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Abstract. This article is concerned with the approximate controllability for a new class of impulsive
semilinear control systems involving state-dependent delay and variable delay in control in Hilbert spaces.
We formulate new sufficient conditions which guarantee the existence of solution to the considered system.
We use the theory of fundamental solution, Krasnoselskii’s and Schauder’s fixed point theorems to establish
our major results. Finally, two examples are constructed which demonstrate the effectiveness of obtained
results.

1. Introduction

Let H and Z be Hilbert spaces, and L (Z ; H ) the space of all bounded linear operators from Z into
H . Consider the following semilinear functional differential equation involving state-dependent delay
and variable delay in control given by


dξ(t)

dt
= Aξ(t) + L(ξt) + B1(t)z(t) + B2(t)z(h(t)) + F(t, ξρ(t,ξt)), t ∈ (0,M ], t , ti,

ξ0 = ψ ∈ D ,

∆ξ(tk) = Ik(ξtk ), k = 1, · · · ,m,

(1)

where 0 = t0 < t1 < t2 < · · · < tm < M are fixed, the state variable ξ(·) ∈ H , z(·) ∈ L2([0,M ]; Z ) is the
control variable, and B1,B2 ∈ L (Z ; H ). Define h(t) = t − h1(t) (h1(t) is positive) is strictly increasing and
continuously differentiable on [0,M ]. Let D be an abstract phase space, which is defined later. Then
ξt : (−∞, 0] → H , given by ξt(κ) = ξ(t + κ) for κ ≤ 0, belongs to D . We assume that L ∈ L (D ; H ) and
A is a closed linear operator (not necessarily bounded) from H into itself that generates a C0−semigroup
{S(t)}t≥0. The function F : [0,M ] × D → H is specified later, and ρ : [0,M ] × D → [0,∞) is a continuous
function. For convenience, choose r(t) such that r(h(t)) = h(r(t)) = t.

In various fields of engineering input or output delays emerge naturally in different modeling and
dynamical control systems. However, it is important to achieve the satisfactory control systems for the
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modeling of framework involving variable delays because variable delays represent more positive and
powerful characteristics and behavior as compared to fixed time delays. At different point of applications,
the existence of delay in variable in a flexible spacecraft is very common because of actuators physical
design and energy consumptions. Therefore, to make the prediction regarding valuable system dynamics,
it is required that system must involve these variable delays. Significant worsening of performance and
instability of the system generally leads to the presence and requirement of variable delays in dynamical
systems. In a delayed system both the present and past states directly or indirectly effects the future
state of the system. We generally deal with dynamical control systems involving variable delay in control
whenever there is any delay in input function. It is remarkable that several mathematical models which
showcase dynamical systems involving delay in control are of special significance in control theory. Thus,
it is important to discuss controllability for delayed semilinear systems involving variable delay in control.
In particular, we can easily found different equations involving state-dependent delay in different practical
control models. Indeed, it is natural to involve state-dependent delay in system dynamics as apparent large
number of models representing real world problem may need the past states of the system for effective
output. Delayed differential equations emerge in various biological and physical applications, because of
this authors generally attract towards the consideration of variable or state-dependent delay. Moreover, it
comes out that in various problems system dependency on time delay is only an additional assumption for
making the study easier.

Controllability played a pivotal role in every part of the history of modern control theory. Systematically
the study of controllability was initiated at the starting of 60’s last century. After that, several controllability
results were accomplished extensively in finite and infinite dimensional spaces using various approaches
[6, 14, 22, 31]. Some basic concepts of control theory are introduced by Barnett [5] and Curtain et al. [6].
Mokkedem et al. [18, 19] discussed the approximate controllability of dynamical control systems by using
the technique of fundamental solution. Controllability of various systems involving delay in control has
broadly discussed by few authors. Klamka [12, 13] discussed controllability of linear system involving
delays in control. Sikora and Klamka [29, 30] developed some interesting results by assuming constrained
controls (that is the control functions are restricted to take their values in a prescribed admissible set)
for linear and semilinear fractional systems with multiple delays in control in finite dimensional spaces.
Balachandran [3] concerned with relative controllability of dynamical control system involving delay in
control. Shen and Sun [28] studied relative controllability of nonlinear system involving variable delays
in control. Kumar and Sukavanam [15] discussed controllability of semilinear systems involving fixed
delay in control. Shen [27] proved relative approximate controllability of semilinear functional systems
involving infinite delay and variable delay in control. Arora and Sukavanam [2] established approximate
controllability for a semilinear differential equation of second order involving variable delay in control.

On the other hand, the theory of impulsive differential equations attracted many researchers because
of its presence in several fields such as, in pharmacokinetics, population dynamics [4, 32], mathematical in
epidemiology [8], fed-batch culture in fermentative production [9], among others. However, if we compare
the development of control theory for ordinary differential equation and impulsive differential equation,
then the second one is not yet adequately studied in relation with the first one. Theory of impulsive
differential equations involving state-dependent delay has discussed by several authors. Muthukumar
and Rajivganthi [21] determined the approximate controllability of stochastic neutral semilinear system
involving state-dependent delay and impulse. Sakthivel and Anandhi [25] established sufficient conditions
for the approximate controllability to a semilinear differential equation involving state-dependent delay
for the impulsive process. Selvarasu et al. [26] obtained a set of sufficient conditions for the approximate
controllability of impulsive fractional semilinear system involving state-dependent delay and poisson
jump. Zhang et al. [33] investigated the approximate controllability of fractional stochastic semilinear
system involving state-dependent delay and impulse.

Motivated by the above cited work and discussion, the foremost purpose of this article is to construct
new sufficient conditions for the approximate controllability to the system (1). For this we formulate an
appropriate control function associated to the system (1). By using this control function, fundamental
solution, Krasnoselskii’s and Schauder’s fixed point theorems, we show that the system (1) has a mild
solution. Finally, approximate controllability is reported for the system (1) under the assumption that the
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linear system (F ≡ 0 in (1)) is approximately controllable. Nevertheless, we would point out here, that to
the best of our knowledge the approximate controllability of semilinear systems involving state-dependent
delay and variable delay in control for the impulsive case is not considered in the literature yet. In this
article, we try to fill this gap which is the novelty of our work.

The set up of the remaining paper is as follows: We introduce the abstract phase space D , basic notations,
definitions and results in Sect. 2. We establish the existence of a mild solution to the system (1) by using the
resolvent operator and fixed point technique in Sect. 3. We also show approximate controllability result for
impulsive semilinear differential equation having state-dependent delay and variable delay in control. In
Sect. 4, the obtained results are demonstrated with the help of two examples.

2. Preliminaries

Initially, we introduce the phase space D . Next, we evolve the concept of fundamental solution and
provide some results associated with it. The section is closed by raising an expression for a mild solution
to the system (1) followed by resolvent operators. Let H endowed with the norm ‖ · ‖. For more details
related to semigroup of operators, we suggest our readers to see [7, 24].

Define

PC = {ξ : [0,M ]→H : ξ is continuous at t , tk, ξ(t−k ) = ξ(tk) and ξ(t+
k ) exists for k = 1, · · · ,m}.

Clearly, (PC; ‖ · ‖PC) is a Banach space with the norm ‖ξ‖PC = sup
s∈[0,M ]

‖ξ(s)‖. Initially, Hale and Kato [10] gave

an axiomatic definition of phase space D . Let D be the collection of all mapping from (−∞, 0] into H with
the seminorm ‖ · ‖D (see [11]), and the following axioms holds in D :

(A) If ξ : (−∞, ω+ d]→H (ω ≥ 0 and d > 0) is such that ξω ∈ D and ξ|[ω,ω+d] ∈ PC([ω,ω+ d]; H ), then for
any t ∈ [ω,ω + d], we have

(i) ξt ∈ D

(ii) ‖ξ(t)‖ ≤ B̃‖ξt‖D where B̃ ≥ 0 is a constant which is independent of ξ(·)

(iii) ‖ξt‖D ≤ K(t − ω) sup{‖ξ(s)‖ : ω ≤ s ≤ t} + R(t − ω)‖ξω‖D , where K,R maps [0,∞) into itself. Also
K(·) is continuous and R(·) is locally bounded, and both K(·) and R(·) are independent of ξ(·).

