn+1 −

∫ T

t
fn(xn+1(s), yn+1(s), s) ds

−

∫ T

t
[1n(xn+1(s), s) + yn+1(s)] dw(s), t ∈ [0,T], n ∈N0, (5)

with final condition ξn+1 = xn+1(T). We assume that the terminal conditions ξ, ξn+1 ∈ Lp
FT

(Ω; Rd) and
that the functions fn, 1n,n ∈ N0 are defined as f , 1, respectively. We assume, with no special emphasis
on conditions, that there exist unique solutions {x(t), y(t)}0≤t≤T and {xn+1(t), yn+1(t)}0≤t≤T to Eq. (1) and

Eq. (5), respectively, satisfying E supt∈[0,T] |x(t)|p < ∞, E
(∫ T

0 |y(t)|2dt
)p/2

< ∞ and E supt∈[0,T] |xn+1(t)|p < ∞,

E
(∫ T

0 |yn+1(t)|2 dt
)p/2

< ∞, and that all the Lebesgue and Itô integrals employed further are well defined.

Obviously, it is quite natural to expect that if ξn, fn, 1n are in some sense close to ξ, f , 1 respectively, then
the sequence of the solutions

{
(xn+1(t), yn+1(t)),

t ∈ [0,T],n ∈ N0

}
to the Eqs. (5) will tend in some sense to the solution

{
(x(t), y(t)), t ∈ [0,T]

}
of Eq. (1).

In addition to the requirement that ξn → ξ, fn(x, y, t) → f (x, y, t), 1n(x, t) → 1(x, t) as n → +∞ uniformly in
[0,T] × Rd

× Rd×m, and in accordance with [10], we seek that

+∞∑
n=0

E|ξ − ξn+1|
p < +∞, (6)

+∞∑
n=0

sup
(x,y,t)∈[0,T]×Rd×Rd×m

| f (x, y, t) − fn(x, y, t)|p < +∞, (7)

+∞∑
n=0

sup
(x,t)∈[0,T]×Rd

|1(x, t) − 1n(x, t)|p < +∞. (8)

These conditions are essentially used to prove the main assertion in the mentioned paper.
Let us now introduce essential assumptions for our assertion:

A1. Let ξ, ξn+1 ∈ Lp
FT

(Ω; Rd) and γn := E|ξ − ξn+1|
p, then

+∞∑
n=0

E|ξ − ξn+1|
p < +∞⇔

+∞∑
n=0

γn < +∞.

A2. For functions f , fn let us define

αn := E sup
t∈[0,T]

| f (xn(t), yn(t), t) − fn(xn(t), yn(t), t)|p,

then
+∞∑
n=0

E sup
t∈[0,T]

| f (xn(t), yn(t), t) − fn(xn(t), yn(t), t)|p < +∞⇔

+∞∑
n=0

αn < +∞.

A3. For functions 1, 1n let us define
βn := E supt∈[0,T] |1(xn(t), t) − 1n(xn(t), t)|p, then

+∞∑
n=0

E sup
t∈[0,T]

|1(xn(t), t) − 1n(xn(t), t)|p < +∞⇔

+∞∑
n=0

βn < +∞.
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In the sequel, in order to obtain simpler notation, we will for p ≥ 2 use notation

γn := E|ξ − ξn+1|
p
⇒

+∞∑
n=0

γn < +∞,

αn := E sup
t∈[0,T]

| f (x, y, t) − fn(x, y, t)|p ⇒
+∞∑
n=0

αn < +∞,

βn := E sup
t∈[0,T]

|1(x, t) − 1n(x, t)|p ⇒
+∞∑
n=0

βn < +∞.

If we subtract Eq. (5) from Eq. (1), we find for t ∈ [0,T] that

x(t) − xn+1(t) = ξ − ξn+1

−

∫ T

t
[ f (x(s), y(s), s) − fn(xn+1(s), yn+1(s), s)] ds

−

∫ T

t
[1(x(s), s) + y(s) − 1n(xn+1(s), s) − yn+1(s)] dw(s),

and let us denote that

Rn+1(t) = x(t) − xn+1(t), Pn+1(t) = y(t) − yn+1(t),
∆ fn(xn, yn, s) = | f (xn(s), yn(s), s) − fn(xn(s), yn(s), s)|,
∆1n(xn, s) = |1(xn(s), s) − 1n(xn(s), s)|.

Theorem 2.1. Let ξ, ξn ∈ L2
FT

(Ω; Rd), n ∈N, let also the functions f , fn, 1, 1n,
n ∈ N0 satisfy the Lipschitz conditions (2) and (3) with constant L > 0, and assumptions A1 − A3 be satisfied
for p = 2. Then, the sequence of the solutions

{
(xn+1(t), yn+1(t)), t ∈ [0,T],n ∈ N0

}
to the Eqs. (5) satisfies that

xn+1
S

2

−→ y, yn+1
M

2

−→ z as n→∞, where
{
(x(t), y(t)), t ∈ [0,T]

}
is a solution of Eq. (1).

