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Juan-José Miñanaa,b, Oscar Valeroa,b
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Abstract.
In 1981, J. Borsı́k and J. Dobǒs characterized those functions that allow to transform a metric into

another one in such a way that the topology of the metric to be transformed is preserved. Later on,
in 1994, S.G. Matthews introduced a new generalized metric notion known as partial metric. In this
paper, motivated in part by the applications of partial metrics, we characterize partial metric-preserving
functions, i.e., those functions that help to transform a partial metric into another one. In particular
we prove that partial metric-preserving functions are exactly those that are strictly monotone and concave.
Moreover, we prove that the partial metric-preserving functions preserving the topology of the transformed
partial metric are exactly those that are continuous. Furthermore, we give a characterization of those
partial-metric preserving functions which preserve completeness and contractivity. Concretely, we prove
that completeness is preserved by those partial metric-preserving functions that are non-bounded, and
contractivity is kept by those partial metric-functions that satisfy a distinguished functional equation
involving contractive constants. The relationship between metric-preserving and partial metric-preserving
functions is also discussed. Finally, appropriate examples are introduced in order to illustrate the exposed
theory.

1. Introduction

Throughout this paper we assume that the reader is familiar with the basics of general topology and
metric spaces. Our main references for that topics are [8] and [15], respectively.

Transforming a metric into a new one by means of a function plays a crucial role in many real applications.
The reasons for doing this may be of a very diverse nature. A typical situation consists in clarifying if a
particular property is fulfilled by a subset or a mapping when verifying such a property is an arduous task
in the metric space to be transformed. Another motivation for transforming may be to reduce running time
of computing of an algorithm used to solve a problem or to express certain cost measures when modelling
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logistics problems (see, for instance, [5, 6, 17, 19]). Of course, the transformation is made in such a way that
the aforesaid function preserves the main properties of the metric space to be transformed. The first studies
about this type of functions go back to the original works by T.K. Sreenivasan ([18]), W.A. Wilson ([20]) and
J.L. Kelley ([8]). Let us recall that a function f : [0,∞)→ [0,∞) is metric-preserving provided that, for each
metric space (X, d), the function d f is a metric on X, where d f (x, y) = f (d(x, y)) for all x, y ∈ X.

The importance and applicability of metric-preserving functions motivated that J. Borsı́k and J. Dobǒs
tried to characterize the aforementioned functions in [3]. In the first instance they provided a partial
description of metric-preserving functions. In order to state it, let us recall, following [3, 5], that a function
f : [0,∞) → [0,∞) is said to be amenable provided that f (a) = 0 ⇔ a = 0. Moreover, f is (strictly)
monotone if f (a) ≤ f (b) ( f (a) < f (b)) whenever a ≤ b (a < b). Furthermore, f is called concave provided that
f (λa + (1 − λ)b) ≥ λ f (a) + (1 − λ) f (b) for all λ ∈ [0, 1] and for all a, b ∈ [0,∞) and subadditive provided that
f (a + b) ≤ f (a) + f (b) for all a, b ∈ [0,∞).

The next results give us the aforesaid partial information of metric-preserving functions.

Proposition 1.1. Let f : [0,∞)→ [0,∞) be a metric-preserving function, then f is amenable.

Proposition 1.2. Let f : [0,∞) → [0,∞) be an amenable, monotone and subadditive function, then f is a metric-
preserving function.

Proposition 1.3. Let f : [0,∞) → [0,∞) be an amenable and concave function, then f is a metric-preserving
function.

In the light of Propositions 1.2 and 1.3, it seems natural to ask whether the converse of any of both
results is true in general. However, there are metric-preserving functions which are not either monotone or
concave (see, [5]). Motivated by this fact, Borsı́k and Doboš proved the announced characterization, given
by Theorem 1.4, of metric-preserving functions by means of the so-called triangle triplets, where a triplet
(a, b, c) ∈ [0,∞)3 forms a triangle triplet if a ≤ b + c, b ≤ a + c and c ≤ b + a.

Theorem 1.4. Let f : [0,∞)→ [0,∞). The below assertions are equivalent:

(1) f is a metric-preserving function.
(2) f holds the following properties:

(2.1) f is amenable,
(2.2) If (a, b, c) is a triangle triplet, then ( f (a), f (b), f (c)) is so.

As a consequence of the preceding result, the following one is obtained.

Corollary 1.5. Every metric-preserving function is subadditive.

In [3, 5], Borsı́k and Doboš also gave sufficient and necessary conditions in order to guarantee that a
metric-preserving function preserves the topology, i.e., the topology induced by the transformed metric
coincides with the topology induced by the original metric to be transformed. This type of metric-preserving
functions are known as strong metric-preserving functions. In particular, they proved the following result.

Theorem 1.6. Let f : [0,∞)→ [0,∞) be a metric-preserving function. The below assertions are equivalent:

(1) f is strong metric-preserving function.
(2) f is continuous.
(3) f is continuous at 0.

In 1994, S.G. Matthews introduced a new metric notion, which is known as partial metric, with the
aim of developing an appropriate mathematical framework for modelling different processes that arise
in a natural way in Computer Science and Artificial Intelligence (see [10]). Nowadays, the applicability
of partial metric spaces covers areas like denotational semantics for programming languages, parallel
processing, complexity analysis and logic programming (see [1, 7, 10, 11, 16]. Recall that, following [10], a
partial metric space is a pair (X, p), where X is a non-empty set and p : X × X → [0,∞) is a function such
that, for all x, y, z ∈ X, the following axioms are fulfilled:
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(P1) x = y⇔ p(x, x) = p(x, y) = p(y, y);

(P2) p(x, x) ≤ p(x, y);

(P3) p(x, y) = p(y, x);

(P4) p(x, z) ≤ p(x, y) + p(y, z) − p(y, y).