(B) The phase space D is complete.

To setup an expression for fundamental solution, we require following assumptions:

(a) Define the function ψ0
η by

ψ0
η(κ) =

η, κ = 0,
0, κ < 0,

(2)

which belongs to D for any η ∈H , and ‖ψ0
η‖D ≤ ‖η‖.

(b) The maps K and R appeared in axiom (A) are bounded on [0,∞). Let KM and RM be constants such
that

KM = max
s∈[0,M ]

K(s) and RM = sup
s∈[0,M ]

R(s).

Consider the system
dξ(t)

dt
= Aξ(t) + L(ξt), t > 0

ξ0 = ψ ∈ D ,
(3)
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then

ξ(t, ψ) =

S(t)ψ(0) +
∫ t

0 S(t − s)L(ξs(·, ψ))ds, t ≥ 0,
ψ(t), t ≤ 0,

is the mild solution of (3).
The fundamental solution Q(t) ∈ L (H ) of equation (3) is an operator valued function defined by

Q(t) =

S(t) +
∫ t

0 S(t − s)L(Qs)ds, t ≥ 0,
0, t < 0,

where Qt(κ) := Q(t + κ), κ ≤ 0 (see [18]). Clearly, Q(t) is the unique solution of (3). For any η ∈H , we have

Q(t)η =

ξ(t, ψ0
η), t ≥ 0,

0, t < 0,

where ψ0
η is defined by (2) and belongs to D due to assumption (a).

Definition 2.1. For given z(·) ∈ L2([0,M ]; Z ), ξ(·, ψ, z) : (−∞,M ] → H is reffered to as a mild solution to the
system (1) with initial data ψ ∈ D , if it is in PC and the following intergal equation holds:

ξ(t) =


Q(t)ψ(0) +

∫ t

0
Q(t − s)[L(ψ̃s) + B1(s)z(s) + B2(s)z(h(s)) + F(s, ξρ(s,ξs))]ds

+
∑

0<tk<t

Q(t − tk)Ik(ξtk ), t ∈ [0,M ],

ψ(t), −∞ < t ≤ 0,

where

ψ̃(s) =

ψ(s), s ≤ 0,
0, s > 0.

Remark 2.2. Throughout the remaining paper we assume that h(M ) > 0, as the system (1) has no delay in control
whenever h(M ) is negative. Also z(s) = 0, s ∈ [h(0), 0].

By keeping in mind that there is a delay in control, we redefine the mild solution as follows:

Definition 2.3. For given z(·) ∈ L2([0,M ]; Z ), ξ(·, ψ, z) : (−∞,M ] → H is referred to as a mild solution to the
system (1) with initial data ψ ∈ D , if it is in PC and the following integral equation is satisfied:

ξ(t) =


Q(t)ψ(0) +

∫ h(t)

0
[Q(t − s)B1(s) + Q(t − r(s))B2(r(s))r′(s)]z(s)ds +

∫ t

h(t)
Q(t − s)B1(s)z(s)ds

+

∫ t

0
Q(t − s)[L(ψ̃s) + F(s, ξρ(s,ξs))]ds +

∑
0<tk<t

Q(t − tk)Ik(ξtk ), t ∈ [0,M ],

ψ(t), −∞ < t ≤ 0.

Definition 2.4. We say that the system (1) is approximately controllable on [0,M ], if for any initial data ψ ∈ D ,
R(M , ψ) is dense in the Hilbert space H . That is,

R(M , ψ) = H ,

where R(M , ψ) = {ξ(M , ψ, z) : z(·) ∈ L2([0,M ]; Z )}.
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Let Q∗, B∗1 and B∗2 be the adjoint of Q, B1 and B2, respectively. Then introduce the following operators:
The controllability linear map LM : L2([0,M ],Z )→H of the system (1) is defined by

LM z =

∫ h(M )

0
(Q(M − τ)B1(τ) + Q(M − r(τ))B2(r(τ))r′(τ))z(τ)dτ +

∫ M

h(M )
Q(M − τ)B1(τ)z(τ)dτ,

and

(L∗M η)(τ) =

(B∗1(τ)Q∗(M − τ) + B∗2(r(τ))Q∗(M − r(τ))r′(τ))η, τ ∈ [0, h(M )],
B∗1(τ)Q∗(M − τ)η, τ ∈ (h(M ),M ].

The controllability Gramian map on the interval [s,M ] to the system (1) is defined by

ΓM
s = LM L∗M =



∫ h(M )

s
(r′(τ)Q(M − r(τ))B2(r(τ))B∗2(r(τ))Q∗(M − r(τ))r′(τ)

+Q(M − τ)B1(τ)B∗1(τ)Q∗(M − τ))dτ

+

∫ M

h(M )
Q(M − τ)B1(τ)B∗1(τ)Q∗(M − τ)dτ, s ∈ [0, h(M )];∫ M

s
Q(M − τ)B1(τ)B∗1(τ)Q∗(M − τ)dτ, s ∈ (h(M ),M ].

For α > 0 and s ∈ [0,M ], the resolvent map R(α,ΓM
s ) is defined by R(α,ΓM

s ) = (αI + ΓM
s )−1.

3. Approximate Controllability

This section is devoted to the approximate controllability of the impulsive system (1) containing state-
dependent delay and delay in control. In what follows, we assume that 0 ≤ ρ(t, ψ) ≤ t for all ψ ∈ D . To
show the solvability and the approximate controllability for the system (1), the following hypotheses are
required:

(G1) There exist constants θ ∈ R and Pθ ≥ 1 such that for all s ≥ 0, ‖S(s)‖ ≤ Pθeθs. Particularly, for every
0 ≤ s ≤ M ,

‖S(s)‖ ≤ P, for some P ≥ 1.

(G2) There exists l > 0 such that ‖L‖ = l.

(G3) For each t ∈ [0,M ], the function F(t, ·) : D → H is continuous and for each ψ ∈ D , the function
F(·, ψ) : [0,M ]→H is strongly measurable, and satisfies the following conditions:

(a) There exist positive constants LF and L̃F such that

‖F(t, ξ) − F(t, η)‖ ≤ LF‖ξ − η‖D , ‖F(t, ξ)‖ ≤ L̃F(1 + ‖ξ‖D ).

(b) There exists L > 0 such that for t1, t2 ∈ [0,M ] we have

‖F(t, ξt1 ) − F(t, ξt2 )‖ ≤ L|t1 − t2|.

(c) The function ρ : [0,M ] ×D → [0,∞) is such that the function t→ ρ(t, ξ) is continuous for every
ξ ∈ D , and there exists a constant Lρ > 0 such that

|ρ(t, ξ) − ρ(t, η)| ≤ Lρ‖ξ − η‖, ξ, η ∈ D and for all t ∈ [0,M ].
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(G4) The functions Ik : D →H are continuous, and there exist constants qk and q̃k for k = 1, 2, · · · ,m, such
that

‖Ik(ξ) − Ik(η)‖ ≤ qk‖ξ − η‖D , ‖Ik(ξ)‖ ≤ q̃k(1 + ‖ξ‖D ).

(G5) The operator αR(α,ΓM
0 ) tends to 0 as α→ 0+ in the strong operator topology.