Proof. If we apply the Itô formula to |Rn+1(t)|2, we find for t ∈ [0,T] that

|Rn+1(t)|2 = |ξ − ξn+1|
2

− 2
∫ T

t
RT

n+1(s) × [ f (x(s), y(s), s) − fn(xn+1(s), yn+1(s), s)] ds

−

∫ T

t
|1(x(s), s) + y(s) − 1n(xn+1(s), s) − yn+1(s)|2ds

− 2
∫ T

t
RT

n+1(s) × [1(x(s), s) + y(s) − 1n(xn+1(s), s) − yn+1(s)] dw(s).

This implies that

|Rn+1(t)|2 +

∫ T

t
|y(s) − yn+1(s)|2 ds

≤ |ξ − ξn+1|
2
− 2

∫ T

t
RT

n+1(s) × [ f (x(s), y(s), s) − fn(xn+1(s), yn+1(s), s)] ds

− 2
∫ T

t
trace

[
[1(x(s), s) − 1n(xn+1(s), s))]T(y(s) − yn+1(s))

]
ds

− 2
∫ T

t
RT

n+1(s) × [1(x(s), s) + y(s) − 1n(xn+1(s), s) − yn+1(s)] dw(s)

= |ξ − ξn+1|
2 + S1(t) + S2(t) + S3(t). (9)
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We will separately estimate each term on the right-hand side of the last inequality. In order to obtain
estimates, we will use several times elementary inequalities:

1. − 2ab ≤ a2/λi + λib2, where λi > 0 is a constant;

2.
(∑n

i=1 ai
)p
≤ np−1 ∑n

i=1 ap
i , ai ≥ 0, p ∈N.

From

−2RT
n+1(s)[ f (x(s), y(s), s) − fn(xn+1(s), yn+1(s), s)]

≤ λ1 |Rn+1(s)|2 +
1
λ1
| f (x(s), y(s), s) − fn(xn+1(s), yn+1(s), s)|2

≤

(
λ1 +

4L
λ1

)
|Rn+1(s)|2 +

8L
λ1
|Pn(s)|2

+
8L
λ1
|Rn(s)|2 +

4L
λ1
|Pn+1(s)|2 +

4
λ1

∆ f 2
n (xn, yn, s),

we have that

S1(t) ≤
(
λ1 +

4L
λ1

) ∫ T

t
|Rn+1(s)|2 ds +

8L
λ1

∫ T

t
|Pn(s)|2 ds +

8L
λ1

∫ T

t
|Rn(s)|2 ds

+
4L
λ1

∫ T

t
|Pn+1(s)|2 ds +

4
λ1

∫ T

t
∆( fn(xn, yn, s))2 ds. (10)

The second term in (9) can be estimated by repeating completely the previous procedure. It follows that

−2trace
[
[1(x(s), s) − 1n(xn+1(s), s))]T(y(s) − yn+1(s))

]
≤ λ2 |1(x(s), s) − 1n(xn+1(s), s))|2 +

1
λ2
|yn+1(s) − y(s)|2

≤
1
λ2
|Pn+1(s)|2 + 8Lλ2 |Rn(s)|2 + 4λ2 |Rn+1(s)|2 + 4λ2 (∆1n(xn, s))2.

Then,

S2(t) ≤ 4λ2

∫ T

t
|Rn+1(s)|2 + 8Lλ2

∫ T

t
|Rn(s)|2 ds +

1
λ2

∫ T

t
|Pn+1|

2 ds + 4λ2

∫ T

t
(∆1n(xn))2 ds. (11)

From (9), (10) and (11) we have that

|Rn+1(t)|2 +

∫ T

t
|Pn+1(s)|2 ds

≤ |ξ − ξn+1|
2

+
(
λ1 +

4L
λ1

+ 4λ2

) ∫ T

t
|Rn+1(s)|2 ds +

8L
λ1

∫ T

t
|Pn(s)|2 ds

+
(8L
λ1

+ 8Lλ2

) ∫ T

t
|Rn(s)|2 ds +

(4L
λ1

+
1
λ2

) ∫ T

t
|Pn+1(s)|2 ds

+
4
λ1

∫ T

t
(∆ fn(xn, yn, s))2 ds + 4λ2

∫ T

t
(∆1n(xn, s))2 ds + S3(t). (12)

Let us for t0 ∈ [0,T] define

In+1(t0) := E sup
t∈[t0,T]

|Rn+1(t)|2, Jn+1(t0) := E
∫ T

t0

|Pn+1(s)|2 ds.
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Further, let us rearrange the E supt∈[t0,T] S3(t) in the following way,

S3 = E sup
t∈[t0,T]

S3(t) = E sup
t∈[t0,T]

(
−

∫ T

t
· · · dw(s)

)
= E sup

t∈[t0,T]

(
−

∫ T

t0

· · · dw(s) +

∫ t

t0

· · · dw(s)
)

= E sup
t∈[t0,T]

( ∫ t

t0

· · · dw(s)
)
.