Each partial metric p on X induces a T0 topology τp on X which has as a base the family of open balls
{Bp(x; ε) : x ∈ X, ε > 0}, where Bp(x; ε) = {y ∈ X : p(x, y) < p(x, x) + ε}.

A simple, but illustrative, example of partial metric space is given by the pair ([0,∞), pmax), where
pmax(x, y) = max{x, y} for all x, y ∈ [0,∞). Notice that the topology τpmax has as a base the family of open
balls {[0, x + ε) : x ∈ [0,∞) and ε ∈ (0,∞)}.

The aforementioned applications of partial metric spaces have been obtained through fixed point tech-
niques which are based on the Matthews fixed point theorem for self-mappings defined in complete partial
metric spaces (see [10] for a detailed treatment of the topic). Let us recall the concepts of completeness and
contractivity in partial metric spaces. Following [10], a mapping f from a partial metric space (X, p) into
itself is said to be a p-contraction if there exists c ∈]0, 1[ such that p( f (x), f (y)) ≤ cp(x, y) for all x, y ∈ X. The
constant c is called the contractive constant of the contraction f . A few applications of p-contractions can
be found in [1, 2, 16].

Taking into account how a partial metric induces a topology, a sequence (xn)n∈N in (X, p) converges to
x ∈ X with respect to τp if and only if p(x, x) = limn→∞ p(x, xn). Besides, a sequence (xn)n∈N in (X, p) is said
to be a Cauchy sequence if limn,m→∞ p(xn, xm) exist in [0,∞). As one can expect, a partial metric space (X, p)
is called complete when every Cauchy sequence (xn)n∈N converges to a point x ∈ X with respect to τp such
that p(x, x) = limn,m→∞ p(xn, xm).

Notice that, every metric space (X, d) is always a partial metric space such that d(x, x) = 0 for all x ∈ X.
Of course, completeness and contractivity for self-mappings defined in metric spaces can be retrieved as a
particular case of their counterparts when the partial metric is just replaced by a metric.

Since Borsı́k and Doboš characterized metric-preserving functions, different authors have extended their
study to the case of generalized metric spaces. Among others, such a study has been made in the approach
of partial metric spaces. Concretely, in 2012, S. Massanet and O. Valero posed the transformation problem in
the framework of partial metric spaces. Specifically, they introduced the notion of partial metric-preserving
function as follows (see [9] and, also, [2]): a function f : [0,∞) → [0,∞) is a partial metric-preserving
function (shortly pmp-function), if for each partial metric space (X, p), the function p f is a partial metric on
X, where p f (x, y) = f (p(x, y)) for each x, y ∈ X. A characterization of pmp-functions was given, in the spirit
of Theorem 1.4, as follows:

Theorem 1.7. Let f : [0,∞)→ [0,∞). The below assertions are equivalent:

(1) f is a pmp-function.
(2) f holds the following properties for all a, b, c, d ∈ [0,∞):

(2.1) f (a) + f (b) ≤ f (c) + f (d) whenever a + b ≤ c + d, b ≤ c and b ≤ d.
(2.2) If max{b, c} ≤ a and f (a) = f (b) = f (c), then a = b = c.

From the preceding result one can derive the following corollary.

Corollary 1.8. Every pmp-function is monotone and subadditive.

In spite of pmp-functions share the subadditivity with metric-preserving functions, the preceding corol-
lary shows that they are not the same type of functions because of we have exposed that there are metric-
preserving functions that are not monotone. Moreover, another differences can be easily stated. In particular,
Proposition 1.1 does not hold in the partial metric framework. Indeed, there are pmp-functions which are
not amenable such as the example below shows.
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Example 1.9. Consider the function f : [0,∞) → [0,∞) given by f (a) = a + 1. Then it is not hard to check
that f satisfies conditions (2.1) and (2.2) in the statement of Theorem 1.7 and, thus, it is a pmp-function.
However, it is not amenable.

The next example warranties that Propositions 1.2 and 1.3 neither are true in the partial metric approach.

Example 1.10. Consider the function f : [0,∞)→ [0,∞) defined by

f (a) =

{
0 if a = 0
1 otherwise .

It is clear that f is amenable, monotone, subadditive and concave. Nevertheless, f is not a partial metric-
preserving function. Indeed, set a = 3, b = 2 and c = 1. Then b ≤ a and c ≤ a and f (a) = f (b) = f (c) = 1 but
a , b. By (2.2) in Theorem 1.7, f is not a partial metric-preserving function.

Inspired by the fact that Proposition 1.3 gives a method to generate metric-preserving functions and that
such a result cannot be extended directly to the framework of partial metric spaces, we focus our efforts in
exploring what is the relationship between concavity and pmp-functions. Concretely, we show that there
exists a deep and surprising connection between concave functions and pmp-functions. In fact, we prove
that pmp-functions are exactly those concave functions that are strictly monotone. Hence we provide a
new characterization of pmp-functions that, with respect to Theorem 1.4, sheds light on the real look of
the functions under consideration. Moreover, we also characterize those pmp-functions that preserve the
topology induced by the partial metric to be transformed. In particular, we prove that such pmp-functions
are exactly the continuous at 0. Furthermore, motivated, on the one hand, by the fact that in many cases one
needs, in order to solve an applied problem, to show that a self-mapping is a contraction in a metric space
obtained by means of a transformation (a metric-preserving function) because to check the contractivity of
such a mapping in the original and natural metric with which the space is endowed is an arduos task (see,
for instance, [13]) and, on the other hand, by the fact that fixed point theory plays an important role in the
applications of partial metric spaces to Computer Science and Artificial Intelligence, we go deeper into the
study of pmp-functions and we give a characterization of those pmp-functions which preserve completeness
and contractivity. Specifically, we prove that completeness is preserved by pmp-functions that are non-
bounded, and that contractivity is preserved by those pmp-functions that satisfy a distinguished functional
equation involving contractive constants. In this way we provide a method to induce new metrics from an
old one in such a way that the two main components of every “metric” fixed point result are preserved in
order to be able to apply an appropriate fixed point result best fitted to the problem to be solved. Finally,
the exposed theory is illustrated with appropriate examples.