Remark 3.1. [18, Theorem 3.2]. For Q(t), t ∈ R, we have the following

(i) The family of bounded linear operators Q(t) is strongly continuous which is defined on H and there exist
contants γ ∈ R and c1 > 0 such that

‖Q(s)‖ ≤ c1eγs, s ≥ 0.

Particularly, for every 0 ≤ s ≤ M , we have

‖Q(s)‖ ≤ P̃, for some P̃ ≥ 1.

(ii) If {S(s)}s>0 is compact, then {Q(s)}s>0 is compact.

(iii) For each 0 < s ≤ M , Q(s) is uniformly continuous.

Lemma 3.2. The following are equivalent:

(a) ΓM
0 > 0.

(b) Assumption (G5) holds.

(c) The System dξ(t)
dt = Aξ(t) + L(ψ̃t) + B1(t)z(t) + B2(t)z(h(t)), t ∈ [0,M ]
ξ(0) = ψ(0),

(4)

is approximately controllable.

Proof. The proof is straightforward, for more details see [27, Lemma 2.1].

For further development, we construct an expression for the control function. That is, for any ξM ∈H and
α > 0, the control function is defined by

zα(t) =



[r′(t)B∗2(r(t))Q∗(M − r(t)) + B∗1(t)Q∗(M − t)]R(α,ΓM
0 )[ξM −Q(M )ψ(0)]

−[r′(t)B∗2(r(t))Q∗(M − r(t)) + B∗1(t)Q∗(M − t)]
{∫ t

0
R(α,ΓM

s )Q(M − s)[L(ψ̃s) + F(s, ξρ(s,ξs))]ds

+R(α,ΓM
0 )

m∑
k=1

Q(M − tk)Ik(ξtk )
}
, t ∈ [0, h(M )],

B∗1(t)Q∗(M − t)R(α,ΓM
0 )(ξM −Q(M )ψ(0)) − B∗1(t)Q∗(M − t)

{∫ t

0
R(α,ΓM

s )Q(M − s)[L(ψ̃s)

+F(s, ξρ(s,ξs))]ds + R(α,ΓM
0 )

m∑
k=1

Q(M − tk)Ik(ξtk )
}
, t ∈ [h(M ),M ].

(5)

Also introduce the operator

(Φαξ)(t) =



Q(t)ψ(0) +

∫ h(t)

0
[Q(t − s)B1(s) + Q(t − r(s))B2(r(s))(r′(s))]zα(s)ds

+

∫ t

h(t)
Q(t − s)B1(s)zα(s)ds +

∫ t

0
Q(t − s)[L(ψ̃s) + F(s, ξρ(s,ξs))]ds

+
∑

0<tk<t

Q(t − tk)Ik(ξtk ), t ∈ [0,M ],

ψ(t), −∞ < t ≤ 0.

(6)
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For the sack of convenience, let N = max{‖B1(τ)‖, ‖B2(τ)‖ : τ ∈ [0,M ]} and r = max{‖r′(τ)‖ : τ ∈ [0,M ]}.

Theorem 3.3. Suppose that ψ ∈ D . If (G1) − (G4) hold, then for α > 0, there is a mild solution to the system (1) on
(−∞,M ] provided that

1
α

M [P̃N + P̃Nr]2
{

M P̃L̃FKM + M P̃LLρKM + P̃
m∑

k=1

q̃kKM

}
+ M P̃L̃FKM +

m∑
k=1

P̃q̃kKM ≤ 1. (7)

Proof. Define the map η(·) : (−∞,M ]→H by

η(t) =

Q(t)ψ(0), t ≥ 0,
ψ(t), −∞ < t ≤ 0.

Clearly for any 0 ≤ t ≤ M , ηt ∈ D with η0 = ψ and t→ ηt is a continuous map on [0,M ], which leads to the
continuity of the map t→ ηt in ‖ · ‖D .

Consider the set C0
M = {u ∈ PC : u0 = 0}with the norm

‖u‖M = sup{‖u(s)‖ : 0 ≤ s ≤ M }.

For δ > 0, set B[0; δ] =
{
u ∈ C0

M : ‖u‖M ≤ δ
}
. Clearly, B[0; δ] is a non-empty, bounded, closed and convex

subset of PC. For each u ∈ B[0; δ], define

ū(τ) =

u(τ), 0 ≤ τ ≤ M ,

0, −∞ < τ < 0.

If ξ(·) satisfies (1), then split it as ξ(t) = u(t) + η(t), t ∈ [0,M ], which yields that ξt = ūt + ηt for t ∈ [0,M ], and
for each zα ∈ L2([0,M ]; Z ) the function u(·) has the form

u(t) =

∫ h(t)

0
[Q(t − s)B1(s) + Q(t − r(s))B2(r(s))r′(s)]zα(s)ds +

∫ t

h(t)
Q(t − s)B1(s)zα(s)ds

+

∫ t

0
Q(t − s)[L(ψ̃s) + F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))]ds +

∑
0<tk<t

Q(t − tk)Ik(ūtk + ηtk ), t ∈ [0,M ].

Define Φ on B[0; δ] by

(Φu)(t) =

∫ h(t)

0
[Q(t − s)B1(s) + Q(t − r(s))B2(r(s))r′(s)]zα(s)ds +

∫ t

h(t)
Q(t − s)B1(s)zα(s)ds

+

∫ t

0
Q(t − s)[L(ψ̃s) + F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))]ds +

∑
0<tk<t

Q(t − tk)Ik(ūtk + ηtk ).

Then clearly Φ is well-defined on B[0; δ] for each δ > 0. Also the operator Φα has a fixed point if and
only if Φ has a fixed point. Let Φ = Φ1 + Φ2 and, Φ1 and Φ2 are defined by

(Φ1u)(t) =

∫ h(t)

0
[Q(t − s)B1(s) + Q(t − r(s))B2(r(s))r′(s)]zα(s)ds +

∫ t

h(t)
Q(t − s)B1(s)zα(s)ds

(Φ2u)(t) =

∫ t

0
Q(t − s)[L(ψ̃s) + F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))]ds +

∑
0<tk<t

Q(t − tk)Ik(ūtk + ηtk ).

Now, in order to understand the proof easily we break it into several parts.
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Step (i): We claim that ΦB[0; δ] ⊆ B[0; δ]. Suppose it does not hold, then for any δ > 0, there is uδ ∈ B[0; δ]
and tδ ∈ [0,M ] such that δ < ‖Φuδ(tδ)‖. For t ∈ [0, h(M )], it follows that

‖zα(t)‖ =

∥∥∥∥∥[r′(t)B∗2(r(t))Q∗(M − r(t)) + B∗1(t)Q∗(M − t)]R(α,ΓM
0 )[ξM −Q(M )ψ(0)]

− [r′(t)B∗2(r(t))Q∗(M − r(t)) + B∗1(t)Q∗(M − t)] ×
{∫ t

0
R(α,ΓM

s )Q(M − s)[L(ψ̃s)

+ F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))]ds + R(α,ΓM
0 )

m∑
k=1

Q(M − tk)Ik(ūtk + ηtk )
}∥∥∥∥∥

By axiom (A), we have

‖uρ(s,ξs)‖D ≤ KM δ, for any u ∈ B[0; δ],

and hence

‖ξρ(s,ξs)‖D = ‖ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs)‖D ≤ ‖ūρ(s,ūs+ηs)‖D + ‖ηρ(s,ūs+ηs)‖D

≤ KM δ + RM ‖ψ‖D + KM P̃‖ψ(0)‖ = δ1,

and

‖ūtk + ηtk‖ ≤ KM δ + RM ‖ψ‖D + KM P̃‖ψ(0)‖ = δ1.