The application of the Burkholder-Davis-Gundy inequality [13, 19] and the procedures used above, yield

S3 ≤ 8 E

∣∣∣∣∣∣
∫ T

t0

|Rn+1(s)|2|1(x(s), s) − 1n(xn+1(s), s) + y(s) − yn+1(s)|2ds

∣∣∣∣∣∣
≤ 8 E

(
sup

s∈[t0,T]
|Rn+1(s)|2

∫ T

t0

|1(x(s), s) − 1n(xn+1(s), s) + y(s) − yn+1(s)|2ds
) 1

2

≤
1
2

In+1(t0) + 32E
∫ T

t0

|1(x(s), s) − 1n(xn+1(s), s) + y(s) − yn+1(s)|2ds

≤
1
2

In+1(t0) + 512L
∫ T

t0

In(s)ds + 256L
∫ T

t0

In+1(s)ds

+ 256Tβn + 2
∫ T

t0

Jn+1(s)ds. (13)

If we substitute estimate (13) in (12), and take E supt∈[t0,T] over whole inequality (12) we have

In+1(t0) + Jn+1(t0) ≤ γn +
1
2

In+1(t0)

+
(
λ1 +

4L
λ1

+ 4λ2 + 256L
) ∫ T

t0

In+1(s) ds +
8L
λ1

Jn(t0)

+
(8L
λ1

+ 8Lλ2 + 512L
) ∫ T

t0

In(s) ds +
(4L
λ1

+
1
λ2

+ 2
)

Jn+1(t0)

+
4T
λ1
αn + (4Tλ2 + 256T)βn. (14)

Having in mind that control processes y and yn are fromM2([0,T]; Rd×m), there exists some M > 0 such
that E

∫ T

t0
|Pn+1(s)|2 ds < M (also

∫ T

t0
Jn+1(s) ds < M, and further

∫ T

t0
Jn+1(t0) ds = (T − t0)Jn+1(t0) < M). For an

arbitrary partition of segment [t0,T] we have

E
∫ T

t0

|Pn+1(s)|2 ds = E lim
m→∞

∑
m

|Pn+1(sm)|2∆m.

Then for each m ∈N

E lim
m→∞

∑
m

|Pn+1(sm)|2∆m ≥ E|Pn+1(sm)|2∆m
Jn+1(t0)
Jn+1(t0)

, Jn+1(t0) , 0
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so there exists some constant r > 0 such that

rJn+1(t0) ≤ E
∫ T

t0

|Pn+1(s)|2 ds.

This could be proven in another way also. From the assumptions of the Theorem, for every n ∈N0 we have
thT (xn, yn) , (x, y), so there exists infn |Pn+1(sm)|2, and let r1 = E infn |Pn+1(sm)|2. Further

E
∫ T

t0

|Pn+1(s)|2 ds ≥ r1(T − t0)
Jn+1(t0)
Jn+1(t0)

, Jn+1(t0) , 0

so there exists some constant r > 0 such that

rJn+1(t0) ≤ E
∫ T

t0

|Pn+1(s)|2 ds.

(If Jn+1(t0) = 0 then we chose r = 1, and we can always add zero member to any expression.)
For some constants k1, k′1 we have

In+1(t0) + Jn+1(t0) ≤ γn +
1
2

In+1(t0)

+
(
λ1 +

4L
λ1

+ 4λ2 + 256L
) ∫ T

t0

In+1(s) ds +
8Lk1

λ1
Jn(t0)

+
(8L
λ1

+ 8Lλ2 + 512L
) ∫ T

t0

In(s) ds + k
′

1

(4L
λ1

+
1
λ2

+ 2
)

Jn+1(t0)

+
4T
λ1
αn + (4Tλ2 + 256T)βn. (15)

If we define for every t ∈ [0,T]

Un+1(t) := In+1(t) + Jn+1(t), (16)

from (15) we obtain

1
2

Un+1(t0) ≤ γn + k2

∫ T

t0

Un(s) ds + k3

∫ T

t0

Un+1(s) ds +
4T
λ1
αn + (4Tλ2 + 256T)βn, (17)

where

k2 = max
{

8L
λ1

+ 8Lλ2 + 512L,
8Lk1

λ1

}
,

k3 = max
{
λ1 +

4L
λ1

+ 4λ2 + 256L, k
′

1

(4L
λ1

+
1
λ2

+ 2
)}
.