2. The New Characterization of Partial Metric-Preserving Functions

In this section we provide a new characterization of pmp-functions. To this end, the following lemmata
will be essential.

Lemma 2.1. Let f : [0,∞)→ [0,∞) be a pmp-function. Then f is strictly monotone.

Proof. Assume for the purpose of contradiction that f is not strictly monotone. Then, there exist a, b ∈ [0,∞),
with a < b, such that f (a) ≥ f (b). Consider the partial metric space ([0,∞), p), where p(x, y) = max{x, y}
for each x, y ∈ [0,∞). Since f is a pmp-function we deduce that ([0,∞), p f ) is a partial metric. Moreover,
p f (a, a) = f (max{a, a}) = f (a) ≥ f (b) = f (max{a, b}) = p f (a, b) and so p f (a, a) = p f (a, b). Furthermore,
p f (b, b) = f (b) = f (max{a, b}) = p f (a, b). Then p f (a, a) = p f (b, b) = p f (a, b) and, thus, a = b which contradicts
the fact a < b.

Observe that Lemma 2.1 refines part of the information provided by Corollary 1.8 about pmp-functions.
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Lemma 2.2. Let f : [0,∞) → [0,∞) be a strictly monotone function and let a, b, c ∈ [0,∞). If b ≤ a, c ≤ a and
f (a) = f (b) = f (c), then a = b = c.

Proof. Clearly the thesis is derived from the fact that every strictly monotone function is injective.

The next result provides a particular method to generate new strictly monotone, concave and pmp-
functions from old ones.

Lemma 2.3. Let f , 1 : [0,∞) → [0,∞) be two functions such that 1(a) = f (a) − f (0) for all a ∈ [0,∞). Then the
following assertions are hold:

(1) If f is strictly monotone and concave, then 1 is strictly monotone and concave.
(2) If f is a pmp-function, then 1 is a pmp-function.

Proof. (1) Obviously 1 is strictly monotone. Next we prove that 1 is concave too. To this end, let a, b ∈ [0,∞)
and λ ∈]0, 1[. Then,

1(λa + (1 − λ)b) = f (λa + (1 − λ)b) − f (0) ≥ λ f (a) + (1 − λ) f (b) − f (0) =

λ f (a) − λ f (0) + (1 − λ) f (b) − (1 − λ) f (0) = λ1(a) + (1 − λ)1(b).

It follows that 1 is concave.
(2) By assertion (1) in Lemma 2.3 we have that 1 is strictly monotone. So, by Lemma 2.2, 1 satisfies

condition (2.2) of Theorem 1.7. It remains to prove that 1 satisfies condition (2.1) of Theorem 1.7 in order to
see that 1 is a pmp-function. With this aim, let a, b, c, d ∈ [0,∞) such that a + b ≤ c + d, b ≤ c and b ≤ d. Then,

1(a) + 1(b) = f (a) − f (0) + f (b) − f (0) ≤ f (c) − f (0) + f (d) − f (0) = 1(c) + 1(d),

since f is a pmp-function. Therefore, by Theorem 1.7, 1 is a pmp-function.

Following similar arguments we can obtain the next lemma whose proof we omit.

Lemma 2.4. Let α ∈ [0,∞) and let f , h : [0,∞)→ [0,∞) be two functions such that h(a) = f (a)+α for all a ∈ [0,∞).
If f is strictly monotone and concave, then h is strictly monotone and concave.

The next result was proved in [5, Theorem 2 in Chapter 1].

Lemma 2.5. Let f : [0,∞)→ [0,∞) be an amenable function. Then the following assertions are equivalent:
(1) f is concave.
(2) If a, b, c ∈ [0, d] with d ∈ (0,∞) and a + d = b + c, then f (a) + f (d) ≤ f (b) + f (c).

The next result states a relationship between condition (2.1) in Theorem 1.7 and condition (2) in Lemma
2.5 when strictly monotone functions are under consideration.

Lemma 2.6. Let f : [0,∞)→ [0,∞) be a strictly monotone function. Then the following assertions are equivalent:

(1) If a, b, c ∈ [0, d] with d ∈ (0,∞) and a + d = b + c, then f (a) + f (d) ≤ f (b) + f (c).
(2) If a, b, c, d ∈ [0,∞), then f (a) + f (b) ≤ f (c) + f (d) whenever a + b ≤ c + d, b ≤ c and b ≤ d.

Proof. (1)⇒ (2) Let a, b, c, d ∈ [0,∞) such that a + b ≤ c + d, b ≤ c and b ≤ d. Take t = c + d− b. Since b ≤ c and
b ≤ d we have that t ∈ [0,∞). However if t = 0, then an easy computation shows that a = b = c = d = 0 and,
thus, condition (2) is hold. So we can assume that t > 0. Clearly, b, c, d ∈ [0, t] and, in addition, b + t = c + d.
So, by (1), we have that f (b) + f (t) ≤ f (c) + f (d). Moreover the facts that a ≤ c + d − b = t and f is strictly
monotone give that f (a) ≤ f (t). Thus we conclude that

f (a) + f (b) ≤ f (b) + f (t) ≤ f (c) + f (d).