Thus

‖zα(t)‖ ≤
1
α

[rNP̃ + NP̃][‖ξM ‖ + P̃‖ψ(0)‖] +
1
α

[rNP̃ + NP̃]M P̃lRM ‖ψ‖D +
1
α

[rNP̃ + NP̃]M P̃L̃F

× (1 + ‖ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))‖D ) +
1
α

[rNP̃ + NP̃]P̃
m∑

k=1

q̃k(1 + ‖ūtk + ηtk‖D )

≤
1
α

[rNP̃ + NP̃][‖ξM ‖ + P̃‖ψ(0)‖]

+
1
α

[rNP̃ + NP̃]M P̃lRM ‖ψ‖D +
1
α

[rNP̃ + NP̃]M P̃L̃F(1 + δ1)

+
1
α

[rNP̃ + NP̃]P̃
m∑

k=1

q̃k(1 + δ1).

Now, if t ∈ [h(M ),M ], then

‖zα(t)‖ =

∥∥∥∥∥B∗1(t)Q∗(M − t)R(α,ΓM
0 )(ξM −Q(M )ψ(0)) − B∗1(t)Q∗(M − t)

{∫ t

0
R(α,ΓM

s )Q(M − s)

× [L(ψ̃s) + F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs)))]ds + R(α,ΓM
0 )

m∑
k=1

Q(M − tk)Ik(ūtk + ηtk )
}∥∥∥∥∥

≤
1
α

NP̃[‖ξM ‖ + P̃‖ψ(0)‖] +
1
α

NP̃2M lRM ‖ψ‖D +
1
α

NP̃2M L̃F(1 + δ1) +
1
α

NP̃2
m∑

k=1

q̃k(1 + δ1)
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Therefore,

δ <‖Φuδ(t)‖ =

∥∥∥∥∥∫ h(t)

0
[Q(t − s)B1(s) + Q(t − r(s))B2(r(s))r′(s)]zα(s)ds

+

∫ t

h(t)
Q(t − s)B1(s)zα(s)ds +

∫ t

0
Q(t − s)[L(ψ̃s)

+ F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))]ds +
∑

0<tk<t

Q(t − tk)Ik(ūtk + ηtk )
∥∥∥∥∥
H

≤

∫ h(t)

0
[P̃N + P̃Nr]

{ 1
α

[rNP̃ + NP̃][‖ξM ‖ + P̃‖ψ(0)‖]

+
1
α

[rNP̃ + NP̃]M P̃lRM ‖ψ‖D +
1
α

[rNP̃ + NP̃]M P̃L̃F(1 + δ1)

+
1
α

[rNP̃ + NP̃]P̃
m∑

k=1

q̃k(1 + δ1)
}
ds

+

∫ t

h(t)
P̃N

{ 1
α

NP̃[‖ξM ‖ + P̃‖ψ(0)‖] +
1
α

NP̃2M lRM ‖ψ‖D

+
1
α

NP̃2M L̃F(1 + δ1) +
1
α

NP̃2
m∑

k=1

q̃k(1 + δ1)
}
ds

+

∫ t

0
P̃[lRM ‖ψ‖D + L̃F(1 + δ1)]ds +

m∑
k=1

P̃q̃k(1 + δ1)

≤

∫ t

0
[P̃N + P̃Nr]

{ 1
α

[rNP̃ + NP̃][‖ξM ‖ + P̃‖ψ(0)‖]

+
1
α

[rNP̃ + NP̃]M P̃lRM ‖ψ‖D +
1
α

[rNP̃ + NP̃]M P̃L̃F(1 + δ1)

+
1
α

[rNP̃ + NP̃]P̃
m∑

k=1

q̃k(1 + δ1)
}
ds

+ M P̃[lRM ‖ψ‖D + L̃F(1 + δ1)] +

m∑
k=1

P̃q̃k(1 + δ1).

Dividing both sides by δ and taking the limit as δ→∞we get

1 <
1
α

M [P̃N + P̃Nr]2
{

M P̃L̃FKM + P̃
m∑

k=1

q̃kKM

}
+ M P̃L̃FKM +

m∑
k=1

P̃q̃kKM ,

which is a contradiction to (7). Hence, we conclude that for each α > 0, there is a δ > 0 such that Φ maps
B[0; δ] into itself.
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Step (ii): Φ1 is a contraction map. By substituting the value of zα in Φ1, we have

(Φ1u)(t) =

∫ h(t)

0
[Q(t − s)B1(s) + Q(t − r(s))B2(r(s))r′(s)]

× [r′(s)B∗2(r(s))Q∗(M − r(s)) + B∗1(s)Q∗(M − s)]R(α,ΓM
0 )

× [ξM −Q(M )ψ(0)]ds

−

∫ h(t)

0
[Q(t − s)B1(s) + Q(t − r(s))B2(r(s))r′(s)]

× [r′(s)B∗2(r(s))Q∗(M − r(s)) + B∗1(s)Q∗(M − s)]

×

{∫ t

0
R(α,ΓM

r )Q(M − r)[L(ψ̃r) + F(r, ūρ(r,ūr+ηr) + ηρ(r,ūr+ηr)))]dr

+ R(α,ΓM
0 )

m∑
k=1

Q(M − tk)Ik(ūtk + ηtk )
}
ds

+

∫ t

h(t)
Q(t − s)B1(s)B∗1(s)Q∗(M − s)R(α,ΓM

0 )(ξM −Q(M )ψ(0))ds

−

∫ t

h(t)
Q(t − s)B1(s)B∗1(s)Q∗(M − s)

{∫ t

0
R(α,ΓM

r )Q(M − r)[L(ψ̃r)

+ F(r, ūρ(r,ūr+ηr) + ηρ(r,ūr+ηr)))]dr + R(α,ΓM
0 )

m∑
k=1

Q(M − tk)Ik(ūtk + ηtk )
}
ds.

For u, v ∈H , we have

‖(Φ1u)(t) − (Φ1v)(t)‖

≤

∫ h(t)

0
‖Q(t − s)B1(s) + Q(t − r(s))B2(r(s))r′(s)‖

× ‖r′(s)B∗2(r(s))Q∗(M − r(s)) + B∗1(s)Q∗(M − s)‖
{∫ s

0
‖R(α,ΓM

r )Q(M − r)‖

× ‖F(r, ūρ(r,ūr+ηr) + ηρ(r,ūr+ηr)) − F(r, v̄ρ(r,v̄r+ηr) + ηρ(r,v̄r+ηr))‖dr

+ ‖R(α,ΓM
0 )‖

m∑
k=1

‖Q(M − tk)(Ik(ūtk + ηtk ) − Ik(v̄tk + ηtk )‖
}
ds

+

∫ t

h(t)
‖Q(t − s)B1(s)B∗1(s)Q∗(M − s)‖

{∫ s

0
‖R(α,ΓM

r )Q(M − r)‖

× ‖F(r, ūρ(r,ūr+ηr) + ηρ(r,ūr+ηr)) − F(r, v̄ρ(r,v̄r+ηr) + ηρ(r,v̄r+ηr))‖dr

+ ‖R(α,ΓM
0 )‖

m∑
k=1

‖Q(M − tk)(Ik(ūtk + ηtk ) − Ik(v̄tk + ηtk )‖
}
ds

≤

∫ h(t)

0
‖Q(t − s)B1(s) + Q(t − r(s))B2(r(s))r′(s)‖

× ‖r′(s)B∗2(r(s))Q∗(M − r(s)) + B∗1(s)Q∗(M − s)‖
{∫ s

0
‖R(α,ΓM

r )Q(M − r)‖

× [‖F(r, ūρ(r,ūr+ηr) + ηρ(r,ūr+ηr)) − F(r, v̄ρ(r,ūr+ηr) + ηρ(r,ūr+ηr))‖
+ ‖F(r, v̄ρ(r,ūr+ηr) + ηρ(r,ūr+ηr)) − F(r, v̄ρ(r,v̄r+ηr) + ηρ(r,v̄r+ηr))‖]dr