Applying well known Gronwall-Bellman’s inequality ([1], Theorem 1.5) on (17): Let u(t) be a continuous
function in [α, β], a(t) be Riemann integrable function in [α, β] and c = const > 0. If u(t) ≤ a(t) + c

∫ β
t u(s) ds,

t ∈ [α, β], then u(t) ≤ a(t) + c
∫ β

t a(s) ec(s−t) ds, t ∈ [α, β]. It follows that

Un+1(t0) ≤
k2

2

∫ T

t0

Un(s) ds +
1
2

(
γn +

4T
λ1
αn + (4Tλ2 + 256T)βn

)
+

k3

2

∫ T

t0

[
k2

2

∫ T

s
Un(r) dr +

1
2

(
γn +

4T
λ1
αn + (4Tλ2 + 256T)βn

)]
e

k3
2 (s−t0) ds.
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Since
k2k3

4

∫ T

t0

e
k3
2 (s−t0)

∫ T

s
Un(r) dr ds =

k2

2

∫ T

t0

e
k3
2 (s−t0)(Un(s) − 1) ds,

we obtain

Un+1(t0) ≤
1
2

(
γn +

4T
λ1
αn + (4Tλ2 + 256T)βn

)
+

1
k3

(
γn +

4T
λ1
αn + (4Tλ2 + 256T)βn

) (
e

k3
2 T
− 1

)
+

k2

2

∫ T

t0

e
k3
k1

(s−t0)Un(s) ds.

For Sm(t0) =
∑m

n=0 Un(t0),m ≥ 0 we have that

Sm(t0) −U0(t0) ≤ Sm+1(t0) −U0(t0)

≤ a
m∑

n=0

γn + b
m∑

n=0

εn + c
∫ T

t0

Sm(s)ds,

for a, b, c generic constants, and εn = 4T
λ1
αn + (4Tλ2 + 256T)βn. Then

Sm(t0) ≤ U0(0) + a
m∑

n=0

γn + b
m∑

n=0

εn + c
∫ T

t0

Sm(s)ds.

If we apply Gronwall-Bellman’s inequality ([1], Theorem 1.5) on last inequality, we obtain

Sm(t0) ≤ U0(0) + a
m∑

n=0

γn + b
m∑

n=0

εn + c
∫ T

t0

U0(0) + a
m∑

n=0

γn + b
m∑

n=0

εn

 ec(s−t0)ds

=

U0(0) + a
m∑

n=0

γn + b
m∑

n=0

εn

 ec(T−t0), t0 ∈ [0,T]. (18)

If we take t0 = 0, from (18) it follows

Sm(0) ≤

U0(0) + a
m∑

n=0

γn + b
m∑

n=0

εn

 ecT.

From assumptionsA1 −A3 it follows that

∞∑
n=0

Un(0) = lim
m→+∞

Sm(0) < +∞. (19)

Regarding the convergence, it follows that

∞∑
n=0

Un(0)⇒ lim
n→∞

Un(0) = 0,

which is equivalent with

Un+1(0) = 0
⇔ In+1(0) + Jn+1(0) = 0

⇔ E sup
t∈[0,T]

|x(t) − xn+1(t)|2, E
∫ T

t0

|y(t) − yn+1(t)|2 ds,

which completes the proof.
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The convergence of the defined sequence can be proven in a higher order sense, but with additional
condition for the closenesses of the control processes of the solutions of the Eqs. (5) and Eq. (1). The
following theorem illustrates this result.

Theorem 2.2. Let ξ, ξn ∈ L2
FT

(Ω; Rd), n ∈ N, and let the functions f , fn, 1, 1n, n ∈ N0 satisfy the Lipschitz
conditions (2) and (3) with constant L > 0. Let also assumptions A1 − A3 be satisfied for p ≥ 2. We assume that
there exist unique solutions

{
(xn+1(t), yn+1(t), t ∈ [0,T],n ∈ N0

}
and

{
(x(t), y(t)), t ∈ [0,T]

}
to the Eqs. (5) and Eq.

(1), respectively. Then,

E sup
t∈[0,T]

|xn(s) − x(s)|p → 0, n→ +∞,

E sup
t∈[0,T]

|yn(s) − y(s)|p → 0, n→ +∞.

Proof. Similarly as in Theorem 2.1 , if we apply the Itô formula to |Rn(t)|p, p ≥ 2, we find for t ∈ [0,T] that

|Rn+1(t)|p = |ξ − ξn+1|
p
− p

∫ T

t
|Rn+1(s)|p−2RT

n+1(s)

× [ f (x(s), y(s), s) − fn(xn+1(s), yn+1(s), s)] ds

−
p
2

∫ T

t
|Rn+1(s)|p−2

|1(x(s), s) + y(s) − 1n(xn+1(s), s) − yn+1(s)|2ds

−
p(p − 2)

2

∫ T

t
|Rn+1(s)|p−4

×

∣∣∣RT
n+1(s)[1(x(s), s) + y(s) − 1n(xn+1(s), s) − yn+1(s)]

∣∣∣2ds

−p
∫ T

t
|Rn+1(s)|p−2RT

n+1(s) × [1(x(s), s) + y(s) − 1n(xn+1(s), s) − yn+1(s)] dw(s).