(2) ⇒ (1) Let d ∈ (0,∞) and consider a, b, c ∈ [0, d] such that a + d = b + c. Assume that a > c. Then
a + d > c + d ≥ c + b = a + d, which is a contradiction. Whence we deduce that a ≤ c. Similarly one can prove
that a ≤ b. Therefore a ≤ c and a ≤ b. Then f (a) + f (d) ≤ f (b) + f (c) as we claimed.
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In the light of the exposed results we are able to prove the promised new characterization of pmp-
functions.

Theorem 2.7. Let f : [0,∞)→ [0,∞) be a function. Then the following assertions are equivalent:

(1) f is a pmp-function.
(2) f is strictly monotone and concave.

Proof. Define the function 1 : [0,∞)→ [0,∞) given by 1(a) = f (a) − f (0) for all a ∈ [0,∞).

(1)⇒ (2) By assertion (2) of Lemma 2.3 we have that 1 is a pmp-function. Lemma 2.1 warrantees that 1
is strictly monotone. Since 1 is a pmp-function 1 satisfies condition (2.1) in Theorem 1.7 and, thus, Lemma
2.6 guarantees that, given d ∈ (0,∞), 1(a) + 1(d) ≤ 1(b) + 1(c) whenever a, b, c ∈ [0, d] with d ∈ (0,∞) and
a + d = b + c. This last condition, by Lemma 2.5, is equivalent to the concavity of 1, since 1 is amenable.
Now, by Lemma 2.4, f is concave and strictly monotone, since f (a) = 1(a) + f (0) for all a ∈ [0,∞).

(2) ⇒ (1) By assertion (1) in Lemma 2.3 we have that 1 is strictly monotone and concave. On the one
hand, Lemma 2.5 gives that, given d ∈ (0,∞), 1(a) + 1(d) ≤ 1(b) + 1(c) whenever a, b, c ∈ [0, d] with d ∈ (0,∞)
and a + d = b + c. It follows that, given d ∈ (0,∞), f (a) + f (d) ≤ f (b) + f (c) whenever a, b, c ∈ [0, d] with
d ∈ (0,∞) and a + d = b + c. From Lemma 2.4, we deduce that f is strictly monotone. Then Lemma 2.6 yields
that, for each a, b, c, d ∈ [0,∞), f (a) + f (b) ≤ f (c) + f (d) whenever a + b ≤ c + d, b ≤ c and b ≤ d. Whence we
obtain that f fulfills condition (2.1) in Theorem 1.7. Moreover, by Lemma 2.2, f satisfies condition (2.2) in
Theorem 1.7. Therefore, the aforesaid theorem warrantees that f is a pmp-function.

It must be stressed that, when comparing with Propositions 1.2 and 1.3, Theorem 1.7 shows great
differences between metric-preserving functions and pmp-functions.

Taking into account Theorems 1.7 and 2.7 we can unify both independent characterizations of pmp-
functions.

Corollary 2.8. Let f : [0,∞)→ [0,∞) be a function. The the following assertions are equivalent:

(1) f is a pmp-function.
(2) f is strictly monotone and concave.
(3) f holds the following properties:

(3.1) f (a) + f (b) ≤ f (c) + f (b) whenever a + b ≤ c + d, b ≤ c and b ≤ d.
(3.2) If b ≤ a, c ≤ a and f (a) = f (b) = f (c), then a = b = c.

In [5, Theorem 1 in Chapter 1], the next result for metric-preserving functions was proved.

Proposition 2.9. Let f : [0,∞) → [0,∞) be an amenable function. If f is concave, then f is a metric-preserving
function.

From Proposition 2.9 and Theorem 2.7 we derive the next interesting relationship between pmp-functions
and metric-preserving functions.

Corollary 2.10. Let f : [0,∞)→ [0,∞) be an amenable function. If f is a pmp-function, then f is a metric-preserving
function.

Notice that the preceding result is consistent with the fact that the same conclusion can be obtained
from Corollary 1.8 and Proposition 1.2. Moreover, recall that Example 1.10 shows that the converse of
Corollary 2.10 is not verified. Finally, it must be pointed out that amenable pmp-functions match up with
those functions named metric transforms in the sense of L.M. Blumenthal (see [4]).
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3. Strong Partial Metric-Preserving Functions

In this section we focus our attention to discern if pmp-functions are able to preserve the topology in the
spirit of strong metric-preserving functions, i.e., the topology induced by the transformed partial metric
space is equivalent to the topology induced by the partial metric space to be transformed. So the main
target of this section is to get a version of Theorem 1.6 in the framework of partial metric spaces.

As pointed out in Section 1, each partial metric p on X induces a T0 topology τp on X which has as a
base the family of open balls {Bp(x; ε) : x ∈ X, ε > 0}, where Bp(x; ε) = {y ∈ X : p(x, y) < p(x, x) + ε}. Taking
this fact into account, it can be proved easily that two partial metrics p1 and p2 on a set X are topologically
equivalent (induce the same topology) if and only if for each x ∈ X and each ε ∈ (0,∞) there exists δ ∈ (0,∞)
such that

Bp1 (x; δ) ⊆ Bp2 (x; ε) and Bp2 (x; δ) ⊆ Bp1 (x; ε).

It seems natural to wonder whether always a pmp-function preserves topologies, that is, the topology
induced by the transformed partial metric space coincides with the topology induced by the partial metric
space to be transformed through the pmp-function. Nevertheless, as in the classical metric case, this is not
the case such as the next example shows.

Example 3.1. Consider the function f : [0,∞)→ [0,∞) given by

f (a) =

{
0 if a = 0

1+a
2+a if a ∈ (0,∞) .

It not hard to check that f is strictly monotone and concave. So, by Theorem 2.7, f is a pmp-function.
Moreover, consider the partial metric space ([0,∞), pmax) introduced in Section 1. Furthermore, the partial
metric pmax f is given by

pmax f (x, y) =

{
0 if x = y = 0

1+max{x,y}
2+max{x,y} otherwise .