S.M. Abdal, S. Kumar / Filomat 34:7 (2020), 2293–2313 2303

+ ‖R(α,ΓM
0 )‖

m∑
k=1

‖Q(M − tk)(Ik(ūtk + ηtk ) − Ik(v̄tk + ηtk )‖
}
ds

+

∫ t

h(t)
‖Q(t − s)B1(s)B∗1(s)Q∗(M − s)‖

{∫ s

0
‖R(α,ΓM

r )Q(M − r)‖

× [‖F(r, ūρ(r,ūr+ηr) + ηρ(r,ūr+ηr)) − F(r, v̄ρ(r,ūr+ηr) + ηρ(r,ūr+ηr))‖
+ ‖F(r, v̄ρ(r,ūr+ηr) + ηρ(r,ūr+ηr)) − F(r, v̄ρ(r,v̄r+ηr) + ηρ(r,v̄r+ηr))‖]dr

+ ‖R(α,ΓM
0 )‖

m∑
k=1

‖Q(M − tk)(Ik(ūtk + ηtk ) − Ik(v̄tk + ηtk ))‖
}
ds

≤

∫ h(t)

0

1
α

[P̃N + P̃Nr]2
{∫ s

0
P̃[LFKM ‖u − v‖M + LLρKM ‖u − v‖M ]dr + P̃

m∑
k=1

qkKM ‖u − v‖M
}
ds

+

∫ t

h(t)

1
α

P̃2N2
{∫ s

0
P̃[LFKM ‖u − v‖M + LLρKM ‖u − v‖M ]dr + P̃

m∑
k=1

qkKM ‖u − v‖M
}
ds

≤

∫ t

0

1
α

[P̃N + P̃Nr]2
{∫ s

0
P̃[LFKM ‖u − v‖M + LLρKM ‖u − v‖M ]dr + P̃

m∑
k=1

qkKM ‖u − v‖M
}
ds

≤
1
α

M [P̃N + P̃Nr]2
{

M P̃[LFKM ‖u − v‖M + LLρKM ‖u − v‖M ] + P̃
m∑

k=1

qkKM ‖u − v‖M
}

=
{ 1
α

M [P̃N + P̃Nr]2
{

M P̃LFKM + M P̃LLρKM + P̃
m∑

k=1

qkKM

}}
‖u − v‖M ,

where
1
α

M [P̃N + P̃Nr]2
{

M P̃LFKM + M P̃LLρKM + P̃
m∑

k=1

qkKM

}
< 1 (by assumption (7)), which yield that Φ1

is the contraction map.
Step (iii): Φ2 is continuous on B[0; δ].

Let {un
}n∈N ⊂ B[0; δ] be a sequence such that un

→ u as n→ ∞. Then for any s ∈ [0,M ], un
ρ(s,un

s ) → uρ(s,us)

as n→∞. Hence

‖F(s, ūn
ρ(s,ūn

s +ηs)
+ ηρ(s,ūn

s +ηs)) − F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))‖

≤‖F(s, ūn
ρ(s,ūn

s +ηs)
+ ηρ(s,ūn

s +ηs)) − F(s, ūρ(s,ūn
s +ηs) + ηρ(s,ūn

s +ηs))‖

+ ‖F(s, ūρ(s,ūn
s +ηs) + ηρ(s,ūn

s +ηs)) − F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))‖
→ 0, as n→∞.

Further notice that for s ∈ [0,M ]

‖F(s, ūn
ρ(s,ūn

s +ηs)
+ ηρ(s,ūn

s +ηs)) − F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))‖ ≤ 2 fδ1 (s).

Thus by the Lebesgue dominated convergence theorem

‖(Φ2un)(t) − (Φ2u)(t)‖ ≤
∫ t

0
‖Q(t − s)[F(s, ūn

ρ(s,ūn
s +ηs)

+ ηρ(s,ūn
s +ηs)) − F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))]ds‖

+
∑

0<tk<t

‖Q(t − s)[Ik(ūn
tk

+ ηtk ) − Ik(ūtk + ηtk )]‖

≤P̃
∫ t

0
‖F(s, ūn

ρ(s,ūn
s +ηs)

+ ηρ(s,ūn
s +ηs)) − F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))‖ds
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+ P̃
m∑

k=1

qk‖ūn
tk
− ūtk‖ → 0, as n→∞.

Therefore, Φ2 is continuous on B[0; δ] for t ∈ B[0; δ].
Step (iv): Φ2 is equicontinuous. First we check the equicontinuity of the family

Z(t) = {(Φ2u)(t) : u ∈ B[0; δ]}

on (0,M ]. Let ε > 0 be given and 0 < t1 < t2 < M , then

‖(Φ2u)(t2) − (Φ2u)(t1)‖

≤

∫ t1−ε

0
‖Q(t2 − s) −Q(t1 − s)‖‖L(ψ̃s) + F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))‖ds

+
∑

0<tk<t1−ε

‖Q(t2 − tk) −Q(t1 − tk)‖‖Ik(ūtk + ηtk )‖

+

∫ t1

t1−ε
‖Q(t2 − s) −Q(t1 − s)‖‖L(ψ̃s) + F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))‖ds

+
∑

t1−ε<tk<t1

‖Q(t2 − tk) −Q(t1 − tk)‖‖Ik(ūtk + ηtk )‖

+

∫ t2

t1

‖Q(t2 − s)‖‖L(ψ̃s) + F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))‖ds +
∑

t1<tk<t2

‖Q(t2 − tk)‖‖Ik(ūtk + ηtk )‖.

Thus we see that for each u ∈ B[0; δ], ‖(Φ2u)(t2) − (Φ2u)(t1)‖ → 0 as t2 − t1 → 0 for sufficiently small ε > 0 as
for each t ∈ (0,M ], Q(t) is uniformly continuous. At t = 0 the equicontinuity of Z(·) is trivial. Hence Z(·) is
the equicontinuous family.

Step (v): We now explain that Φ2 maps the ball B[0; δ] into a precompact subset of H . Clearly Z(0) is
precompact in H . Now, we break Φ2 that is Φ2 = Ψ1 + Ψ2 as

(Ψ1u)(t) =

∫ t

0
Q(t − s)[L(ψ̃s) + F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))]ds, t ∈ (0,M ],

(Ψ2u)(t) =
∑

0<tk<t

Q(t − tk)Ik(ūtk + ηtk ), t ∈ (0,M ].

Using Lemma 3.1 in [20], one can easily show that

Ψ1(B[0; δ](t)) = {(Ψ1u)(t) : u ∈ B[0; δ]}

is precompact in H for all t ∈ [0,M ]. We can also easily prove that Ψ1(B[0; δ]) is uniformly bounded. Hence
using the Arzela–Ascoli theorem, we deduce that Ψ1 is the compact operator as Φ2 is equicontinuous. Next,
it remains to prove that Ψ2(B[0; δ]) is precompact for each t ∈ (0,M ]. It is trivial whenever t ∈ (0, t1]. Now

it is required to determine that U =
{ ∑

0<tk<t

Q(t − tk)Ik(ūtk + ηtk ) : t ∈ (ti, ti+1],u ∈ B[0; δ]
}

is precompact in H

for t ∈ (ti, ti+1], i = 1, 2, · · · ,m and u ∈ B[0; δ]. By using the compactness of {Q(t)}t>0 and assumption on Ik,
it yields that the set U is precompact in H . Obviously, the elements of U are equicontinuous. Therefore,
compactness of Ψ2 is implied by the Arzela–Ascoli theorem. Thus, Φ2 = Ψ1 + Ψ2 is a compact operator.
Hence, Z(t) is precompact in H for every t ∈ [0,M ]. By the Arzela–Ascoli theorem, Φ2 is completely
continuous.