This implies that

|Rn+1(t)|p +
p
2

∫ T

t
|Rn+1(s)|p−2

|y(s) − yn+1(s)|2 ds

≤ |ξ − ξn+1|
p
− p

∫ T

t
|Rn+1(s)|p−2RT

n+1(s) × [ f (x(s), y(s), s) − fn(xn+1(s), yn+1(s), s)] ds

− p
∫ T

t
|Rn+1(s)|p−2

× trace
[
[1(x(s), s) − 1n(xn+1(s), s))]T(y(s) − yn+1(s))

]
ds

− p
∫ T

t
|Rn+1(s)|p−2RT

n+1(s) × [1(x(s), s) + y(s) − 1n(xn+1(s), s) − yn+1(s)] dw(s)

= |ξ − ξn+1|
p + T1(t) + T2(t) + T3(t). (20)

We will separately estimate each term on the right-hand side of the (20) using familiar inequalities
similar as in Theorem 2.1.

From

−RT
n+1(s)[ f (x(s), y(s), s) − fn(xn+1(s), yn+1(s), s)]

≤
λ1

2
|Rn+1(s)|2 +

1
2λ1
| f (x(s), y(s), s) − fn(xn+1(s), yn+1(s), s)|2

≤

(
λ1

2
+

2L
λ1

)
|Rn+1(s)|2 +

4L
λ1
|Pn(s)|2

+
4L
λ1
|Rn(s)|2 +

2L
λ1
|Pn+1(s)|2 +

2
λ1

(∆ fn(xn, yn, s))2.
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Likewise, the inequality ap−2b2
≤

p−2
p ap + 2

p bp, a, b ≥ 0, p ≥ 2, will be used to estimate the first term in (20),
as well as, without special emphasis, more times in the sequel. Then,

T1(t) ≤
(

pλ1

2
+

2pL
λ1

+
8L(p − 2)

λ1
+

2(p − 2)
λ1

) ∫ T

t
|Rn+1(s)|p ds

+
8L
λ1

∫ T

t
|Pn(s)|p ds +

8L
λ1

∫ T

t
|Rn(s)|p ds

+
2pL
λ1

∫ T

t
|Rn+1(s)|p−2

|Pn+1(s)|2 ds +
4
λ1

∫ T

t
∆( fn(xn, yn, s))p ds. (21)

The second term in (20) can be estimated by repeating completely the previous procedure. By applying
the above elementary inequality 1 from Theorem 1 (for some constant λ2) and by using (3), one can see that

−trace
[
[1(x(s), s) − 1n(xn+1(s), s)]T(y(s) − yn+1(s))

]
≤
λ2

2
|1(x(s), s) − 1n(xn+1(s), s)|2 +

1
2λ2
|yn+1(s) − y(s)|2

≤
1

2λ2
|Pn+1(s)|2 + 4Lλ2 |Rn(s)|2 + 2Lλ2 |Rn+1(s)|2 + 2λ2 (∆1n(xn, s))2.

Then,

T2(t) ≤
(
4(p − 2)Lλ2 + 2Lλ2p + 2(p − 2)λ2

) ∫ T

t
|Rn+1(s)|p + 8Lλ2

∫ T

t
|Rn(s)|p ds

+
p

2λ2

∫ T

t
|Rn+1(s)|p−2

|Pn+1(s)|2 ds + 4λ2

∫ T

t
(∆1n(xn, s))p ds. (22)

From (20), (21) and (22) one can see that

|Rn+1(t)|p +
p
2

∫ T

t
|Rn+1(s)|p−2

|Pn+1(s)|2 ds

≤ |ξ − ξn+1|
p +

(
pλ1

2
+

2pL
λ1

+
2(4L + 1)(p − 2)

λ1
+ 2(2L + 1)(p − 2)λ2 + 2Lλ2p

) ∫ T

t
|Rn+1(s)|p ds

+
(8L
λ1

+ 8Lλ2

) ∫ T

t
|Rn(s)|p ds

+

(
2pL
λ1

+
p

2λ2

) ∫ T

t
|Rn+1(s)|p−2

|Pn+1(s)|2 ds

+
4
λ1

∫ T

t
(∆ fn(xn, yn, s))p ds + 4λ2

∫ T

t
(∆1n(xn, s))p ds + T3(t). (23)

Let us for t0 ∈ [0,T] define

In+1(t0) := E sup
t∈[t0,T]

|Rn+1(t)|p, Jn+1(t0) := E sup
t∈[t0,T]

|Pn+1(t)|p.
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Similar as in Theorem 2.1, the application of the Burkholder-Davis-Gundy inequality [13, 19], yield

T3 = sup
t∈[t0,T]

T3(t) ≤ 4
√

2p E
(∫ T

t0

|Rn+1(s)|2p−2
× |1(x(s), s) − 1n(xn+1(s), s) + y(s) − yn+1(s)|2ds

) 1
2

≤ 4
√

2p E
(

sup
s∈[t0,T]

|Rn+1(s)|p
∫ T

t0

|Rn+1(s)|p−2
× |1(x(s), s) − 1n(xn+1(s), s) + y(s) − yn+1(s)|2ds

) 1
2

≤
1
2

In+1(t0) + (16p(p − 2) + 256p)
∫ T

t0

In+1(s)ds + 256pE
∫ T

t0

(∆1n(xn, s))p ds

+512p
∫ T

t0

In(s)ds + 64pE
∫ T

t0

Jn+1(s)ds. (24)