Obviously Bpmax f
(0; 1

4 ) = {0} and Bpmax (0; δ) = [0, δ) for each δ ∈ (0,∞). Consequently, the topologies τpmax and
τpmax f

are not the same. Whence we conclude that the partial metrics pmax and pmax f are not topologically
equivalent.

Since pmp-functions do not preserve, in general, topologies it makes sense that we introduce the follow-
ing notion.

Definition 3.2. A partial metric-preserving function f : [0,∞)→ [0,∞) is said to be strong if for each partial
metric space (X, p) the partial metrics p and p f are topologically equivalent.

Similarly to the classical metric case, the pmp-function introduced in Example 3.1 fails to be continuous
at 0. So apparently the continuity will play a fundamental role so that a pmp-function to be strong. Inspired
by this fact we discuss the continuity of a pmp-function in the result below.

Lemma 3.3. Let f : [0,∞)→ [0,∞) be a pmp-function. The following assertions are equivalent:

(1) f is continuous.
(2) f is continuous at 0.

Proof. (1)⇒ (2) Clearly if f is continuous, then f is continuous at 0.

(2)⇒ (1) We will distinguish two possible cases:
Case 1. f is amenable. Then, by Corollary 2.10, f is a metric-preserving function continuous at 0. Then

the continuity of f follows from Theorem 1.6.
Case 2. f is not amenable. Then, by assertion (2) in Lemma 2.3, the function 1 : [0,∞) → [0,∞), given

by 1(a) = f (a) − f (0), for all a ∈ [0,∞) is a pmp-function. Clearly 1 is amenable and continuous at 0. Then,
by Case 1, 1 is continuous and so, obviously, f is continuous.
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The next theorem characterizes strong pmp-functions extending Theorem 1.6 to the new context under
consideration.

Theorem 3.4. Let f : [0,∞)→ [0,∞) be a pmp-function. Then the following assertions are equivalent:

(1) f is strong.
(2) f is continuous.
(3) f is continuous at 0.

Proof. By Lemma 3.3, (2)⇔ (3). So it remains to prove (1)⇔ (2).
(1) ⇒ (2) Consider the partial metric space ([0,∞), e), where e(x, y) = |x − y| for each x, y ∈ [0,∞). Since

f is strong we have that the partial metrics e f and e are topologically equivalent. Next we show that f
is continuous at 0. To this end, fix ε ∈ (0,∞). Then, taking into account that e and e f are topologically
equivalent, there exists δ ∈ (0,∞) such that Be(0; δ) ⊆ Be f (0; ε). Thus, given y ∈ Be(0; δ) then y ∈ Be f (0; ε), i.e.,
e(0, y) < e(0, 0)+δ implies f (e(0, y)) < f (e(0, 0))+ε. Therefore, for each y ∈ [0, δ[, we have that f (y) < f (0)+ε.
Whence f is continuous at 0. Hence f is continuous by Lemma 3.3.

(2)⇒ (1) Consider a partial metric space (X, p). Let x ∈ X and ε ∈ (0,∞).
First we show that there exists δ1 ∈ (0,∞) such that Bp(x; δ1) ⊆ Bp f (x; ε). With this aim, set a0 = p(x, x) ∈

[0,∞). The continuity of f at a0 gives the existence of δ1 ∈ (0,∞) such that for each b ∈ (a0−δ1, a0 +δ1)∩ [0,∞)
we have that | f (a) − f (a0)| < ε. Take y ∈ Bp(x; δ1). Then p(x, y) < p(x, x) + δ1 and so p(x, y) ∈ [a0, a0 + δ1[. It
follows that | f (p(x, y)) − f (p(x, x))| < ε. Since f is strictly monotone we have that f (p(x, y)) < f (p(x, x)) + ε.
Whence Bp(x; δ1) ⊆ Bp f (x; ε).

Next we show that there exists δ2 ∈ (0,∞) such that Bp f (x; δ2) ⊆ Bp(x; ε). The strictly monotony and
continuity of f provides that f ([0,∞)) is the interval either [ f (0),∞) or [ f (0), b] with b ∈ (0,∞). Moreover,
we have that there exists the inverse f−1 of f which is continuous. Let c0 = f (p(x, x)) ∈ f ([0,∞)). By
continuity of f−1 at c0 there exists δ2 ∈ (0,∞) such that for each c ∈]c0 − δ2, c0 + δ2[∩ f ([0,∞)) we have that
| f−1(c) − f−1(c0)| < ε. Take y ∈ Bp f (x; δ2). It follows that f (p(x, y)) ∈]c0 − δ2, c0 + δ2[∩ f ([0,∞)) and, thus, that
| f−1( f (p(x, y)))− f−1( f (p(x, x)))| < ε. Whence we deduce that |p(x, y)− p(x, x)| < ε. Hence Bp f (x; δ2) ⊆ Bp(x; ε).

Therefore, taking δ = min{δ1, δ2}, we have that Bp(x; δ) ⊆ Bp f (x; ε) and Bp f (x; δ) ⊆ Bp(x; ε). So, we conclude
that f is strong.

The next example provides instances of strong pmp-functions.

Example 3.5. Let α, β ∈ (0,∞). The following functions fα : [0,∞)→ [0,∞) are strong pmp-functions, where
for all a ∈ [0,∞) they are defined as follows:

(1) fα(a) = (a + α)β with β ∈ (0, 1].
(2) fα(a) = αa + β.
(3) fα(a) = αa

1+a .
(4) fα(a) = 1+αa

2+αa .
(5) fα(a) = logβ(α + a) with α, β ∈ (1,∞).
(6) fα(a) = 1 − e−αa.