Hence, we conclude that the operator Φ has a fixed point as all hypotheses of Krasnoselskii’s fixed point
theorem are satisfied, consequently Φα has a fixed point, say ξα, which is a mild solution of the system
(1).
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Theorem 3.4. Suppose that the system (4) is approximately controllable and all conditions in Theorem 3.3 hold.
Further, assume that the function F is uniformly bounded. Then the system (1) is approximately controllable on
[0,M ].

Proof. By Theorem 3.3, it follows that ξα(·) is a mild solution of the system (1) on (−∞,M ] corresponding to
the control zα(·) and satisfying

ξα(M ) =Q(M )ψ(0) +

∫ h(M )

0
[Q(M − s)B1(s) + Q(M − r(s))B2(r(s))r′(s)]

× [r′(s)B∗2(r(s))Q∗(M − r(s)) + B∗1(s)Q∗(M − s)]R(α,ΓM
0 )

× [ξM −Q(M )ψ(0) −
m∑

k=1

Q(M − tk)Ik(ξαtk
)]ds

−

∫ h(M )

0
[Q(M − s)B1(s) + Q(M − r(s))B2(r(s))r′(s)]

× [r′(s)B∗2(r(s))Q∗(M − r(s)) + B∗1(s)Q∗(M − s)]

×

∫ s

0
R(α,ΓM

r )Q(M − r)[L(ψ̃r) + F(r, ξαρ(r,ξαr ))]drds

+

∫ M

h(M )
Q(M − s)B1(s)B∗1(s)Q∗(M − s)R(α,ΓM

0 )(ξM −Q(M )ψ(0)

−

m∑
k=1

Q(M − tk)Ik(ξαtk
))ds

−

∫ M

h(M )
Q(M − s)B1(s)B∗1(s)Q∗(M − s)

∫ s

0
R(α,ΓM

r )Q(M − r)[L(ψ̃r)

+ F(r, ξαρ(r,ξαr ))]drds

+

∫ M

0
Q(M − s)[L(ψ̃s) + F(s, ξαρ(s,ξαs ))]ds +

∑
0<tk<M

Q(M − tk)Ik(ξαtk
).

Then clearly

ξα(M ) =Q(M )ψ(0) + ΓM
0 R(α,ΓM

0 )[ξM −Q(M )ψ(0) −
m∑

k=1

Q(M − tk)Ik(ξαtk
)]

−

∫ h(M )

0

∫ h(M )

r
[Q(M − s)B1(s) + Q(M − r(s))B2(r(s))r′(s)]

× [r′(s)B∗2(r(s))Q∗(M − r(s)) + B∗1(s)Q∗(M − s)]

× R(α,ΓM
r )Q(M − r)[L(ψ̃r) + F(r, ξαρ(r,ξαr ))]dsdr

−

∫ h(M )

0

∫ M

h(M )
Q(M − s)B1(s)B∗1(s)Q∗(M − s)R(α,ΓM

r )Q(M − r)[L(ψ̃r)

+ F(r, ξαρ(r,ξαr ))]dsdr

−

∫ M

h(M )

∫ M

r
Q(M − s)B1(s)B∗1(s)Q∗(M − s)R(α,ΓM

r )Q(M − r)[L(ψ̃r)

+ F(r, ξαρ(r,ξαr ))]dsdr
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+

∫ M

0
Q(M − s)[L(ψ̃s) + F(s, ξαρ(s,ξαs ))]ds +

∑
0<tk<M

Q(M − tk)Ik(ξαtk
)

=Q(M )ψ(0) + (I − αR(α; ΓM
0 )[ξM −Q(M )ψ(0) −

m∑
k=1

Q(M − tk)Ik(ξαtk
)]

−

∫ h(M )

0
ΓM

r R(α,ΓM
r )Q(M − r)[L(ψ̃r) + F(r, ξαρ(r,ξαr ))]dr

−

∫ M

h(M )
ΓM

r R(α,ΓM
r )Q(M − r)[L(ψ̃r) + F(r, ξαρ(r,ξαr ))]dr

+

∫ M

0
Q(M − s)[L(ψ̃s) + F(s, ξαρ(s,ξαs ))]ds +

∑
0<tk<M

Q(M − tk)Ik(ξαtk
)

=Q(M )ψ(0) + (I − αR(α; ΓM
0 ))[ξM −Q(M )ψ(0) −

m∑
k=1

Q(M − tk)Ik(ξαtk
)]

−

∫ M

0
(I − R(α,ΓM

r ))Q(M − r)[L(ψ̃r) + F(r, ξαρ(r,ξαr ))]dr

+

∫ M

0
Q(M − s)[L(ψ̃s) + F(s, ξαρ(s,ξαs ))]ds +

∑
0<tk<M

Q(M − tk)Ik(ξαtk
).

ξα(M ) =ξM − αR(α; ΓM
0 )[ξM −Q(M )ψ(0) −

m∑
k=1

Q(M − tk)Ik(ξαtk
)]

+

∫ M

0
αR(α; ΓM

s )Q(M − s)[L(ψ̃s) + F(s, ξαρ(s,ξαs ))]ds.

By the hypothesis, F(s, ξαρ(s,ξαs )) is uniformly bounded, for α > 0 a weakly convergent subsequence, repre-
sented by, F(s, ξαρ(s,ξαs )) exists such that for every s ∈ [0,M ], F(s, ξαρ(s,ξαs )) → f (s) say, weakly in H . Now,
since the family {Q(t)}t>0 is compact, we assert that for every s ∈ [0,M ), Q(M − s)F(s, ξαρ(s,ξαs ))→ Q(M − s) f (s)
in H . Therefore, we deduce that∥∥∥∥∥∫ M

0
Q(M − s)(F(s, ξαρ(s,ξαs )) − f (s))ds

∥∥∥∥∥→ 0,

as α → 0+. Finally, by the assumption that linear system (4) is approximately controllable, the operator
αR(α; ΓM

0 ) → 0 strongly as α → 0+, ‖αR(α; ΓM
0 )‖ ≤ 1 and using the Lebesgue dominated convergence

theorem, we obtain

‖ξα(M ) − ξM ‖ ≤‖αR(α; ΓM
0 )[ξM −Q(M )ψ(0) −

m∑
k=1

Q(M − tk)Ik(ξαtk
)]‖

+

∫ M

0
‖αR(α; ΓM

s )Q(M − s)[L(ψ̃s) + f (s)]‖ds

+

∫ M

0
‖αR(α; ΓM

s )Q(M − s)[F(s, ξαρ(s,ξαs )) − f (s)]‖ds

−→ 0, as α→ 0+,

and that comes to the conclusion.
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We are now obtained the approximate controllability of the system (1) by Schauder’s fixed point theorem
under different hypotheses. In order to establish the approximate controllability results, we need the
following hypothesis:

(G6) The function F : [0,M ] ×D →H satisfies the following condition:

(a) For each r > 0, there exists a continuous function fr : [0,M ]→ (0,∞) such that for any 0 ≤ t ≤ M
and ψ ∈ D

sup
‖ψ‖D≤r

‖F(t, ψ)‖ ≤ fr(t),

and there is a constant δ2 > 0 such that lim inf
δ→∞

1
δ

∫ M

0
fδ1 (t)dt = δ2 < ∞, where

δ1 = KM δ + RM ‖ψ‖D + KM P̃‖ψ(0)‖.