From (23) and (24) it follows

In+1(t0) +
p
2

E sup
[t0,T]

∫ T

t
|Rn+1(s)|p−2

|Pn+1(s)|2 ds

≤ E|ξ − ξn+1|
p +

(
pλ1

2
+

2pL
λ1

+
2(4L + 1)(p − 2)

λ1
+ 2(2L + 1)(p − 2)λ2 + 2Lλ2p + 256p

) ∫ T

t0

In+1(s) ds

+
8L
λ1

∫ T

t0

Jn(s) ds + 64p
∫ T

t0

Jn+1(s) ds +
(8L
λ1

+ 8Lλ2 + 512p
) ∫ T

t0

In(s) ds

+

(
2pL
λ1

+
p

2λ2

)
E sup

[t0,T]

∫ T

t
|Rn+1(s)|p−2

|Pn+1(s)|2 ds

+
4
λ1

∫ T

t0

(∆ fn(xn, yn, s))p ds + (4λ2 + 256p)
∫ T

t0

(∆1n(xn, s))p ds +
1
2

In+1(t0).

We choose λ1, λ2 such that 2pL
λ1

+
p

2λ2
<

p
2 , per example λ1 = 16L and λ2 = 4, from last inequality we have

1
2

In+1(t0) ≤ E|ξ − ξn+1|
p + K1(p)

∫ T

t0

In+1(s) ds (25)

+
1
2

∫ T

t0

Jn(s) ds + 64p
∫ T

t0

Jn+1(s) ds + K2(p)
∫ T

t0

In(s) ds

+
1

4L

∫ T

t0

E sup
[t0,T]

(∆ fn(xn, yn, s))p ds + K3(p)
∫ T

t0

E sup
[t0,T]

(∆1n(xn, s))p ds.

for

K1(p) = 16pL +
2049p

8
+ (p − 2)

(4L + 1
8L

+ 8(2L + 1)
)

+ 256p,

K2(p) =
1
2

+ 32L + 512p

K3(p) = 16(1 + 16p).
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So from (25) we have that

1
2

In+1(t0) +
1
2

Jn+1(t0)

≤ E|ξ − ξn+1|
p + K1(p)

∫ T

t0

In+1(s) ds + K2(p)
∫ T

t0

In(s) ds

+
1
2

∫ T

t0

Jn(s) ds + (64p +
1
2

)
∫ T

t0

Jn+1(s) ds

+
T
4L

E sup
[t0,T]

∆( fn(xn, yn, s))p ds + TK3(p) E sup
[t0,T]

(∆1n(xn, s))p.

For Un(t) = In(t) + Jn(t) we have

1
2

Un+1(t0) ≤ E|Rn+1(T)|p + K̃1(p)
∫ T

t0

Un+1(s) ds + K̃2(p)
∫ T

t0

Un(s) ds + TK̃3(p)εn,

where

K̃1 = min{0.5, r}, K̃1(p) = max{K1(p), (64p + 0.5)}, K̃2(p) = max{0.5,K2(p)} = K2(p),

K̃3(p) = max{1/4L,K3(p)}, εn = E sup
[t0,T]

[(∆ fn(xn, yn, s))p + (∆1n(xn, s))p].

By applying the well-known Gronwall-Bellman inequality, we obtain

Un+1(t0) ≤ 2
(
γn + K̃3(p)

∫ T

t0

Un(s) ds + 2TK̃4(p)εn

)
+2K̃2(p)

∫ T

t0

(
2γn + 2K̃3(p)

∫ T

s
Un(r) dr + 2TK̃4(p)εn

)
e2K̃2(p)(s−t0) ds.

Since

4K̃2(p)K̃3(p)
∫ T

t0

e2K̃2(p)(s−t0)
∫ T

s
Un(r) dr ds = 2K̃3(p)

∫ T

t0

Un(s)
(
e2K̃2(p)(s−t0)

− 1
)

ds,

than

Un+1(t0) ≤ 2
(
γn + K̃3(p)

∫ T

t0

Un(s) ds + 2TK̃4(p)εn

)
+ 2

(
γn + 2TK̃4(p)εn

) (
e2K̃2(p)(T−t0)

− 1
)

+ 2K̃3(p)
∫ T

t0

Un(s)
(
e2K̃2(p)(s−t0)

− 1
)

ds.

This is further

Un+1(t0) ≤ 2
(
γn + 2TK̃4(p)εn

)
(26)

+ 2
(
γn + 2TK̃4(p)εn

) (
e2K̃2(p)T

− 1
)

+ 2K̃3(p)
∫ T

t0

Un(s)e
K̃2(p)

K̃1
(s−t0)

ds.