Observe that in the preceding example the instances from (1) until (5) are strong pmp-functions that are
not metric-preserving functions. Moreover, the instance (6) is a strong pmp-function that is, at the same time,
strong metric-preserving. This last fact inspires the next result which discusses the relationship between
strong pmp-functions and strong metric-preserving functions.

Corollary 3.6. Let f : [0,∞) → [0,∞) be an amenable strong pmp-function. Then f is a strong metric-preserving
function.
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Proof. By Corollary 2.10 we have that f is a metric-preserving function. Moreover, by Theorem 3.4, we
obtain that f is continuous. Theorem 1.6 gives that f is a strong metric-preserving function.

The converse of the preceding result is not satisfied.

Example 3.7. Consider the function f : [0,∞)→ [0,∞) given by f (x) = 3x− 2|x− 1|+ |x− 2| for all x ∈ [0,∞).
According to [5] (see also [3]), f is an amenable, monotone, subadditive and continuous function. So, By
Theorem 1.6, we deduce that f is a strong metric-preserving function. However, it is not hard to check that
f is not concave and, thus by Theorem 2.7, f is not a pmp-function.

4. Completeness, Contractions and Partial Metric-Preserving Functions

The objective of this section is twofold. On the one hand, we are interested in stating those conditions
that a pmp-function f must satisfy in order to guarantee that, given a complete partial metric space (X, p),
the new induced partial metric space (X, p f ) is, again, complete. So we want to study when a pmp-function
preserves completeness. On the other hand, we focus our efforts on getting those conditions about pmp-
functions that help us to induce a new partial metric from an old one in such a way that the contractivity
condition for a self-mapping is kept.

4.1. Preserving Completeness

In order to discuss when pmp-functions preserve completeness, the next result will play a crucial role.

Lemma 4.1. Let f : [0,∞) → [0,∞) be a strictly monotone continuous function. The following assertions are
equivalent:

(1) f is surjective on [ f (0),∞).
(2) f is non-bounded

(
f ([0,∞)) = [ f (0),∞)

)
.

Proof. (1)⇒ (2) The strictly monotony and continuity of f provides that f ([0,∞)) is an interval. Clearly the
sujectivity of f gives that such an interval is [ f (0),∞). Indeed, let M ∈ ( f (0),∞). Then there exists aM ∈ (0,∞)
such that f (aM) = M. Notice that the strictly monotony of f guarantees that aM , 0 whenever M > f (0).

(2) ⇒ (1) Let M ∈ ( f (0),∞). Then there exists aM ∈ (0,∞) such that f (aM) > M. Thus we have that
f (0) < M < f (aM). Since f is continuous the Darboux’s theorem provides the existence of bM ∈ (0, aM) such
that f (bM) = M. Therefore f is surjective on [ f (0),∞).

The next result fixes the condition that must be taken under consideration in order to guarantee that a
pmp-function preserves completeness.

Theorem 4.2. Let f : [0,∞)→ [0,∞) be a non-bounded strong pmp-function and let (X, p) be a partial metric space.
The following assertions are equivalent:

(1) (X, p) is complete.
(2) (X, p f ) is complete.

Proof. (1) ⇒ (2) First of all we show that every Cauchy sequence in (X, p f ) is a Cauchy sequence in (X, p).
Let (xn)n∈N be a Cauchy sequence in (X, p f ). Then there exists b0 ∈ [0,∞) such that limn,m→∞ p f (xn, xm) = b0.
Next we prove that there exists a0 ∈ [0,∞) with f (a0) = b0. Indeed, the fact that limn,m→∞ p f (xn, xm) = b0
gives that, for each ε ∈ (0,∞), we can find n0 ∈ N satisfying |p f (xn, xm) − b0| < ε for all n,m ≥ n0. Thus
b0 − ε < p f (xn, xm) < b0 + ε for all n,m ≥ n0. Whence we deduce that f (0) ≤ f (p(xn, xm)) = p f (xn, xm) < b0 + ε
for all ε ∈ (0,∞). It follows that f (0) ≤ b0. By Lemma 4.1, there exists a0 ∈ [0,∞) with f (a0) = b0.
Since f is strictly monotone and continuous we have warranted the existence of the inverse f−1 of f on
[ f (0),∞) which is continuous. The continuity of f−1 and the fact that limn,m→∞ p f (xn, xm) = f (a0) yield
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that limn,m→∞ f−1 (
f
(
p(xn, xm)

))
= f−1( f (a0)). So limn,m→∞ p(xn, xm) = a0 and, hence, the sequence (xn)n∈N is

Cauchy in (X, p).
It remains to prove that the sequence (xn)n∈N converges to a point x ∈ X such that

p f (x, x) = lim
n,m→∞

p f (xn, xm) = lim
n→∞

p f (x, xn).

Since (X, p) is complete we have the existence of x such that p(x, x) = limn,m→∞ p(xn, xm) = limn→∞ p(x, xn).
The continuity of f gives immediately the desired conclusion.

(2)⇒ (1) The proof runs following similar arguments to those given for (1)⇒ (2).

In view of the preceding result, one can pose the question whether the result remains true when the
non-bounded character of the strong pmp-function is deleted from its statement. The next example shows
that the answer to the posed question is negative

Example 4.3. Consider the complete partial metric space ([0,∞), pmax) and the strong pmp-function f :
[0,∞) → [0,∞) given by f (a) = 1+a

2+a . Clearly f is bounded because f ([0,∞)) = [ 1
2 , 1). Take the se-

quence (xn)n∈N in ([0,∞), pmax f ) with xn = n for all n ∈ N. Then it is Cauchy in ([0,∞), pmax f ). Indeed,
limn,m→∞ pmax f (xn, xm) = limn,m→∞ pmax f (n,m) = 1 because, given ε ∈ (0,∞), there exists n0 ∈ N (n0 > 1−2ε

ε )
such that for all n,m ≥ n0 we have that

1 − pmax f (xn, xm) = 1 −
1 + max{n,m}
2 + max{n,m}

≤
1

2 + n0
< ε.