Theorem 3.5. Suppose that hypotheses (G1), (G2), (G4) and (G6) are hold. Then the control system (1) has at least
one mild solution on (−∞,M ], provided that

1
α

M [P̃N + P̃Nr]2P̃δ2 +
1
α

M [P̃N + P̃Nr]2P̃
m∑

k=1

q̃kKM + P̃δ2 + P̃
m∑

k=1

q̃kKM ≤ 1.

Proof. Consider B[0; δ] =
{
u ∈ C0

M : ‖u‖M ≤ δ
}

as given in Theorem 3.3. Define Φ on B[0; δ] by

(Φu)(t) =

∫ h(t)

0
[Q(t − s)B1(s) + Q(t − r(s))B2(r(s))r′(s)]zα(s)ds +

∫ t

h(t)
Q(t − s)B1(s)zα(s)ds

+

∫ t

0
Q(t − s)[L(ψ̃s) + F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))]ds +

∑
0<tk<t

Q(t − tk)Ik(ūtk + ηtk ).

Next we prove that Φ satisfies all conditions of Schauder’s fixed point theorem. For t ∈ [0, h(M )],

‖zα(t)‖ ≤
1
α

[rNP̃ + NP̃][‖ξM ‖ + P̃‖ψ(0)‖]

+
1
α

[rNP̃ + NP̃]M P̃lRM ‖ψ‖D +
1
α

[rNP̃ + NP̃]P̃
∫ M

0
fδ1 (t)dt

+
1
α

[rNP̃ + NP̃]P̃
m∑

k=1

q̃k(1 + δ1).

For t ∈ [h(M ),M ], then

‖zα(t)‖ ≤
1
α

NP̃[‖ξM ‖ + P̃‖ψ(0)‖] +
1
α

NP̃2M lRM ‖ψ‖D +
1
α

NP̃2
∫ M

0
fδ1 (t)dt +

1
α

NP̃2
m∑

k=1

q̃k(1 + δ1).

We claim that ΦB[0; δ] ⊆ B[0; δ]. Suppose it does not hold, then for any δ > 0, there is uδ ∈ B[0; δ] and
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tδ ∈ [0,M ] such that δ < ‖Φuδ(tδ)‖. Then consider

δ <‖Φuδ(t)‖ =

∥∥∥∥∥∫ h(t)

0
[Q(t − s)B1(s) + Q(t − r(s))B2(r(s))r′(s)]zα(s)ds

+

∫ t

h(t)
Q(t − s)B1(s)zα(s)ds +

∫ t

0
Q(t − s)[L(ψ̃s)

+ F(s, ūρ(s,ūs+ηs) + ηρ(s,ūs+ηs))]ds +
∑

0<tk<t

Q(t − tk)Ik(ūtk + ηtk )
∥∥∥∥∥
H

≤

∫ h(t)

0
[P̃N + P̃Nr]

{ 1
α

[rNP̃ + NP̃][‖ξM ‖ + P̃‖ψ(0)‖]

+
1
α

[rNP̃ + NP̃]M P̃lRM ‖ψ‖D +
1
α

[rNP̃ + NP̃]P̃
∫ M

0
fδ1 (t)dt

+
1
α

[rNP̃ + NP̃]P̃
m∑

k=1

q̃k(1 + δ1)
}
ds

+

∫ t

h(t)
P̃N

{ 1
α

NP̃[‖ξM ‖ + P̃‖ψ(0)‖] +
1
α

NP̃2M lRM ‖ψ‖D

+
1
α

NP̃2
∫ M

0
fδ1 (t)dt +

1
α

NP̃2
m∑

k=1

q̃k(1 + δ1)
}
ds

+

∫ t

0
P̃[lRM ‖ψ‖D + fδ1 (s)]ds +

m∑
k=1

P̃q̃k(1 + δ1)

≤

∫ t

0
[P̃N + P̃Nr]

{ 1
α

[rNP̃ + NP̃][‖ξM ‖ + P̃‖ψ(0)‖]

+
1
α

[rNP̃ + NP̃]M P̃lRM ‖ψ‖D +
1
α

[rNP̃ + NP̃]P̃
∫ M

0
fδ1 (t)dt

+
1
α

[rNP̃ + NP̃]P̃
m∑

k=1

q̃k(1 + δ1)
}
ds

+ M P̃lRM ‖ψ‖D + P̃
∫ M

0
fδ1 (s)ds +

m∑
k=1

P̃q̃k(1 + δ1).

Dividing both sides by δ and taking the limit as δ→∞we get

1 <
1
α

M [P̃N + P̃Nr]2P̃δ2 +
1
α

M [P̃N + P̃Nr]2P̃
m∑

k=1

q̃kKM + P̃δ2 + P̃
m∑

k=1

q̃kKM ,

which is a contradiction to our assumption. Hence, we conclude that there is δ > 0 such that Φ maps B[0; δ]
into itself. Moreover, using the methods in Theorem 3.3 above and the technique in Theorem 3.1 of [1], it
is not difficult to verify that Φ is completely continuous. Hence, the operator Φ satisfies all conditions of
Schauder’s fixed point theorem. Therefore, there exists a fixed point ξ on B[0; δ]. Hence, the control system
(1) has at least one mild solution on (−∞,M ].

Theorem 3.6. Suppose that the system (4) is approximately controllable and all conditions in Theorem 3.5 hold.
Further, assume that the function F is uniformly bounded. Then the system (1) is approximately controllable on
[0,M ].

Proof. The proof is similar to Theorem 3.4.
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4. Applications

Example 4.1 Consider the following system



∂
∂t u(t, ξ) = ∂2

∂ξ2 u(t, ξ) +
∫ t−1

−∞

∫ π
0 ω(s − t, ξ, η)u(s, η)dηds + B1z(t, ξ) + B2z(t/2, ξ)

+
∫ t

−∞
b(s − t)u(s − ρ1(t)ρ2(‖u(t)‖), ξ)ds,

0 ≤ t ≤ 2, 0 ≤ ξ ≤ π, t , ti, i = 1, 2, · · · ,m,
u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ 2,
u(κ, ξ) = ψ(κ, ξ), κ ≤ 0, 0 ≤ ξ ≤ π,

∆u(t j, ξ) =
∫ t j

−∞
γ j(s − t j)u(s, ξ)ds, j = 1, 2, · · · ,m,

(8)

where ω(·, ·, ·), b(·), ρ1(·), ρ2(·) and γ j, j = 1, 2, · · · ,m are appropriate functions which will be defined below.
The mathematical model of heat flow in materials is described by the system (8) and so-called retarded type
([16, 23]). At time t, the temperature of the point ξ is denoted by u(t, ξ), where 0 < t1 < t2 < · · · < tm < M
are fixed and ρi : [0,∞)→ [0,∞), i = 1, 2, are continuous functions.

Set H = L2([0, π]). Here, we take h1(t) = t/2 which implies h(t) = t/2 and r(t) = 2t. Define W(t)(·) = W(t, ·)
and ψ(t)(·) = ψ(t, ·). Let A : D(A) ⊂H →H be defined by

Aµ = µ′′

and
D(A) = {µ(·) ∈H : µ′, µ′′ are absolutely continuous, µ′′ ∈H , µ(0) = µ(π) = 0}.

Then clearly A generates a compact C0−semigroup {S(t)}t≥0 which is also self adjoint. Clearly the eigenvalues

of A are −n2, n ∈ N, and sn(ξ) =
√

2
π sin(nξ) are the corresponding orthogonal eigenfunctions with norm 1.

Now we have the following

(i) For µ ∈ D(A), we obtain

Aµ = −

∞∑
n=1

n2
〈µ, sn〉sn.