For Sm(t0) =
∑m

n=0 Un(t0),m ≥ 0 we have that

Sm(t0) −U0(t0) ≤ Sm+1(t0) −U0(t0) ≤ a
m∑

n=0

γn + b
m∑

n=0

εn + c
∫ T

t0

Sm(s)ds,
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where a, b, c are generic constants, Then

Sm(t0) ≤ U0(0) + a
m∑

n=0

γn + b
m∑

n=0

εn + c
∫ T

t0

Sm(s)ds,

which is

Sm(t0) ≤ U0(0) + a
m∑

n=0

γn + b
m∑

n=0

εn + c
∫ T

t0

Sm(s)ds.

By applying Gronwall-Bellman inequality once again, the conclusion follows in the same way as in Theorem
2.1, than for t0 = 0

Sm(0) ≤

U0(0) + a
m∑

n=0

γn + b
m∑

n=0

εn

 ecT.

From assumptionsA1 −A3 it follows that

∞∑
n=0

Un(0) = lim
m→+∞

Sm(0) < +∞.

In accordance with Markov inequality we find for an arbitrary ε > 0 that

∞∑
n=0

P

 sup
t∈[0,T]

[|xn(s) − x(s)| + |yn(s) − y(s)|] > ε

 ≤ 1
εp

∞∑
n=0

(U0(0) + Φn) < +∞. (27)

(Φn is finite by assumptionsA1 −A3). This enables us to obtain straightforwardly the following auxiliary
result; that the sequence of the solutions

{
(xn(t), yn(t)), t ∈ [0,T],n ∈ N0

}
to the Eq. (5) converges in pth

moment sense to the solution
{
(x(t), y(t)), t ∈ [0,T]

}
of Eq. (1).

The proof follows straightforwardly from (27) since for generic constants Ψn, following holds

E

 sup
t∈[0,T]

[|xn(s) − x(s)|p + |yn(s) − y(s)|p]

 ≤ Ψn → 0, n→ +∞.

Theorem 2.1 and Theorem 2.2 use different techniques for the conclusion of the proof, that is why they
are totally separated and both give strong results.

3. Comments and conclusions

• Regarding that it is not known how to estimate Un+1(t0), i.e. how to solve explicitly the integral
inequality (26), which is in fact a difference inequality, the sum Sm(t0) introduced and with the help
of it, a conclusion about the convergence with probability one and in pth moment sense of the
approximate solutions is derived.

• As it can be seen above, Theorem 2.1 and Theorem 2.2 remain to be valid with conditions A1 − A3
instead of more strict conditions (6) -(8). However, it should be noted, that in general, it is more
difficult to verifyA1 −A3 since all the iterations must be known.

• If the approximations (5) have the same final condition as observed BSDEs, ie if ξ = ξn+1, n ∈ N0, all
proven statements still hold with simpler expressions in conclusions.
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• In order to determine an ε–approximation of the solution
{
(x(t), y(t)), t ∈ [0,T]

}
to the Eq. (1), our goal

is to determine the pair of processes
{
(xn(t), yn(t)), t ∈ [0,T],n ∈N0

}
so that following holds:

P

 sup
t∈[0,T]

[|xn(s) − x(s)| + |yn(s) − y(s)|] < ε

 < δ,
for arbitrary small ε, δ and for n large enough. Theoretically, a sequence of approximations can be
defined in the following way:

Let a zero approximation be x0(t) ≡ ξ, y0(t) ≡ 0, t ∈ [0,T] where E|ξ|p < +∞. Further, let {ξn,n ∈
N0} be a sequence of random variables defined as ξ such that

∑+∞
n=0 E|ξ − ξn|

p < +∞. Next, we
choose functionals f0, 10 that are defined as f , 1 respectively, such that the Lipschitz condition holds
with constants L > 0, and for some constants a0, b0 following holds sup(x,y,t) | f (x, y, t) − f0(x, y, t)|p <

a0, sup(x,t) |1(x, t)−10(x, t)|p < b0. In next step, we find the solution
{
(x1(t), y1(t)), t ∈ [0,T]

}
to the equation

x1(t) = ξ1 −

∫ T

t
f0(x1(s), y1(s), s) ds −

∫ T

t
[10(x1(s), s) + y1(s)] dw(s), t ∈ [0,T],

where x1(T) = ξ1. If we know
{
(xn(t), yn(t)), t ∈ [0,T],n ∈N0

}
we choose functionals fn, 1n in the same

way as f0, 10 respectively, and that for some constants an, bn which are nth terms of any convergent
series, following conditions are satisfied sup(x,y,t) | f (x, y, t)− fn(x, y, t)|p < an, sup(x,t) |1(x, t)− 1n(x, t)|p <
bn. The (n + 1)-th approximation can be found as a solution of the equation

xn+1(t) = ξn+1 −

∫ T

t
fn(xn+1(s), yn+1(s), s) ds −

∫ T

t
[1n(xn+1(s), s) + yn+1(s)] dw(s), t ∈ [0,T],

where xn+1(T) = ξn+1. It follows that
∑
∞

n=0 αn ≤
∑
∞

n=0 an,
∑
∞

n=0 βn ≤
∑
∞

n=0 bn, so assumptionsA1−A3 are
satisfied, which provides that Theorem 2.1 holds with this sequence of iterations. Since the (n + 1)-th
approximation