However, (xn)n∈N is not convergent with respect to τ(pmax f ) and, thus, ([0,∞), pmax f ) is not complete. Notice
that 1 < f ([0,∞)) and, thus, by Lemma 4.1, f is not non-bounded.

According to [14], a sequence (xn)n∈N in a partial metric space (X, p) is said to be 0-convergent to x ∈ X
provided that it converges to x with respect to τ(p) and p(x, x) = 0. Besides, (xn)n∈N is called 0-Cauchy
whenever limn,m→∞ p(xn, xm) = 0. Furthermore, a partial metric space (X, p) is said to be 0-complete if every
0-Cauchy sequence (xn)n∈N 0-converges, with respect to τ(p), to a point x ∈ X. Of course, every complete
partial metric space is 0-complete but the converse is not true in general.

Following similar arguments to those given in the proof of Theorem 4.2 one can obtain the next surprising
result.

Theorem 4.4. Let f : [0,∞)→ [0,∞) be an amenable strong pmp-function. The following assertions hold:

(1) If (X, p) is a partial metric space then (X, p) is 0-complete if and only if (X, p f ) is 0-complete.
(2) If (X, d) is a metric space then (X, d) is complete if and only if (X, d f ) is complete.

4.2. Preserving Contractivity
To discern what conditions allow pmp-functions to keep contractivity of self-mappings, let us introduce

the following pertinent notion.

Definition 4.5. Let f : [0,∞) → [0,∞) be a pmp-function. We will say that f is contraction-preserving
provided that, for each partial metric space (X, p), every p-contraction is also a p f -contraction.

Instance (4) in Example 3.5 is an example of pmp-function which is not contranction-preserving.
Nonetheless, the function f : [0,∞)→ [0,∞) defined by f (a) = αa for all a ∈ [0,∞) and with α ∈ (0,∞) is an
example of pmp-function which is, in addition, contraction-preserving.

The next result gives a characterization of those pmp-functions which preserve contractive mappings.

Theorem 4.6. Let f : [0,∞)→ [0,∞) be a pmp-function. The following assertions are equivalent:

(1) f is contraction-preserving.
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(2) For each k ∈]0, 1[ there exists c ∈]0, 1[ such that f (ka) ≤ c f (a) for all a ∈ [0,∞).

Proof. (1) ⇒ (2) For the purpose of contradiction, suppose that there exists k0 ∈]0, 1[ such that for each c ∈
]0, 1[ we can find ac ∈ [0,∞) satisfying f (k0ac) > c f (ac). Next we show that f is not contranction-preserving.
Indeed, consider the partial metric space ([0,∞), pmax) and define the mapping T : [0,∞) → [0,∞) by
T(x) = k0x for all x ∈ [0,∞). Then

pmax(T(x),T(y)) = max{k0x, k0y} = k0 max{x, y} = k0pmax(x, y)

for all x, y ∈ [0,∞) and, hence, T is a pmax-contraction. However,

pmax f (T(ac),T(0)) = f (max{k0ac, 0}) > c f (ac) = c f (max{ac, 0}) = cpmax f (ac, 0)

and, thus, we have seen that for each c ∈]0, 1[ we can find x, y ∈ [0,∞) such that

pmax f (T(x),T(y)) > cpmax f (x, y),

which contradicts the fact that f is a contraction-pressrving.

(2) ⇒ (1) Let (X, p) be a partial metric space and let T : X → X be a p-contraction. Then there exists
k0 ∈]0, 1[ such that

p(T(x),T(y)) ≤ k0p(x, y)

for all x, y ∈ X. Moreover, given k0, there exists c0 ∈]0, 1[ such that f (k0a) ≤ c0 f (a) for all a ∈ [0,∞). Taking
in mind that f is strictly monotone, it follows that

p f (T(x),T(y)) = f (p(T(x),T(y))) ≤ f (k0p(x, y)) ≤ c0 f (p(x, y)) = c0p f (x, y)

for all x, y ∈ [0,∞). Therefore, T is a p f -contraction and so f is contraction-preserving.

The preceding result allows us to find non-trivial examples of pmp-functions which are contraction-
preserving.

Example 4.7. Let α ∈ (0,∞). Define the function f : [0,∞) → [0,∞) by f (a) =
√

a2 + αa for all a ∈ [0,∞). It
is not hard to check that f is strictly monotone and concave. Then, by Theorem 2.7, f is a pmp-function.

Now, let k ∈]0, 1[ and take c =
√

k. Then we have that

f (ka) =
√

k2a2 + αka ≤
√

c2a2 + αc2a = c
√

a2 + αa = c f (a)

for all a ∈ [0,∞). Therefore, by Theorem 4.6, f is contraction-preserving.

It is worthy to stress that Example 4.7 clarifies that pmp-functions being contraction-preserving are not
reduced to those that are homogeneous. Recall that, according to [12], a function f : [0,∞) → [0,∞) is
homogeneous provided that f (αa) = α f (a) for all a, α ∈ (0,∞).

It seems natural to wonder if there exists any relationship between those pmp-functions that are
contraction-preserving and strong. The next result makes clear such a question.

Corollary 4.8. Let f : [0,∞) → [0,∞) be a pmp-function. If f is contraction-preserving, then the following
assertions hold:

(1) f is amenable.
(2) f is a strong pmp-function.
(3) f is a strong metric-preserving function.
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Proof. (1) From Theorem 4.6 we deduce that f (0) = 0. Then the fact that f is strictly monotone gives that
f (a) = 0⇔ x = 0.