(ii) If µ ∈H , then

S(t)µ =

∞∑
n=1

e−n2t
〈µ, sn〉sn, (9)

and ‖S(t)‖ ≤ e−t.

For more details one can see [18].
Consider the phase space D = PC0 × L2(h,H ) (where h : (−∞, 0) → R is a positive function) (see [11]),

with the norm

‖ψ‖D = ‖ψ(0)‖ +

(∫ 0

−∞

h(ζ)‖ψ(ζ)‖2dζ
)1/2

,

where h and h‖ψ(·)‖2 are real valued Lebesgue integrable functions on (−∞, 0) and ψ is continuous at 0. It
is well known that, PC0 × L2(h,H ) satisfy the axioms (A) and (B) by choosing a proper function h. Clearly,
assumptions (a) and (b) also hold (see [11]). Furthermore, for a proper choice of h, due to Hino et al. [11],
we have B̃, K(·), R(·) ≤ 1. Thus it follows that max{RM , KM } ≤ 1.

Suppose that for the system (8), the following conditions hold:
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(i) For any κ ≤ 0, ω(κ, 0, ·) = ω(κ, π, ·) ≡ 0 where ω(κ, ·, ·) ∈ C1([0, π] × [0, π]) and

l =

∫ π

0

( ∫ −1

−∞

1
h(κ)

∫ π

0
|ω(κ, ξ, η)|2dηdκ

)
dξ < ∞. (10)

(ii) The function b : R→ R is continuous and bounded such that

L1 =
( ∫ 0

−∞

b2(s)
h(s)

ds
)1/2

< ∞.

(iii) The functions γk : R→ R are continuous such that

Lk =
( ∫ 0

−∞

γ2
k(s)

h(s)
ds

)1/2

< ∞,

for every k = 1, 2, · · · ,m.

Define L : D →H , F(·, ·) : [0, 2] ×D →H , ρ(·, ·) : [0, 2] ×D → [0,∞) and Ik : D →H respectively, as

L(ψ)(u) =

∫
−1

−∞

∫ π

0
ω(κ,u, η)ψ(κ)(η)dηdκ,

F(t, ψ)(u) =

∫ 0

−∞

b(s)ψ(s,u)ds,

ρ(t, ψ)(u) = t − ρ1(t)ρ2(‖ψ(0,u)‖),

Ii(ψ)(u) =

∫ 0

−∞

γi(s)ψ(s,u)ds, i = 1, 2, · · · ,m,

for t ∈ [0, 2], ψ ∈ D . Thus the system (8) can be written in the abstract form given by the system (1).
Evidently, F verifies (G3) which is guaranteed well by the assumption (ii). Furthermore, assumption (i)
satisfies the hypothesis (G2). Moreover, for any ψ ∈ D ,

〈L(ψ), sn〉 =
1
n

〈∫
−1

−∞

∫ π

0

∂
∂ξ
ω(κ, ξ, η)ψ(κ)(η)dηdκ, s̃n(ξ)

〉
,

where s̃n(ξ) =
√

2
π cos(nξ), n = 1, 2, · · · . In fact, for any ψ ∈ D , we obtain

‖L(ψ)‖2 ≤
∫ π

0

∣∣∣∣∣ ∫ −1

−∞

∫ π

0
ω(κ, ξ, η)ψ(κ)(η)dηdκ

∣∣∣∣∣2dξ

≤

∫ π

0

( ∫ −1

−∞

∫ π

0
|ω(κ, ξ, η)ψ(κ)(η)|dηdκ

)2

dξ.

By Hölder’s inequality, it follows that

‖L(ψ)‖2 ≤
∫ π

0

[ ∫
−1

−∞

( ∫ π

0
|ω(κ, ξ, η)|2dη

)1/2( ∫ π

0
|ψ(κ)(η)|2dη

)1/2

dκ
]2

dξ

≤

∫ π

0

( ∫
−1

−∞

1
h(κ)

∫ π

0
|ω(κ, ξ, η|2dηdκ

)[ ∫
−1

−∞

h(κ)
( ∫ π

0
|ϕ(κ, η)|2dη

)
dκ

]
dξ

≤

∫ π

0

( ∫ −1

−∞

1
h(κ)

∫ π

0
|ω(κ, ξ, η)|2dηdκ

)
dξ‖ψ‖2.
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Hence, (G2) holds with l given by (10).
Consider

Z =
{
z =

∞∑
n=2

znsn :
∞∑

n=2

z2
n < +∞

}
,

and

‖z‖ =
( ∞∑

n=2

z2
n

)1/2

.

Then Z is a Hilbert space. If B1 = B2 ≡ B and

Bz = 2z2s1(ξ) +

∞∑
n=2

znsn(ξ), for z =

∞∑
n=2

znsn ∈ Z ,

then, B ∈ L (Z ,H ) and the adjoint B∗ is given by

B∗v = (2v1 + v2)s2(ξ) +

∞∑
n=3

vnsn(ξ), (11)

with v =

∞∑
n=1

vnsn(ξ) ∈H .

It remains to verify condition (G5). Observe that, for the associated linear system corresponding to (8),
the explicit expression for the fundamental solution Q(t) is quiet difficult to write. On the other hand, for
any t ∈ [0, 1], the expression for Q(t) can be written easily, which guarantee that the condition (G5) holds.
Indeed, the solution of the system d

dt W(t) = −AW(t) + L(Wt) + f (t), t ∈ [0, 2],
W0 = 0

on the interval [0, 1] is

W(t) =

∫ t

0
S(t − s) f (s)ds, t ∈ [0, 1].

Thus for any t ∈ [0, 1], Q(t) = S(t) and hence

Q∗(t) = Q(t) = S(t).

It is proved in [17] that
dx(t, ξ) = (xξξ(t, ξ) + B1z(t, ξ))dt

is approximately controllable on [0, 2]. That is,∫ 2

0
Q(2 − t)B1B∗1Q∗(2 − t)dt > 0,

and meanwhile ∫ h(2)=1

0
r′(t)Q(2 − 2t)B2B∗2Q∗(2 − 2t)r′(t)dt > 0,

from which and Lemma 3.2, one can deduce, the linear system corresponding to (8) is approximately con-
trollable, therefore (G5) is satisfied. Moreover, ‖F‖ ≤ L1. Further we can impose suitable conditions on the
above defined functions to verify the assumptions of Theorem 3.4. Hence the approximate controllability
of the system (8) on [0, 2] follows from Theorem 3.4.
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Example 4.2 In Example 4.1 set

F(t, ψ)(ξ) = et+ξe−
√
‖ψ‖D . (12)

Clearly F(t, ψ)(ξ) does not satisfy the Lipschitz condition (G3), however it satisfies the hypothesis (G6).
Thus Theorem 3.4 can not be applied to the system (8) if F is given by (12). On the other hand, since all
hypotheses in Theorem 3.6 are fulfilled, for the function F defined by (12), the system (8) is approximately
controllable on [0, 2]. Hence, we conclude that Theorem 3.4 provides only sufficient conditions for the
approximate controllability of the system (1).

5. Conclusion

In this paper, we discussed approximate controllability of impulsive semilinear differential equation
having both state-dependent delay and variable delay in control. It is significant to find the approximate
controllability for such systems as they are important from the theoretical and real life application aspect. In
this work, we use a new control function, and theory of fundamental solution to get our results. We also use
the resolvent operator, Krasnoselskii’s and Schauder’s fixed point theorems. Finally, the developed theory
is validated with the help of two examples. This problem can be extended for the stochastic case, which is
our future work. It is also interesting to develop theory for constrained controllability of an abstract system
involving delays in control and state-dependent delay.
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