{
(xn+1(t), yn+1(t)), t ∈ [0,T]} of the solution to Eq. (5) is determined by the choice of

ξn, fn, 1n the previous iterative method is logically called the Z–algorithm, while the set

{(ξn, fn, 1n),n ∈N0},

is the determining sequence of the Z–algorithm, analogously to the paper [10] and Zuber’s paper [23].

From the theoretical point of view, the choice of the determining sequence unable us to investigate
the solution of Eq. (5) and, in the best case, to solve Eq. (5). Regarding that general non homogeneous
BDSDs are usually not effectively solved, the last requirement is extremely strong and it is almost
impossible to form such an algorithm for BSDEs. However, it could be convenient to consider some
analytic or numerical iterative procedures and conclude which of them could be treated as the Z–
algorithm. In such cases, very complex proofs of the convergence of iterations with probability one,
as well as in pth moment sense, could be exceeded. For instance, we will prove in the sequel that the
Picard method of iterations (5) is a special Z–algorithm.

• It should be noted that results from this paper can be generalized by introducing non lipschitz con-
ditions for the coefficient of equation. The proofs of the theorems would be proven using Bihari’s
inequality. Also, for future work some other types of backward equations can be considered, back-
ward doubly stochastic differential equations, backward stochastic Voltera integral equations etc.
Z-algorithm for those equations can be also observed under several conditions for the coefficients
(Lipschits, nonlipschits).
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4. Remarks and examples

It should be noted that the previous procedures can be applied in order to study the following limit
problem: together with Eq. (1) we consider the sequence of equations

xn+1(t) = ξn+1 −

∫ T

t
fn(xn+1(s), yn+1(s), s) ds −

∫ T

t
[1n(xn+1(s), s) + yn+1(s)] dw(s), t ∈ [0,T], n ∈N0,

with final condition ξn = xn(T).After applying the same steps as in previous theorems, after first application
of Gronwall-Bellman’s inequality, it follows that all theorems hold (in this case, there is no need for
introducing process S).

In the sequel we will illustrate few examples of a given Z–algorithm.

Example 1. Let {ξn,n ∈ N0} be such that (6) holds, and let fn, 1n which determine
{
(xn+1(t), yn+1(t)), t ∈

[0,T],n ∈N0

}
, be defined iteratively in the following way: For n ∈N0, (x, y) ∈ Rd

×Rd×m, and fixed t ∈ [0,T]

fn(x, y, t) = λn(x − xn(t), y − yn(t)) + f (xn(t), yn(t), t),

1n(x, t) = λn(x − xn(t)) + 1(xn(t), t), (28)

where functions λn is defined in the same way as function f , while function λn is defined as function 1,
λn(0, 0, t) ≡ 0, λn(0, t) ≡ 0, and introduced functions satisfy Lipschitz condition with some positive constant
L. Since

fn(xn(t), yn(t), t) − f (xn(t), yn(t), t) ≡ 0, 1n(xn(t), t) − 1(xn(t), t) ≡ 0,

assumptionsA1−A3 are satisfied. Therefore Theorem 2.2 yields that the sequence of iterations
{
(xn(t), yn(t)), t ∈

[0,T],n ∈N0

}
to the Eq. (5) converges in p-th moment sense to the solution

{
(x(t), y(t)), t ∈ [0,T]

}
of Eq. (1).

Obviously, this iterative procedure describes the Z–algorithm with the determining sequence

{(ξn, fn, 1n),n ∈N0}

given by (28). ?

Example 2. In particular, we would linearize the approximate coefficients (28) by taking, for n ∈N0,

fn(x, y, t) = λn(x − xn(t)) + λ̃n(y − yn(t)) + f (xn(t), yn(t), t),

1n(x, t) = λn(x − xn(t)) + 1(xn(t), t), (29)

where λn = (λ1n, λ2n, ..., λmn), and λn, λ̃n, λin are scalar sequences. ?

Example 3. This is the most important example. If in (29) we take that ξn = ξ, λn = λ̃n = λin = 0, n ∈N0,
we obtain the Picard iterations (4). All conditions of Theorem 2.2 are satisfied, and it yields that the sequence
of iteration

{
(xn(t), yn(t)), t ∈ [0,T],n ∈ N0

}
converges with probability one to the solution

{
(x(t), y(t)), t ∈

[0,T]
}

of Eq. (1). Therefore, the Picard method of iterations is a special Z-algorithm. ?
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