(2) Next we show that f is continuous at 0. To this end, fix k ∈ (0, 1). Then there exists c ∈ (0, 1) such that
f (ka) ≤ c f (a) for all a ∈ [0,∞). It follows that f (k) ≤ c f (1) and that f (kn) ≤ cn f (1) for all n ∈ N. Suppose for
the purpose of contradiction that f is not continuous at 0. By Corollary 2.10 in [3], every metric-preserving
function 1which is discontinuous at 0 satisfies that there exists ε ∈ (0,∞) such that ε ≤ 1(a) for all a ∈ (0,∞).
By Proposition 1.2 we have that f is metric preserving. Then there exists ε ∈ (0,∞) such that ε ≤ f (a)
for all a ∈ (0,∞). Moreover, there exists n0 ∈ N with cn f (1) < ε for all n ≥ n0. Whence we obtain that
ε ≤ f (kn) ≤ cn f (1) < ε for all n ≥ n0, which is a contradiction. Therefore f is continuous at 0. By Theorem
3.4 we conclude that f is a strong pmp-function.

(3) Since f is an amenable a strong pmp-function Corollary 3.6 guarantees that f is a strong metric-
preserving function.

The function introduced in Example 4.3 is an instance of strong pmp-function which is not contraction-
preserving.

In the light of Theorem 4.6 and the proof of Corollary 4.8 we derive the next result whose easy proof we
omit.

Corollary 4.9. Let f : [0,∞)→ [0,∞) be a contraction-preserving pmp-function. If (X, p) is a partial metric space
and T is a p-contraction with contractive constant k, then there exists ck ∈ (0, 1) such that T is a p f -contraction with
contractive constant ck and, in addition, f (k) ≤ ck f (1).

In view of the preceding result, it seems natural to ask for those conditions that allow contraction-
preserving functions preserve the contractive constant, that is, T is a p f -contraction with contractive constant
k whenever T is a p-contraction with contractive constant k. The next result clarifies this situation.

Corollary 4.10. Let f : [0,∞) → [0,∞) be a contraction-preserving pmp-function. The following assertions are
equivalent:

(1) f preserves the contractive constant of every p-contraction.
(2) f (ka) = k f (a) for all k ∈ (0, 1) and a ∈ [0,∞).

Proof. (1) ⇒ (2) Consider the partial metric space ([0,∞), pmax) and k ∈ (0, 1). Define the mapping Tk :
[0,∞) → [0,∞) by Tk(x) = kx for all x ∈ [0,∞). It is clear that T is a pmax-contraction with k as contractive
constant. Since f preserves the contractive constant we have that Tk is a pmax f -contraction with k as
contractive constant. Then

f (ka) = f (max{ka, 0}) = pmax f (Tk(a),Tk(0)) ≤ kpmax f (a, 0) = k f (a)

for all a ∈ [0,∞). Moreover, by Theorem 2.7, we have that f is concave. Thus k f (a) ≤ f (ka + (1− k)0) = f (ka).
Whence we conclude that f (ka) = k f (a) for all k ∈ (0, 1) and a ∈ [0,∞).

(2)⇒ (1). It is obvious.

It is clear that replacing, in Definition 4.5, pmp-functions and partial metric spaces by metric-preserving
functions and metric spaces respectively, we obtain a contraction-preserving notion for the classical metric
case. From now on, this type of functions will be called metric-contraction-preserving. The next result
states a surprising relation between both type of functions.

Theorem 4.11. Let f : [0,∞)→ [0,∞) be a pmp-function. The following assertions are equivalent:

(1) f is contraction-preserving.
(2) f is metric-contraction-preserving.
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Proof. (1)⇒ (2) By Corollary 4.8 f is a strong metric-preserving function. Then, given a metric space (X, d),
d f is again a metric on X. By Theorem 4.6 we have that for each k ∈]0, 1[ there exists c ∈]0, 1[ such that
f (ka) ≤ c f (a) for all a ∈ [0,∞). Next consider a d-contraction T : X → X with contractive constant k0. Then,
there exist c0 ∈ (0, 1) such that

d f (T(x),T(y)) = f (d(T(x),T(y))) ≤ f (k0p(x, y)) ≤ c0 f (d(x, y)) = c0d f (x, y)

for all x, y ∈ [0,∞). Therefore, T is a d f -contraction and so f is metric-contraction-preserving.
(2) ⇒ (1). Assume that f is not contraction-preserving. By Theorem 4.6 we have that there exists

k0 ∈]0, 1[ such that for each c ∈]0, 1[ we can find ac ∈ [0,∞) satisfying f (k0ac) > c f (ac). Consider the partial
metric space ([0,∞), pmax) and define the mapping T : [0,∞)→ [0,∞) by T(x) = k0x for all x ∈ [0,∞). Then
it is clear that T is a pmax-contraction. Define the mapping dp : [0,∞) × [0,∞)→ [0,∞) by

dpmax (x, y) =

{
0 if x = y

pmax(x, y) if x , y .

It is easy to see that dpmax is a metric on [0,∞) (compare [7]) and that T is a dpmax -contraction. Since f is a
metric-contraction-preserving function we have that T is a dpmax f

-contraction. Hence, there exists k1 ∈ (0, 1)
such that

dpmax f
(T(x),T(y)) ≤ k1dpmax f

(x, y)

for all x, y ∈ [0,∞). Concretely, we have that

pmax f (T(x),T(y)) ≤ k1pmax f (x, y)

for all x, y ∈ [0,∞) with x , y. It follows that

f (k0ak1 ) = pmax f (T(ak1 ),T(0))) ≤ k1pmax f (ak1 , 0) = k1 f (ak1 ).

Nevertheless k1 f (ak1 ) < f (k0ak1 ) ≤ k1 f (ak1 ), which is a contradiction. Consequently f is contraction-
preserving.
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